
HAL Id: hal-00688069
https://hal.science/hal-00688069v2

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Scheduling of Energy Harvesting Embedded
Systems with Timed Automata

Yasmina Abdeddaïm, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Damien Masson. Real-Time Scheduling of Energy Harvesting Embed-
ded Systems with Timed Automata. RTCSA 2012, Aug 2012, Seoul, South Korea. pp.31-40,
�10.1109/RTCSA.2012.21�. �hal-00688069v2�

https://hal.science/hal-00688069v2
https://hal.archives-ouvertes.fr

Real-Time Scheduling of Energy Harvesting
Embedded Systems with Timed Automata

Yasmina Abdeddaïm and Damien Masson
Université Paris-Est,

LIGM UMR CNRS 8049,
Département Systèmes Embarqués, ESIEE Paris,

2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX,
France

Email: {y.abdeddaim/d.masson}@esiee.fr

June 14, 2012

Contents
1 Introduction 2

2 Related work 3

3 The problem statement 4

4 The Modeling step 6
4.1 Timed Automata . 6
4.2 Modeling the Task . 6
4.3 Task and Energy . 9

5 Scheduling using CTL Model Checking 11
5.1 Feasibility . 11
5.2 Schedulability . 13
5.3 Scheduling Algorithm . 15

6 Experiments 15
6.1 P1 = (Σ,B1(10, 2)) with: e1 = e2 = e3 = 1 15
6.2 P2 = (Σ,B2(10, 3)) with: e1 = e2 = e3 = 1 16
6.3 P3 = (Σ,B3(14, 7)) with: e1 = 3, e2 = e3 = 1 16
6.4 P4 = (Σ,B4(13, 7)) with: e1 = 3, e2 = e3 = 1 16
6.5 P5 = (Σ,B5(12, 7)) with: e1 = 3, e2 = e3 = 1 16
6.6 Minimize the Number of Battery Mode Change 17
6.7 P6 = (Σ,B6(14, 7)) with: e1 = 3, e2 = e3 = 1 and emin = 2 . . . 18

7 Conclusion 18

1

Abstract
In this paper, we propose feasibility and schedulability tests for a real-

time scheduling problem under energy constraints. We first introduce
the problem and show how to model it using timed automata. We then
propose a feasibility test based on CTL model checking and schedula-
bility tests for EDF and Preemptive Fixed Priority algorithms (PFP).
Our approach also permits to generate a feasible schedule if one exists
or otherwise to find how to correct battery characteristics to make the
problem feasible. It is finally possible to generate schedules that optimize
some criteria, such as the number of context switches between the battery
recharging and discharging modes, the minimal and the maximal energy
levels reached during the execution, or the number of preemptions. The
approach is illustrated by some experiments using the model checking tool
Uppaal [1].

1 Introduction
In this work, we investigate a real-time system model for embedded systems that
collect and store energy from their environment. Such systems are composed,
in addition to traditional embedded system components, by an energy collector
unit (e.g. a solar panel) and by an energy storage unit (a battery or a capacitor).

One common hypothesis in real-time system theory is to consider that the
CPU is always available to execute real-time tasks, whereas in the studied sys-
tems, known as energy harvesting systems, the CPU has to be switched off
at some points in order to permit to recharge the energy storage unit. These
harvesting embedded systems are more and more present in our lives: sensor
networks in structures such as bridges that collect vibration energy, medical im-
plants that collect energy from the human body, mobile or fix devices with solar
panel or windmill etc. Despite their energy supply particularity, some of these
systems need to satisfy strict timing constraints. Their particularity is that the
energy resource is not limited, but the energy available at a given instant is.
The energy harvesting and storage process takes time. Therefore it is important
to consider both the time and energy needs of a task in other to schedule it,
since both the energy and CPU time resources of the system have to be shared
among the tasks.

From a scheduling point of view, the time intervals needed for the energy
scavenging will result in inserting gaps in the schedule. So, an energy-aware
scheduler will not be a work-conserving one. Assuming this, traditional feasi-
bility analysis algorithms are no longer relevant. Moreover, we can easily show
that commonly known optimal scheduling policies1, such as Earliest Deadline
First (EDF), Rate Monotonic (RM) or Deadline Monotonic (DM) are no more
optimal for these systems.

Another particularity of the studied embedded systems is that they often
need to be as cheap as possible (e.g. for networked sensors widely dispersed
in an area, some of them will stay unused), as tiny as possible, and as light
as possible. The size of the energy storage unit must so be minimized. So,
the goals of a real-time scheduler for energy harvesting systems will not be
only to warranty timing constraints, but also to take account of these systems

1in the sense that they produce a non feasible schedule iff it does not exist any algorithm
in the same class that can correctly schedule the system.

2

specificities to minimize the energy management overheads. For example, it is
known that energy storage processes have not linear rates. For certain devices,
the less the level of energy is, the faster the charging process will be. Hence,
it can be important to try not to let the energy level be too high if there is no
need to respect timing constraints. On the contrary, a too low energy level can
damage some devices. Trying not to let the energy level get too low when it is
not needed can also be important. Another example is that depending on the
battery technology, it can be of importance to let the battery have complete
cycles as long as it is possible regarding the timing constraints.

This work investigates several open problems related to the scheduling of
such harvesting systems:

• providing a feasibility test,

• providing a schedulability test under Preemptive Fixed Priority (PFP)
and Earliest Deadline First (EDF),

• find the minimal energy collector size that permits the system to be fea-
sible,

• find a schedule that optimize the energy consumption profile on several
criteria, such as the minimal and maximal authorized energy levels, or
the number of context switches between the battery recharging mode and
discharging one.

