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We consider a generalization of the uniform word-based distribution for finitely generated subgroups of a free group.

In our setting, the number of generators is not fixed, the length of each generator is determined by a random variable

with some simple constraints and the distribution of words of a fixed length is specified by a Markov process. We

show by probabilistic arguments that under rather relaxed assumptions, the good properties of the uniform word-based

distribution are preserved: generically (but maybe not exponentially generically), the tuple we pick is a basis of the

subgroup it generates, this subgroup is malnormal and the group presentation defined by this tuple satisfies a small

cancellation condition.

Keywords: Free group, Random groups, Small cancellation

Our starting point is a classical distribution on the set of finitely generated subgroups of a free group,

for which the properties of “typical” subgroups were abundantly studied in the literature. Using a prob-

abilistic approach (rather than a more combinatorial one), we describe a vast class of generalizations of

this classical distribution, for which most “typical” properties of subgroups remain valid.

Interest for the typical properties of groups can be traced to Gromov [6], who introduced several models

for random groups: he considers the statistical properties of finitely presented groups given by random

sets of relators of size at most n, see [13] for a survey.

A growing body of literature considers another model of random groups, by focusing on the statistical

properties of random finitely generated subgroups of free groups (and not necessarily the corresponding

finitely presented groups). To randomly generate a finitely generated subgroup, one may either generate a

tuple of reduced words and consider the subgroup they generate (the classical case, see Arzhantseva and

Ol’shanskiı̆ [2], Jitsukawa [7], Kapovich, Miasnikov, Schupp and Shpilrain [8] and Section 1.1 below), or

directly generate a Stallings graph [4, 3].

In these schemes, instances (say, tuples of generators) of size at most n (say, the maximum length of a

generator) are considered equally likely, and one considers the probability pn that a property P holds for
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a randomly chosen instance of size n. The property P is called (exponentially) negligible if pn tends to 0
(exponentially fast), and (exponentially) generic if its complement is (exponentially) negligible.

In [8, 7], an integer k ≥ 1 is fixed and one draws uniformly at random k-tuples of reduced words of

length at most n. This is what we call the uniform word-based distribution. It is known that, exponentially

generically, the k-tuple is a basis of the subgroup it generates and this subgroup is malnormal, see [2, 7]

and Section 2.1 . Proofs in this context are mostly combinatorial: the number of reduced words of length

n is 2r(2r − 1)n−1 (where r is the rank of the free group) and many properties can be computed directly.

A bit of care and an extra injection of probability theory are however necessary to establish exponential

genericity in some cases.

We propose to generalize this uniform word-based distribution as follows: the number of generators

is not fixed, but determined by a random variable; the length of each generator is also determined by

a random variable (excluding the possibility of a significant number of short words, and normalized so

that its expected value is n); and the distribution of words of a fixed length is specified by a Markov

process. Precise definitions are given in Section 2.2. We show that under rather relaxed assumptions,

the good properties of the uniform word-based distribution are preserved: generically (but maybe not

exponentially generically), the tuple we pick is a basis of the subgroup it generates and this subgroup is

malnormal.

However, all the proofs must be revisited in a probability-theoretic spirit, as we cannot rely any more on

enumeration formulas and on probabilities computed as a quotient of set cardinalities. In particular, if ~h =
(h1, . . . , hk) is a tuple of reduced words and ~h± = (h1, h

−1
1 , . . . , hk, h−1

k ), we estimate the probability

that the height of the trie of ~h is larger than a function τ(n), according to the growth rate of τ (which

may be linear, or grow much slower). This probability tends to 0 more or less fast (exponentially so, or

super-polynomially so) if the random variables governing the number and the length of the generators

satisfy certain technical properties. We also estimate in the same fashion the probability that long words

have several occurrences in the words of ~h±.

Besides the consequences on the statistical properties of subgroups already mentioned (being freely

generated by ~h, malnormality), we also draw consequences on the groups presented by these tuples. We

give conditions on the distribution which ensure that these groups generically satisfy the small cancellation

property C ′( 1
6 ) (see [11]), implying that they are generically torsion-free, word-hyperbolic, with solvable

word and conjugacy problems.

We note finally that Champetier also generalized the uniform word-based distribution, in a different

fashion [5]: he also considers a fixed number of generators k, words of equal length are still equally

likely, but he requires that their minimum length should tend to infinity. Proofs in that context are quite

different.