Doing so, three hypotheses are made. First, the tasks’ energy consumption
is not related to their execution time [2]. Second, the energy consumption pro-
file of the tasks are not known and the worst case is so assumed: all the energy
budget of a task is considered used as soon as the task has begun its execution.
Third, it is assumed that the energy is collected and stored linearly. Moreover,
the set of solutions for the feasibility problem is restricted to fixed priority at
job level schedules where no idle times are allowed when a task is under pre-
emption, except if these idle times correspond to a battery recharge. Even in
this case, the recharge is only possible at the beginning of a preempting task.
In a fixed priority at job level schedule, when the relative priority assignment
between two jobs has been decided, it cannot change. EDF is an example of
fixed priority at job level scheduling algorithm. Least Laxity First (LLF) is a
well known counter example.

We review the related works in Section 2. Then Section 3 formalizes the
problem. Section 4 introduces the timed automaton model. Section 5 exposes
how to check the feasibility and the schedulability with both PFP and EDF
and how to generate a scheduler. Section 6 presents experiments and finally we
conclude in Section 7.

2 Related work
Even if energy issues are more and more popular in real-time systems theory,
most of the research to date has concentrated on reducing the power consump-
tion. Mainly previous efforts have focused on predictive shutdown techniques
[3] and varying speeds of processors [4, 5, 6, 7].

3

To our knowledge, the first paper to address the problem of harvesting sys-
tems, is [8]. However, the task model considered in this paper is the frame-based
model: all tasks have the same release and the same period and deadlines.

In [9], the LSA algorithm is proposed. The context of this algorithm is
a little bit different then the one we address. The authors consider tasks for
which the execution time will depend on the energy given to them. Then they
propose algorithms that optimally assign power to arriving tasks in order to
minimize the battery size while guaranteeing temporal constraints. In that
work, a task energy consumption is related to its execution time, that is not a
realistic hypothesis. Indeed, in practice, the total energy which can be consumed
by a task is not related to its worst case execution time, as stated in [2].

The first work considering task models where energy consumptions are not
linked to CPU demand are the ones of Chetto [10, 11], for dynamic priority
systems. Some heuristics for fixed priority systems are also considered in [12].
To our knowledge, the existence of feasibility or schedulability tests, and the ex-
istence of an optimal scheduling algorithm for these systems are open problems.
We address in this paper this problem using a timed automata approach.

The timed automata approach has been already used in the literature to
model and solve some scheduling problems. In [13, 14], the approach has been
used to solve the job shop scheduling problem. The goal was to find optimal
schedules in the sense of minimal execution time. Then in [15], the authors
present a model based on timed automata to solve real-time scheduling prob-
lems. However, this model does not consider the tasks’ energy consumption.
The principal benefits of the timed automata approach is first that it proposes
a model for both the scheduling and the formal verification of the system, and
second that it manages to handle open problems, where no results are currently
known. For example we used this approach to address the scheduling problem
of self-suspending tasks in [16].

3 The problem statement
We define our real-time problem as a pair P = (Σ,B) where Σ = {τ1, . . . , τn} is
a set of real-time tasks and B a battery.

A real-time task is a tuple τi = (ri, Ci, Ti, Di, ei) where ri is the release
time of the task, Ci the execution time, Ti the period, Di the relative deadline
(Di ≤ Ti) and ei ≥ 0 the energy consumption rate of the task per time unit. An
active task can be started iff there is enough energy in the battery to execute
it completely. We suppose that the energy consumption profile of the task is
unknown. We so assume the most unfavorable case and consider that the whole
energy budget of a task is consumed as soon as the task has begun its execution.

A battery is defined as a tuple B(Emax, ebat) where Emax is its maximal
capacity and ebat its charge rate, i.e. the number of energy units it collects
per time unit. For the sake of clarity, we consider in the examples the scenario
where the battery is full before the first task release. However our model works
whatever the energy initial state level is. If a task is executing, the battery is in
a consuming mode, i.e. a mode where the battery is not charged. A task τi can
be executed completely if the battery energy level is greater than ei × Ci, the
total consumption of the task. If the processor is idle, the battery can move to
the charging mode s.t.: if the level of energy is less than its maximal capacity

4

6

4

8

2

80

0

0 10 20 30 40 50 60 70

τ1

τ2

τ3

10

Figure 1: EDFasap: Battery B(10, 2) and e1 = e2 = e3 = 1

Emax for a duration t, the energy is augmented by ebat × t otherwise the level
of energy does not increase.

A schedule for P = (Σ,B) is a sequence of tasks produced by an algorithm
that at each time:

1. assigns the processor to an instance of a pending task, or

2. lets the processor idle and does not charge the battery, or

3. lets the processor idle and charges the battery.

The real-time problem P = (Σ,B) is schedulable iff there exits a feasible sched-
ule: a schedule where no task misses its deadline and where the battery energy
level is always included in [0, Emax].

Illustrative example
Let P1 be a real-time problem defined by a battery B1(10, 2) and a set Σ1 =
{τ1, τ2, τ3} of real-time tasks where, τ1 = (0, 4, 10, 10, 1), τ2 = (0, 4, 20, 20, 1) and
τ3 = (0, 6, 40, 40, 1). Note that if we relax the constraints on energy consumption
of the tasks (∀i, ei = 0), this problem is schedulable using both EDF and RM
priority driven scheduling algorithms.