1 Definitions

1.1 Free groups and reduced words

Let A be a non-empty set, which will remain fixed throughout the paper, and let Ã be the symmetrized

alphabet, namely the disjoint union of A and a set of formal inverses A−1 = {a−1 ∈ A | a ∈ A}. By

convention, the formal inverse operation is extended to Ã by letting (a−1)−1 = a for each a ∈ A. A word

in Ã∗ (that is: a word written on the alphabet Ã) is reduced if it does not contain length 2 factors of the

form aa−1 (a ∈ Ã). If a word is not reduced, one can reduce it by iteratively removing every pattern of
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the form aa−1. The resulting reduced word is uniquely determined: it does not depend on the order of the

cancellations. For instance, u = aabb−1a−1 reduces to aaa−1, and thence to a.

The set F of reduced words is naturally equipped with a structure of group, where the product u · v is

the (reduced) word obtained by reducing the concatenation uv. This group is called the free group on A.

More generally, every group isomorphic to F , say, G = ϕ(F ) where ϕ is an isomorphism, is said to be

a free group, freely generated by ϕ(A). The set ϕ(A) is called a basis of G. It is important to note that

F has infinitely many bases: A is always a basis, but each set {anbam, a} is one as well (if A = {a, b}).

The rank of F (or of any isomorphic free group) is the cardinality |A| of A, and one shows that this notion

is well-defined in the following sense: the free groups on the sets A and B are isomorphic if and only if

|A| = |B|.
A group G is generated by a subset X if every element of G can be written as a product of elements of

X and their inverses. It is finitely generated if it admits a finite set X of generators. In this paper, we are

interested especially in the finitely generated subgroups of finite rank (i.e., finitely generated) free groups.

Recall that every subgroup of a free group is free (Nielsen-Schreier theorem), and hence it has a rank as

well, but that the rank of a subgroup may well be greater than that of the group: the free group of rank 2

has subgroups of every finite rank.

1.2 Graphical representation of subgroups of free groups

A privileged tool for the study of subgroups of free groups is the Stallings graph of a subgroup of H , a

finite directed graph of a particular type uniquely representing H , whose computation was first made ex-

plicit by Stallings [18]. The mathematical object itself is already described by Serre [16]. The description

we give below differs slightly from Serre’s and Stallings’, it follows [20, 9, 19, 12, 17] and it empha-

sizes the combinatorial, graph-theoretic aspect, which is more conducive to the discussion of algorithmic

properties.

A finite A-graph is a pair Γ = (V,E) with V finite and E ⊆ V ×A×V , such that if both (u, a, v) and

(u, a, v′) are in E then v = v′, and if both (u, a, v) and (u′, a, v) are in E then u = u′. Let v ∈ V . The

pair (Γ, v) is said to be admissible if the underlying graph of Γ is connected (that is: the undirected graph

obtained from Γ by forgetting the letter labels and the orientation of edges), and if every vertex w ∈ V ,

except possibly v, occurs in at least two edges in E.

Every admissible pair (Γ, 1) represents a unique finitely generated subgroup H of F (A) in the following

sense: if u is a reduced word, then u ∈ H if and only if u labels a loop at 1 in Γ (by convention, an edge

(u, a, v) can be read from u to v with label a, or from v to u with label a−1). Moreover, each finitely

generated subgroup H of F (A) is represented in that sense by a unique admissible pair, which we call the

Stallings graph of H and write (Γ(H), 1).
Some algebraic properties of H can be directly seen on its Stallings graph (Γ, 1). For instance, the rank

of H is exactly |E| − |V | + 1. See [18, 20, 9, 12] for more information about Stallings graphs.

The Stallings graph of a given finitely generated subgroup H can be computed effectively, and effi-

ciently. A quick description of the algorithm is as follows. Let ~h = (h1, . . . , hk) be a tuple of reduced

words generating H . We first build a graph with edges labeled by letters in Ã, and then reduce it to an

A-graph using foldings. First build a vertex 1. Then, for every 1 ≤ i ≤ k, build a loop with label hi from

1 to 1, adding |hi|−1 new vertices. Change every edge (u, a−1, v) labeled by a letter of A−1 into an edge

(v, a, u). At this point, we have constructed the so-called bouquet of loops labeled by the hi.