We first apply a naive non work conserving algorithm to this problem. In
this algorithm, if no more energy is available to execute new instances of tasks,
the battery is charged until there is enough energy to execute the next highest
priority task according to EDF. Thus, the tasks are executed as soon as possible
according to the EDF policy. We call this algorithm “as soon as possible EDF”
and note it EDFasap.

The EDFasap schedule of the illustrative example is represented in Figure
1 for the interval [0, 80]. At the beginning of the execution, the battery is
completely charged and the tasks τ1 and τ2 can be executed. At t = 8, the
battery energy level is equal to 2, then the task τ3 which consumes 6 units of
energy cannot be executed. Thus, the processor is idle and the battery is in the
charging mode until t = 10. Then at t = 10 there is enough energy to execute
a new instance of task τ1 and so on. Note that at t = 36 and t = 38, the tasks

5

τ2 and τ3 are executed even if the battery is empty. Indeed, they have already
consumed the necessary energy at the beginning of their execution. At t = 40,
all the tasks are active and none of them has missed any deadline. However, at
t = 80, the task τ3 misses its deadline. Thus, this problem is not schedulable
using EDFasap.

4 The Modeling step
4.1 Timed Automata
A Timed automaton [17] is a model extending the classical automaton model
with a set of variables, called clocks. Clocks are real variables evolving contin-
uously and synchronously with time. Thanks to these variables, it is possible
to express constraints over delays between transitions. Indeed, each transition
of a timed automaton can be labeled by a clock constraint called guard which
controls the firing of a transition. Clocks can be reset to zero in a transition
and each location is constrained by a staying condition called invariant.

Formally, let X be a set of real variables called clocks and C(X) the set of
clock constraints φ over X generated by φ ::= x]c | x− y]c | φ∧φ where c ∈ IN ,
x, y ∈ X , and] ∈ {<,≤,≥, >}. A clock valuation is a function v : X → R+∪{0}
which associates to every clock x its value v(x).

Definition 1 (Timed Automaton) A timed automaton (TA) is a tuple A =
(Q, q0,X , I,∆,Σ) where Q is a finite set of states, q0 is the initial state, X is a
finite set of clocks, I : Q→ C(X) is the invariant function, ∆ ⊆ Q×C(X)×Σ×
2X ×Q is a finite set of transitions and Σ is an alphabet of actions augmented
with the action ⊥ that represents the empty action.

A configuration of a timed automaton is a pair (q,v) where q is a state and
v a vector of clock valuations. The semantic of a timed automaton is given
as a timed transition system with two kinds of transition: timed transitions
representing the elapse of time in a state, and discrete transitions representing
the ones between states. A timed transition is enabled if clocks valuations satisfy
the invariant of the state and a discrete one is enabled if clocks valuations respect
the guard on the transition. Then, we define a run in a timed automaton as a
sequence of timed and discrete transitions. Given a network of timed automata,
synchronous communication between timed automata can be done using input
actions denoted a? and output actions denoted a!.

4.2 Modeling the Task
For the sake of clarity, we start by showing how to model a real-time task
without taking into account the energy consumption.

Let τi(ri, Ci, Ti, Di) be a real-time task. We model this task using a timed
automaton Taski with a set Q = {inii, acti, exei, prei, stopi} of states and two
clocks ci and di. This automaton is synchronized with an automaton Periodi

using the action releasei. This action is launched by the automaton Periodi

every period Ti. These automata are presented in Figure 2. The automaton
Taski starts its execution at state inii, where no instance of task τi is active.
When an action releasei is captured, the automaton moves to state acti and

6

acti

exei

stopi

releasei?

exec?

starti?

prei

prsi := new, prtprsi := i

wi := wi + wprsi

prsi := 0, proc := 1

proc := 0

startprti !

inii
ci = wi

wi := Ci,di := 0

di = Di

di = Di

di = Di

di ≤ Didi ≤ Di

ci ≤ wi

di ≤ Di

pi ≤ ri

pi := 0

pi = Ti

pi := 0
proc = 0

proc = 0
exec?

exec?

releasei!

ci := 0
new := i
proc := 1

exec!

pi = rireleasei!

pi ≤ Ti

Figure 2: Timed Automaton Model for a Task τi

7

exei

starti?

starti!startj?prsj := k
prtk := j

new := k startj !

prsi := j
prtj := i

new := j

wk

t1 t2 t3 t4

exei

prej

exek

τi

τj

τk

prei

exejexej

wj

wi

Figure 3: Restrictions on Preemption

the clock di is reset to zero. The clock di is used to measure the elapsed time
since the activation of the task. When the clock di reaches the deadline Di the
automaton moves to state stopi.

In state acti, the task is active but not yet executed. If the task starts its
execution, the automaton moves to state exei and a global variable proc is reset
to one indicating that the processor is not idle. When a task τi starts, the clock
ci is reset to zero, this clock is used to measure wi the response time of task τi.
The response time wi of a task is set initially to Ci, the execution time of the
task. The automaton stays in state exei exactly wi time units, which is modeled
using an invariant ci ≤ wi on state exei and a guard ci = wi from state exei to
state inii.

To handle preemptions using timed automata, we restrict ourselves to a
class of schedules that meet the two restrictions cited bellow. Indeed, modeling
a task where preemptions can occur at every instant is not possible using timed
automata. Preemption could however be modeled using stopwatch automata, a
model where clocks can be stopped. Unfortunately, model checking is known to
be undecidable on this model in the general case [18, 19]. That is why we have
the following restrictions:

1. Restriction 1: we restrict ourselves to fixed priority at job level schedules.
As a consequence, if a task τi is preempted by a task τj , τi cannot be
resumed until τj has finished. As mentioned before, note that EDF is
part of this class of scheduling algorithms.

2. Restriction 2: the processor can be idle only if no task is under preemption.

Under these restrictions, it is possible to handle preemptions, using the fol-
lowing property:

Proposition 1 Let τi and τj be two real-time tasks of a schedule respecting
Restriction 1 and Restriction 2. If τi is preempted by τj then, the preemption
duration of task τi is equal to wj the response time of τj.

8

An illustration of Proposition 1 is given in Figure 3. This figure shows
an example of three tasks τi, τj , τk that respect the two restrictions. Task τj

preempts task τi, and task τk preempts task τj . We can see in the figure
that the time of preemption of each task is equal to the response time of its
preempting task. This example is easily transposable to the case where a task
job is preempted several times.

Using this proposition, it is possible to model preemptions with a timed
automaton as follow. When a task is preempted, the automaton moves to state
prei. To respect Restrictions 1 and 2, a task can be preempted only if a new
task is executed. Indeed, a global action exec? synchronizes every preemption
with the beginning of a new task. The variable prsi records the identifier of the
preempting task and prti the identifier of the task preempted by τi. In Figure
3, at t = t1 the task τi is preempted by τj . Consequently, in our automaton
model, the global variable new, recording the identifier of the new task, is equal
to j, the variable prsi is equal to j and prtj is equal to i.

When the preempting task τprsi resumes, the automaton of the preempted
task τi moves to state exei synchronizing with an action starti. Then, the
response time wi of the task τi is augmented by the response time of the pre-
empting task τprsi

.
The first restriction does not limit the generality of our work so much. In-

deed, mostly all the commonly known scheduling algorithms respect Restriction
1. Restriction 2 seems stronger in a first glance. However, this is not true in the
general context, without considering energy related issues, because most com-
monly studied schedulers are work-conserving, and are so de facto respecting
the restriction.

However, when idle times must be inserted in order to recharge the battery,
Restriction 2 appears as a strong restriction. Therefore, we explain in Section
4.3 how to overcome it by letting the model checker insert idle times at the
beginning of a preempting task.

4.3 Task and Energy
Let B(Emax, ebat) be a battery as defined in Section 3. The battery is modeled
using a timed automaton AB with one clock b and three states. The variable E
is used to store the level of energy in the battery.

The states init and charge represent the consuming mode and the charging
mode respectively. The third state is an urgent state (no timed transition in
this state) and is used only to separate the two modes. When the battery moves
from consuming to charging mode, the clock b is reset to zero and a variable ch
is set to 1, indicating that the battery is in the charging mode. The charging
of the battery is discretized. Indeed, the automaton stays in the charging mode
exactly one time unit using the invariant b ≤ 1 in state charge and the guard
b = 1 from charge state to the urgent state. Then, after each time unit in the
charging mode, the battery level increases by ebat. When the battery reaches its
maximal capacity Emax, the battery level does not increase even if the battery
is in the charging mode. The variable tcharge represents the total time spent
in the charging mode. Figure 4 represents the corresponding automaton.

To take into account the energy consumption of a task, we need to add some
modifications to the task automaton. Figure 5 represents the timed automaton
modeling a task τi where we omit some information already given by Figure 2.

9

init U charge

E := Emax, tcharge := tcharge+ 1

E := Emax+ ebat, tcharge := tcharge+ 1ch := 0, tcharge := 0

charge!

proc = 0

scharge!

b := 0, ch := 1, tcharge := 0

b ≤ 1

b = 1, E ≤ Emax− ebat

b := 0, ch := 1, tcharge := 0

ch := 0, tcharge := 0
b > 0 b = 1, E > Emax− ebat

Figure 4: The Automaton for a Battery B(Emax, ebat)

exei prei

ci ≤ wi

actinacti

wi := wi + tcharge

proc := 1, ci := 0

di := 0

scharge?

charge?, exec!

E := E − (ei × Ci)

inii

ch = 0, exec!
E := E − (ei × Ci)
ci := 0, proc := 1

exec?

Figure 5: Adding Energy Consumption to the Timed Automaton Taski

tcharge

exei

wk

exei

prej

exek

τi

τj

τk

prei

exej

wj

wi

nactj exej

Figure 6: Charging During Preemption

10

Since we consider that a task consumes all the energy required for its execution
at its beginning, when a task starts its execution, the energy available E is
reduced by ei × Ci.

According to Restriction 2, the processor can not be idle if a task is pre-
empted. This restriction does not allow us to model a behavior where the
battery is in a charging mode if a task is preempted. To overcome this restric-
tion in the particular case where the inserted idle time is a battery recharge,
we add a new state nacti s.t.: if the automaton is in state nacti, the processor
is considered to be busy and is dedicated to the task τi. When the automa-
ton moves to state nacti, the battery automaton moves, synchronizing with the
action charge!, to the charging mode. When the automaton moves from state
nacti to the execution state, the battery moves to the idle mode and tcharge,
the total time spent in the charging mode, is added to wi, the response time of
the task τi, as shown in Figure 6.

5 Scheduling using CTL Model Checking
Model checking is a method for automatic verification where the system is mod-
eled using a formal modelM and the correctness property is stated with a formal
specification language φ. Given a model M and a property φ, model checkers
are used to automatically decide whether M satisfied φ or not.

In this section, we present how we use CTL [20] model checking to test the
feasibility of a task set and its schedulability with PFP and EDF.