Then iteratively identify the vertices v and w whenever there exists a vertex u and a letter a ∈ A
such that either both (u, a, v) and (u, a, w) or both (v, a, u) and (w, a, u) are edges in the graph (the
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Fig. 1: Starting with {a−1bb, ba}, a loop labeled by each word is built around 1; the edge 1
a
−1

−−→ 2 is then changed

into 2
a

−→ 1 to have positive labels only; since 2 and 4 both have an edge labeled with a ending in the same vertex

1, they are merged. The foldings halts here on this small example, since there are no vertex with two incoming or

outgoing edges with the same label.

corresponding two edges are folded, in Stallings’ terminology). An example is depicted on Fig. 1.

The resulting graph Γ is such that (Γ, 1) is admissible, the reduced words labeling a loop at 1 are

exactly the elements of H and, very much like in the (1-dimensional) reduction of words, that graph does

not depend on the order used to perform the foldings.

1.3 Genericity

Let us say that a function f , defined on N and such that lim f(n) = 0, is super-polynomially small (resp.

exponentially small) if f(n) = o(n−d) for every d > 1 (resp. if f(n) < edn for some d > 0 and for n
large enough).

Given a sequence of probability laws (Pn)n on a set S, we say that a subset X ⊆ S is negligible if

limn Pn(X) = 0 and generic if its complement is negligible.

We also say that X is super-polynomially negligible (resp. exponentially negligible) if Pn(X) is super-

polynomially small (resp. exponentially small). And it is super-polynomially generic (resp. exponentially

generic) if its complement is super-polynomially negligible (resp. exponentially negligible).

2 Generic properties of finite rank subgroups of free groups

We concentrate on the (classical) approach (following [2, 1, 7]), where a subgroup is given by a tuple

of words generating it, that is, we consider a sequence of probability laws (Pn) on the set of tuples of

elements of F .

2.1 The uniform distribution on k-tuples of words

In a situation often considered, an integer k > 0 is fixed, and we consider the uniform probability Pn on

the set of k-tuples of reduced words of length at most n.

Let ~h = (h1, . . . , hk) be a k-tuple of reduced words, let ~h± = (h1, h
−1
1 , . . . , hk, h−1

k ) and let µ(~h) =

mini |hi|. It was observed in [2, 7] that, for each 0 < α < 1, µ(~h) ≥ αn exponentially generically.

Moreover, let τ(~h) be the length of the longest prefix common to two words in ~h±. Then, for every

0 < β < 1
2α, τ(~h) ≤ βn exponentially generically [7].

It follows that, exponentially generically, the Stallings graph Γ(H) consists of a “small” central tree

(namely the trie of ~h±, rooted at vertex 1) and “long” outer loops, one for each hi. This geometry of the

Stallings graph of H implies that H is freely generated by ~h, and hence has rank k. Moreover, in that

same geometry, the tuple ~h is determined by Γ(H), up to the order of its elements and the direction in
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which they are read. In particular, exponentially generically, a given subgroup will be produced by a fixed

number of tuples ~h (among the k-tuples of reduced words of length at most n) and hence, the random

generation of such k-tuples is an acceptable way of randomly generating rank k subgroups of F . We refer

the reader to [7, 3] for further details on these results.

We also observe that, in that situation, Γ(H) can be computed in linear time, simply by computing the

initial cancellation in the tuple ~h±.

Under the same sequence of uniform distributions (Pn), H is exponentially generically malnormal [7].

By definition, H is malnormal if, for every x 6∈ H , H ∩ x−1Hx = {1}. This algebraic property of H
translates exactly to the following combinatorial property of the Stallings graph of H: no non-trivial word

u labels a loop at two distinct vertices of Γ(H) (see [9]).

In the exponentially generic situation described above, any loop in Γ(H) must run along at least one

outer loop (so it must have length at least µ(~h) − 2τ(~h)), and the portions of its travel inside the central

tree are each of length at most 2τ(~h). A more detailed analysis shows the following result.

Lemma 2.1 Let ~h be a tuple of reduced words and let H = 〈~h〉. If τ(~h) < 1
8µ(~h) and H is not malnor-

mal, then there exists a word of length 1
8µ(~h), with two distinct occurrences in the words of ~h± sitting at

distance at least 1
8µ(~h) from the extremities of these words.