CTL properties are generated using the following grammar:

φ ::= p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|
AXφ|EXφ|AGφ|EGφ|A[φUφ]|E[φUφ]

where p is a set of atomic formulas. CTL formulas are interpreted on a transition
system s.t. the initial state s0 satisfies: AGφ iff in all the paths starting at s0
all the states satisfy φ, EGφ iff there exists a path starting at s0 where all the
states satisfy φ, AXφ iff in all the paths starting at s0 in the next state φ is
satisfied, EXφ iff there exits a path starting at s0 where in the next state φ
is satisfied, E[φ1Uφ2] iff there exists a path starting at s0 where φ1 is satisfied
until φ2 is satisfied and A[φ1Uφ2] iff for all the paths starting at s0 φ1 is satisfied
until φ2 is satisfied.

5.1 Feasibility
Let P = (Σ,B) be a real-time problem where Σ = {τ1, . . . , τn} and B =
(Emax, ebat). We model each task τi using a timed automaton Taski and model
the battery B using a timed automaton AB as defined in Section 4.3. We
note AP the parallel composition of the automata Task1, Task2, . . . Taskn and
AB . A configuration of AP is a tuple (q, v, E) where q = (s1, . . . sn, sb) and
v = (v(c1), v(d1), . . . v(cn), v(dn), v(b)) s.t.:

1. ∀i ∈ [1, n], si is a state of the automaton Taski and v(ci), v(di) are the
clocks valuations of ci and di respectively,

2. sb is a state of the automaton AB and v(b) is a clock valuation of clock b,

11

3. E is the global variable storing the level of energy in the system.

The configurations of the timed transition system of AP represent the possible
configurations of a task (active, executing, preempted, . . .) plus the possible
battery configurations (mode and level).

The following proposition provides a feasibility test for the scheduling prob-
lem P = (Σ,B).

Proposition 2 (feasibility) Let P = (Σ,B) be a real-time problem where
Σ = {τ1 . . . τn}. P is feasible iff the network AP modeling P satisfies the CTL
Formula 1

φSched1 : EG¬
(∨

i∈[1,n]

stopi ∨ E < 0
)

(1)

Proposition 2 states that the problem is feasible iff there exists an infi-
nite run ξ in AP where all the configurations (q, v, E) satisfy the property
ϕ : ¬(

∨
i∈[1,n] stopi ∨ E < 0). We call this run a feasible run. In other words, a

run ξ is feasible iff none of its configurations contains a state stopi or a negative
battery level. If such a run exits, it corresponds to a schedule where there is
enough energy to execute all the active tasks and none of the tasks misses its
deadline. Indeed, an automaton Taski reaches the state stopi iff the clock di

reaches the deadline Di of the task τi (see Figure 2). Since the clock di is reset
to zero at each activation of a task τi, a clock greater than the deadlines implies
that a deadline miss has occurred.

Given a real-time problem P = (Σ,B), one can check the optimal character-
istics of a battery to make the problem feasible. For example, find the minimal
value for Emax to make the problem feasible. But also find a maximal value
for a lower bound Emin under which it is not permitted for the battery to go
bellow. Given a minimal value Emin and a maximal value Emax, Formula 2
checks if the problem is feasible.

φSched2 : EG¬
(∨

i∈[1,n]

stopi ∨ E > Emax ∨ E < Emin

)
(2)

Another application is to find a schedule that minimizes the number of state
changes between the battery charging mode and the task execution mode. We
add to the model a global variable NbC counting the number of battery mode
changes. The variable is initially set to zero, and is incremented when the
battery moves from consuming to idle mode. Then, when all the tasks are in
their initial state, the variable is reset to zero.

Using Formula 3, we can find the feasible schedule minimizing the number
of mode changes. Indeed, by changing the value of NbCmin, we can find the
minimal value of mode changes for which the problem remains feasible.

φSched3 : EG¬
(∨
i∈[1,n]

stopi ∨ E < 0 ∨NbC >NbCmin

)
(3)

The same idea can be used to minimize the number of preemptions.

12

5.2 Schedulability
To test schedulability according to a given scheduling policy2, one can model
the scheduling policy in the CTL checked formula.

To test PFP schedulability, we have to test if there exists a feasible run
where some configurations are forbidden: the ones where a task is executing
while a greater priority task is not.

Proposition 3 (PFP Schedulability) Let P = (Σ,B) be a real-time problem
where Σ = {τ1 . . . τn} is sorted according to the priorities of the tasks. P is
schedulable according to PFP iff the network AP modeling P satisfies the CTL
Formula 4.

φfp : EG¬
(∨

i∈[1,n−1]

(acti ∧ di > 0
∧

j∈[i+1,n]

exej)
∨

i∈[1,n−1]

(prei

∧
j∈[i+1,n]

exej)
∨

i∈[1,n]

stopi ∨ E < 0
) (4)

Formula 4 states that the problem is schedulable according to PFP iff there
exists a feasible run where, in all the configurations, a task τj cannot be in its
execution state exej if a highest priority task τi is in state acti or prei.

Using this approach, we can also test the EDF schedulability.

Proposition 4 (EDF Schedulability) Let P = (Σ,B) be a real-time problem
where Σ = {τ1 . . . τn}. P is schedulable according to EDF iff the network AP
modeling P satisfies the CTL Formula 5.

φedf :EG¬
(∨

i∈[1,n]

∨
j 6=i∈[1,n]

(acti ∧ di > 0 ∧ exej ∧ pij)

∨
i∈[1,n]

∨
j 6=i∈[1,n]

(prei ∧ exej ∧ pij)
∨

i∈[1,n]

stopi ∨ E < 0
) (5)

pij is a state of an observer automaton reachable when di − dj > Di − Dj

with di and dj the deadline clocks of tasks τi and τj respectively.

Under the EDF scheduling policy, the processor is assigned to a task if it
is the closest to its deadline. Formula 5 states that the problem is schedulable
according to EDF iff there exists a feasible run where, in all the configurations,
a task cannot be in its execution state if a task with a closer deadline is active
or preempted.

To solve the real-time problem P = (Σ,B), a scheduling algorithm has to
be non-work-conserving in the sense that the processor can be idle if a task is
not executing. Idle times are times where the battery is in a charging mode. A
classical scheduling policy (PFP, EDF . . .) is not sufficient to solve our real-time
problem, because it does not provide the idle times where the battery has to be
charged. If the schedulability tests given in Formulas 4 and 5 are satisfied, we
only know that there exists a feasible schedule where the order of execution of

2note that the scheduling policy has to be a fixed priority at job level one, according to
Restriction 1.

13

tasks respects the priority assignment of PFP or EDF algorithms. For example,
if a real-time problem is not EDFasap schedulable, Formula 5 is not sufficient
to prove it.

We qualify an algorithm to be as soon as possible if the processor is idle only
if the highest active priority task can not be executed.

According to the restriction of our model, idle times can be inserted in a
schedule only at the beginning of the execution of a task. Thus, to compute an
as soon as possible schedule, we forbid in our model configurations staying more
than necessary in a state acti or a state nacti.

Proposition 5 provides a schedulability test for PFP as soon as possible.

Proposition 5 (PFP As Soon As Possible Schedulability) Let P = (Σ,B)
be a real-time problem where Σ = {τ1 . . . τn} is sorted according to the priorities
of the tasks. P is schedulable according to PFPasap iff the network AP modeling
P satisfies the CTL Formula 6

φfpS
: φfp ∧ EG¬

(∨
i∈[1,n]

(
((acti ∧ di > 0)∨

(nacti ∧ ci > 0))
∧

j∈[1,i−1]

inij ∧ (ei × Ci) ≥ E
)) (6)

Formula 6 sates that the problem is schedulable according to an as soon as
possible PFP scheduling algorithm iff there exists a feasible run where:

1. all the configurations satisfy formula 4, and

2. there is no configuration where the highest priority active task has enough
energy to be executed (Ci × ei ≥ E) and is not scheduled.

An active task τi has the highest priority in a configuration ((s0, . . . sn, sb), v, E)
if all the tasks τj with j < i are not active.

The same principle can be used for EDFasap schedulability. In this case,
a task has the highest priority in a configuration if it has the closest deadline
among all the active tasks.

Proposition 6 (EDF As Soon As Schedulability) Let P = (Σ,B) be a real-
time problem where Σ = {τ1 . . . τn}. P is schedulable according to EDFasap iff
the network AP modeling P satisfies the CTL Formula 7.

φedfS
: φedf ∧ EG¬

(∨
i∈[1,n]

∨
A⊆[1,n]−{i}

(
((acti ∧ di > 0)

∨(nacti ∧ ci > 0))
∧

j∈A

¬inij
∧

k /∈A,k 6=i

inik
∧

j∈A

pij

∧(Ci × ei) ≥ E
))

(7)

pij is a state of an observer automaton reachable when di − dj > Di − Dj

with di and dj the deadline clocks of tasks τi and τj respectively.

Formula 7 states that if an active task τi has the highest priority among the
subset A of all other active tasks, then the task has to be executed if there is
enough energy for it’s completion.

14

5.3 Scheduling Algorithm
To compute a scheduling algorithm for a feasible real-time problem P = (Σ,B),
we first check the appropriate formula to generate a feasible infinite run if one
exists. Model checking for timed automata is decidable but PSPACE-complete
[21], however, in our approach, the feasible run is computed off line.

Given a run of the network AP , a schedule can be derived. This schedule
defines the rules controlling when and how transitions between different config-
urations occur.

Let ξ be a feasible infinite run satisfying one of the formulas of the previous
subsections. This run can be written as: ξ = (q0,v0, E0) → (q1,v1, E1) →
. . . (qk,vk, Ek) . . . where (q0,v0, E0) is the initial configuration with q0 = (ini0,-
..., inin, ini), v0 is an n + 1 dim valuation vector where all the valuations are
equal to 0 and E0 = Emax. Since the run ξ is infinite, it contains at least one
cycle. We note (q∗,v∗, E∗) . . . (q∗,v∗, E∗) the first cycle of ξ and we call the run
ξsched = (q0,v0, E0)→ . . . (q∗,v∗, E∗) . . .→ . . . (q∗,v∗, E∗) a scheduling run.

An on-line scheduling algorithm can be obtained by simply reading se-
quentially the configurations of the pre-computed scheduling run. Indeed, us-
ing this trace, we can compute a scheduling function FSched : {0 . . . t∗} →
{1 . . . n} ∪ {ε1, ε2} where t∗ is the total length of the run ξsched s.t. if:

1. FSched(t) = i ∈ {0 . . . n} task τi is executing at time t,

2. FSched(t) = ε1 the processor is idle at time t and the battery is not charg-
ing,

3. FSched(t) = ε2 the processor is idle at time t and the battery is charging.

Note that if a scheduling problem is proven to be EDFasap or PFPasap

schedulable, there is no use to compute a scheduling function.
The computed scheduling algorithms are sustainable according to the dura-

tion of a task. In other words, if a task terminates before its worst case execution
time, the schedule remains feasible. Indeed, in our model, a task consumes all
its necessary energy at the beginning of its execution. So, if it terminates be-
fore its WCET, it simply consumes less than supposed during the verification
process, and the new idle times are times where the battery can charge more
than proven sufficient for the system to be feasible.