We already know that, under the sequence of uniform distributions (Pn), τ(~h) < 1
8µ(~h) exponentially

generically. It also holds that, exponentially generically, the words of ~h± do not have common factors of

length 1
8µ(~h) [7, 3]. Therefore, exponentially generically, H is malnormal.

2.2 Relaxing the parameters of the distribution

We now relax all the parameters of the distributions of tuples of reduced words, with the objective of

preserving the genericity of the properties discussed in Section 2.1.

In our scheme, the probability Pn on the set of tuples of reduced words is determined as follows. The

size of the tuple and the lengths of the words are determined by random variables Kn and Ln, on which

we impose the following restrictions: the number of words in our tuple, given by Kn, cannot be too large

and generically a tuple does not contain short words; in addition, the average length of a word, E(Ln), is

equal to n (a sort of normalization). More precisely:

• E(Ln) = n and there exists a function µ(n) such that limn µ(n) = ∞ and Ln ≥ µ(n) generically:

if we let upperµ = P[Ln < µ(n)], then limn upperµ = 0. One may think of µ(n) as a function of

the form nλ for some 0 < λ < 1, or some logarithmic function.

• There exists a function ν(n) such that Kn ≤ ν(n) generically: if we let lowerν = P[Kn > ν(n)],
then limn lowerν = 0. We will consider situations where ν(n) is a constant function, or O(logd n)
or O(nd) for some d > 0.

Moreover, we do not consider the uniform distribution on the set of reduced words of a given length,

but the distribution given by a Markovian scheme which we now proceed to describe.

2.3 Markovian automata

A Markovian automaton(i) A consists of

(i) This notion is different from the two notions of probabilistic automata, introduced by Rabin [14] and Segala and Lynch [15],

respectively.
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Fig. 2: Markovian automata A and A′.

• a deterministic transition system (Q, ·) on alphabet X , where Q is a finite non-empty set called the

state set, and for each q ∈ Q, x ∈ X , q · x ∈ Q or q · x is undefined;

• an initial probability vector γ0 ∈ [0, 1]Q, i.e. a vector such that
∑

q∈Q γ0(q) = 1;

• for each p ∈ Q, a probability vector (γ(p, x))x∈X ∈ [0, 1]X , such that γ(p, x) = 0 if and only if

p · x is undefined.

If u = x1 · · ·xn ∈ X∗, we write γ(q, u) = γ(q, x1)γ(q · x1, x2) · · · γ(q · (x1 · · ·xn−1), xn) for n ≥ 1
and γ(q, u) = 1 if n = 0. We also write γ0(u) =

∑

q∈Q γ0(q)γ(q, u).
For each n ≥ 0, γ0 determines a distribution on the set of elements of X∗ of length n, and hence a

probability law on that set. We denote this probability law by Pn. In particular, we are only defining the

probability of a subset of X∗ that consists of equal length elements.

Markovian automata are very similar to hidden Markov chain models, except that symbols are output

on transitions instead of on states. In our context, Markovian automata are more convenient since sets of

words (languages) are naturally described by automata. See the examples below, all set in the context of

group theoretic applications, and Section 2.4.

Uniform distribution on length n elements of F : We exploit the fact that the set of reduced words is

rational, and hence is accepted by an automaton, and we set uniform probabilities on the transitions of

that automaton. The state set is Q = Ã. For each a ∈ Ã, there is an a-labeled transition from every state

except a−1, ending in state a. If all of these transitions have the same probability, namely 1
2r−1 , r being

the rank of F , and if the initial probability vector is uniform as well, with each component equal to 1
2r

,

then the Markovian automaton yields the uniform distribution on length n elements of F . We can also

tweak these probabilities, to favor certain letters over others, or to favor positive letters (the letters in A)

over negative letters.

Distributions on rational subsets of F : The support of the distribution (the words with non-zero prob-

ability) does not have to be equal to the set of all reduced words. We can consider a rational subset L of

F , or rather a deterministic automaton accepting only reduced words, and impose probabilistic weights

on its transitions to form a Markovian automaton. The resulting distribution gives non-zero weights only

to prefixes of elements of L. This can be applied to the case where L = A∗, the set of positive words, or

when L is a finitely generated subgroup of F and the automaton is constructed from the Stallings graph

of that subgroup.