6 Experiments
To validate our approach, we use the timed model checker Uppaal [1] to imple-
ment and test our model on some examples presented in this section. Materials
are available on line at [22].

We consider for all the examples the same set of tasks Σ = {τ1, τ2, τ3} where,
τ1 = (0, 4, 10, 10, e1), τ2 = (0, 4, 20, 20, e2) and τ3 = (0, 6, 40, 40, e3).

6.1 P1 = (Σ,B1(10, 2)) with: e1 = e2 = e3 = 1
We first test our approach on the illustrative example P1 with B1(10, 2), τ1 =
(0, 4, 10, 10, 1), τ2 = (0, 4, 20, 20, 1) and τ3 = (0, 6, 40, 40, 1). The model checker
Uppaal states that Formula 1 is not satisfied, we conclude that the problem
P1 is not feasible.

15

0 10 20 30 40

0

4

8

12

τ1

τ2

τ3

E

Figure 7:PFP2,1,3 Schedule: Battery B(13, 7) and e1 = 3, e2 = e3 = 1

6.2 P2 = (Σ,B2(10, 3)) with: e1 = e2 = e3 = 1
We augment the battery charge rate to ebat = 3 and prove using Formula 1 that
the problem is feasible for a battery B1(10, 3).

We also prove, using Formulas 6 and 7, that the problem is schedulable for
RMasap, PFP2,1,3 (a fixed priority as soon as possible algorithm where τ2 has
the highest priority, and τ3 the lowest one) and EDFasap.

We show that the minimal value of the maximal capacity for which the
problem remains schedulable for EDFasap and RMasap is Emax = 6. And for
PFP2,1,3 the minimal capacity for schedulability is Emax = 8.

6.3 P3 = (Σ,B3(14, 7)) with: e1 = 3, e2 = e3 = 1
Then, we increase the rate of consumption of τ1 to 3 and use a battery B3(14, 7).

We prove that this problem is schedulable for EDFasap, RMasap and PFP2,1,3.

6.4 P4 = (Σ,B4(13, 7)) with: e1 = 3, e2 = e3 = 1
We decrease the maximal capacity of the battery to Emax = 13 and prove that
the problem is no more schedulable using any EDF or RM algorithm, but is
schedulable for PFP2,1,3.

Figure 7 represents the schedule using PFP2,1,3 in the interval [0, 40]. We
can see that in [0, 40] no task misses its deadline and the energy of the system
E is always greater than 0. At t = 40, all the tasks are active and the level of
the battery is E = Emax = 13 as in the initial configuration. That confirms the
result obtained with the model checking tool.

6.5 P5 = (Σ,B5(12, 7)) with: e1 = 3, e2 = e3 = 1
We then decrease again the maximal capacity of the battery to Emax = 12.
Using our approach, we prove that the problem is no more schedulable using
any fixed priority algorithm and of course is still not schedulable using any EDF
algorithm.

16

80

0

0 10 20 30 40 50 60 70

4

8

12

E

τ1

τ2

τ3

Figure 8:Not Schedulable for EDFasap: Battery B(12, 7) and e1 = 3, e2 = e3 = 1

0 10 20 30 40

0

4

8

12

τ1

τ2

τ3

E

Figure 9:Uppaal Feasible Schedule: Battery B(12, 7) and e1 = 3, e2 = e3 = 1

In Figure 8, an EDFasap schedule for the problem P5 with B5(12, 7) is
represented in the interval [0, 80]. We can see that at t = 40 all the tasks are
active but the available energy is equal to 7, then at t = 80 there is no more
energy in the battery. Thus, at t = 80 we have to charge the battery to continue
the execution, and task τ3 will miss its deadline at t = 120.

However, using Formula 1, we prove that the problem is feasible. Thus there
exits a feasible schedule for this problem. Using the feasible trace generated
by the tool Uppaal, we compute the schedule represented in Figure 9. In this
schedule, at t = 6, the first instance of task τ2 has a lower priority than task
τ2, while it is the contrary at t = 11. At t = 40, all the tasks are active and the
battery level is equal to Emax = 12, thus this schedule can be repeated infinitely
with no deadline miss and an energy level always positive.

6.6 Minimize the Number of Battery Mode Change
Using Formula 3, we built the schedule that minimizes the number of battery
change modes for the problem P5. Figure 10 represents the schedule produced

17

80

0

0 10 20 30 40 50 60 70

4

8

12

E

τ1

τ2

τ3

Figure 10:Uppaal Feasible Schedule With Minimal Change Mode of the Bat-
tery: Battery B(12, 7) and e1 = 3, e2 = e3 = 1

by the tool Uppaal. In this schedule, the battery moves from the consuming
to the charging mode 6 times, while it was 7 times in the schedule of Figure 9.
To execute the system, one has first to follow the schedule of the interval [0, 40],
and then to repeat infinitely the schedule of the interval [40, 80].

6.7 P6 = (Σ,B6(14, 7)) with: e1 = 3, e2 = e3 = 1 and emin = 2
Finally, we prove that neither EDF nor PFP algorithms can schedule the prob-
lem P6 where Emax = 14 and the minimal tolerated battery level is emin = 2.
However, using Formula 2, we prove that the problem is feasible and a schedul-
ing algorithm can be computed. The schedule computed using the feasible trace
produced by Uppaal is similar to the schedule of Figure 9.