Distributions related to the group PSL(2, Z) = 〈a, b | a2, b3〉: Figure 2 represents two Markovian

automata: the transitions are labeled by a letter and a probability, and each state is decorated with the

corresponding initial probability. The support of the distribution defined by automaton A is the set of



Generic properties of random subgroups of a free group for general distributions 7

words over alphabet {a, b, b−1} without occurrences of the factors a2, b2, (b−1)2, bb−1 and b−1b, and the

support of the distribution defined by A′ consists of the words on alphabet {a, b}, without occurrences of

a2 or b3. Both are regular sets of unique representatives of the elements of PSL(2, Z) (the first is the set

of geodesics of PSL(2, Z), and also the set of Dehn-reduced words with respect to the given presentation

of that group; the second is a set of quasi-geodesics of PSL(2, Z)). Note that the underlying graphs of

the markovian automata of Fig.2 are parts of de Bruijn graphs since they are defined by forbidden finite

factors. Notice that the distribution produced by A′ is not uniform on words of length n of its support.

2.4 Markov chains and Markovian automata

A Markovian automaton hides (rather poorly) a Markov chain. If A is a Markovian automaton on alphabet

X , with state set Q, we define a Markov chain M(A) on Q as follows: its transition matrix is given by

M(p, q) =
∑

x∈X s.t. p·x=q γ(p, x) for all p, q ∈ Q, and its initial vector is γ0.

Recall that the Markov chain M(A) is irreducible if, for all p, q ∈ Q, M(A)n(p, q) > 0 for some

n > 0: this is equivalent to the strong connectedness of A. Recall also that M(A) is aperiodic if, if for

each q ∈ Q, M(A)n(q, q) > 0 for all large enough n: this is equivalent to stating that A has loops of

every large enough length at every state, equivalent again to stating that A has a collection of loops of

relatively prime lengths. If both these properties hold, we say that A itself is irreducible and aperiodic

and we can apply the classical theorem on Markov chains: there exists a stationary vector γ̃ and the

distribution defined by A converges to that stationary vector exponentially fast (see [10, Thm 4.9]). In the

vocabulary of Markovian automata, this yields the following theorem.

If u ∈ X∗ has length n, let Qp
n(u) be the state of A reached after reading the word u starting at state p.

Theorem 2.2 Let A be an irreducible and aperiodic Markovian automaton on alphabet X , with state set

Q (|Q| ≥ 2) and stationary vector γ̃. For each q ∈ Q, γ̃(q) = limn→∞ P[Qp
n = q]. More precisely, there

exist K > 0 and 0 < c < 1, such that |P[Qp
n = q] − γ̃(q)| < Kcn for all n large enough.

Remark 2.3 The constant c in Theorem 2.2 is the maximal modulus of the non-1 eigenvalues of M(A).
The Markovian automaton discussed in Section 2.3, relative to the uniform distribution on reduced

words of length n is aperiodic and irreducible, as well as the two Markovian automata related to PSL(2, Z).
The respective values for c are 1

2r−1 , 1
2 and 1√

2
.

We also record the following statement, on the exponential decrease of the probability of a word.

Lemma 2.4 Let A be an irreducible and aperiodic Markovian automaton on alphabet X . There ex-

ist constants K1 > 0 and 0 < c1 < 1 such that, for each state q and for each word v of length n,

γ0(v), γ̃(v), γ(q, v) ≤ K1c
n
1 .

Proof. Let ℓ be the maximum length of an elementary cycle (one that does not visit twice the same state)

and let δ be the maximum value of γ(q, κ) where κ is an elementary cycle at state q. Since A is irreducible

and aperiodic, we always have γ(q, κ) < 1, so δ < 1.

Every cycle κ can be represented as a composition of at least |κ|/ℓ elementary cycles (here, the com-

position takes the form of a sequence of insertions of a cycle in another). Consequently γ(q, κ) ≤ δ
|κ|
ℓ .

Finally, every path π can be represented as a product of cycles and at most |Q| individual edges. So, if π

starts at state q, γ(q, π) ≤ δ
|π|−|Q|

ℓ . We get the announced result by letting K1 = δ
−|Q|

ℓ and c1 = δ
1

ℓ . ⊓⊔
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3 Cancellation properties

The random variables Kn and Ln, and the irreducible and aperiodic Markovian automaton A are now

fixed, and the constants K, K1, c and c1 are those discussed in Section 2.4.