7 Conclusion
In this paper, we have presented how to use model checking to solve a scheduling
problem under energy constraints. We first formalized the problem and then
provided a feasibility test and schedulability tests for PFP and EDF. We then
showed how to compute a feasible schedule if one exits. Our approach also
permits to derive the optimal characteristics of a battery to make a given real-
time problem feasible. The studied characteristics are the minimal and maximal
reached energy levels, the number of battery mode switches between charging
and discharging, and finally the number of preemptions. One can extend this
study to other criteria by proposing an appropriate CTL formula. Using the
tool Uppaal, we experimented our model on some examples to validate the
approach.

To be able to model preemptions using timed automata, we had to restrict
the authorized schedules to fixed priority at job level ones and to allow recharg-
ing of the battery only at the beginning of a task if this task is preempting
another one.

As future work, we have to formalize the memory complexity of generated

18

on-line schedulers. For that, we first have to characterize the worst execution
case of this scheduling problem.

Modeling more realistic recharging behaviors must also be studied. Both in
terms of energy availability from the environment (e.g. sunshine previsions),
and in terms of the physical capabilities of the storage unit used. For example,
at equivalent power supply, a chemical battery will not store energy at the same
rate and following the same process as a capacitor.

References
[1] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Int. Journal

on Software Tools for Technology Transfer, vol. 1, pp. 134–152, 1997.

[2] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy
consumption of embedded software,” in IEEE Real Time Technology and
Applications Symposium. IEEE Computer Society, 2006, pp. 81–90.

[3] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 4, no. 1, pp. 42–55, Mar. 1996.

[4] A. D. F. Yao and S. Shankar., “A scheduling model for reduced cpu energy,”
IEEE Annual Foundations of Computer Science, pp. 374 – 382, 1995.

[5] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava, “Synthesis techniques
for low-power hard real-time systems on variable voltage processors,” in
Proceedings of the IEEE Real-Time Systems Symposium, ser. RTSS ’98.
IEEE Computer Society, 1998, pp. 178–.

[6] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard
real-time systems,” in Proceedings of the 36th annual ACM/IEEE Design
Automation Conference, ser. DAC ’99. New York, NY, USA: ACM, 1999,
pp. 134–139.

[7] C. M. Krishna and Y. H. Lee., “Voltage clock scaling adaptive schedul-
ing techniques for low power in hard real-time systems,” in Proceedings
of the 6th IEEE Real-Time Technology and Applications Symposium, ser.
RTASâĂŹ00, 2000.

[8] A. Allavena and D. Mossé, “Scheduling of frame-based embedded systems
with rechargeable,” in Proceeding of Workshop on Power Management for
Real-Time and Embedded Systems (in conjunction with RTAS), 2001.

[9] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time
scheduling for energy harvesting sensor nodes,” Real-Time Systems,
vol. 37, no. 3, pp. 233–260, Dec. 2007. [Online]. Available: http:
//dx.doi.org/10.1007/s11241-007-9027-0

[10] M. Chetto and H. El Ghor, “Real-time Scheduling of periodic tasks in
a monoprocessor system with a rechargeable battery,” in WIP Session
Proceedings of The 30th IEEE Real-Time Systems Symposium, IEEE,

19

Ed., Washington, États-Unis, Dec. 2009, p. 45. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00542182

[11] H. EL Ghor, M. Chetto, and R. H. Chehade, “A real-time scheduling
framework for embedded systems with environmental energy harvesting,”
Computers and Electrical Engineering, vol. 37, pp. 498–510, July 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.compeleceng.2011.05.003

[12] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling strate-
gies for ambient energy-harvesting embedded systems,” in GreenCom 2011.
IEEE/ACM International Conference on Green Computing and Commu-
nications, Chengdu, Sichuan, China, du 4 au 5 AoÃżt 2011, pp. 50–55.

[13] Y. Abdeddaïm, E. Asarin, and O. Maler, “Scheduling with timed au-
tomata,” Theoretical Computer Sciences, vol. 354, no. 2, 2006.

[14] A. Fehnker, “Scheduling a steel plant with timed automata,” in RTCSA,
1999, pp. 280–286.

[15] E. Fersman, P. Krcál, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Inf. Comput., vol. 205, no. 8, pp.
1149–1172, 2007.

[16] Y. Abdeddaïm and D. Masson, “Self-suspending periodic real-time tasks
using model checking,” in Work-in-Progress Session of 32nd IEEE Real-
Time Systems Symposium, ser. WIP-RTSS’11, 2011.

[17] R. Alur and D. Dill, “Automata for modeling real-time systems.” in Inter-
national Colloquium on Automata, Languages and Programming (ICALP),
Warwick, England, 1990.

[18] K.Cerans, “Algorithmic problems in analysis of real time system specifica-
tions,” Ph.D. dissertation, University of Latvia, 1992.

[19] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Decidable integration
graphs,” Inf. Comput., vol. 150, no. 2, pp. 209–243, 1999.

[20] D. Kozen, Ed., Logics of Programs, Workshop, ser. Lecture Notes in Com-
puter Science, vol. 131. Springer, 1982.

[21] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Com-
puter Science, vol. 126, pp. 183–235, 1994.

[22] Y. Abdeddaïm and D. Masson, “Uppaal implementations.” [Online].
Available: http://igm.univ-mlv.fr/~masson/Softwares/EnergyAutomata/

20