Let ~h = (h1, . . . , hs) be a randomly chosen tuple of reduced words and let H = 〈~h〉. We first consider

initial cancellation on ~h, that is, the existence of common prefixes between the words in ~h±, measured by

the parameter τ(~h) (see Section 2.1). In Section 3.2, we will also estimate the probability of the existence

of long common factors in the middle part of the words of ~h±. Applications to subgroup properties are

discussed in Section 4.

3.1 Initial cancellation

Let Tn be the random variable, relative to the probability law Pn, given by Tn(~h) = τ(~h). Our main

theorem on initial cancellation is the following.

Theorem 3.1 Let 0 < α < 1 and let τ(n) be a function such that τ(n) ≤ αµ(n).

• Exponential genericity case: If τ(n) grows at least linearly, ν grows sub-exponentially (ν(n) =
o(dn) for every d > 1) and upperµ and lowerν are exponentially small, then Tn ≤ τ(n) exponen-

tially generically.

• Super-polynomial genericity case:If τ(n) grows faster than log n (log n = o(τ(n))), ν grows at

most polynomially (ν(n) = O(nd) for some d > 1) and upperµ and lowerν are super-polynomially

small, then Tn ≤ τ(n) super-polynomially generically.

• Genericity case: Suppose now that lim τ(n) = ∞. Any one of the following conditions implies that

Tn ≤ τ(n) generically:

- ν(n) is bounded;

- ν(n) = O(logd n) for some d > 0, upperµ = o( 1
log2d n

) and τ(n) grows faster than log log n;

- ν(n) = O(nd) for some d > 0, upperµ = o(n−2d) and τ(n) grows faster than log n.

Here we only sketch the main steps of the proof, which is rather technical. The first step is to observe

that the probability that Tn(~h) > τ(n) is bounded above by the sum of the following probabilities:

- the probability lowerν that Kn > ν(n);
- the probability P1 that Kn ≤ ν(n) and for some i < j, hi and hj have a common prefix of length

greater than τ(n) (or hi and h−1
j , or h−1

i and h−1
j , or h−1

i and h−1
j );

- the probability P2 that Kn ≤ ν(n) and for some i, hi and h−1
i have a common prefix of length greater

than τ(n).

The proof now consists in bounding P1 and P2.

First we have P1 ≤
(

ν(n)
2

)

(P1,1 + P1,2 + P1,3 + P1,4), where P1,1 (resp. P1,2, P1,3, P1,4) is the

probability for a pair of words (h, h′) that h and h′ (resp. h and h′−1
, h−1 and h′, h−1 and h′−1

) have a

common prefix of length t = 1 + τ(n).
Since h and h′ are drawn independently, we have P1,1 =

∑

|u|=t Pn[h ∈ uÃ∗]Pn[h′ ∈ uÃ∗]. Note

that
∑

|u|=t Pn[h ∈ uÃ∗] =
∑

|u|=t Pn[h ∈ Ã∗u−1] = 1. So P1,1 ≤ max|u|=t Pn[h ∈ uÃ∗] =

max|u|=t γ0(u). In view of Lemma 2.4, it follows that P1,1 ≤ K1c
t
1.
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The same reasoning yields the same bound for P1,2 and P1,3. It also yields the inequality P1,4 ≤

max|u|=t P[h ∈ Ã∗u]. This can be bounded using Theorem 2.2, provided we know that h is long enough.

Thus we get, for all n large enough, P1,4 ≤ upperµ + K1c
t
1 + K|Q|cµ(n)−t.

Next we bound P2. We first get P2 ≤ ν(n)
∑

|u|=t Pn[h ∈ uÃ∗u−1].
For each u of length t and for all h long enough, using Theorem 2.2, we have

Pn[h ∈ uÃ∗u−1] =
∑

p∈Q

γ0(p)γ(p, u)





∑

q∈Q

P[Qp·u
|h|−2t

= q]γ(q, u−1)





≤
∑

p∈Q

γ0(p)γ(p, u)





∑

q∈Q

(γ̃(q) + Kc|h|−2t)γ(q, u−1)





≤ γ0(u)



γ̃(u−1) + Kc|h|−2t
∑

q∈Q

γ(q, u−1)



 ≤ γ0(u)
(

K1c
t
1 + |Q|Kc|h|−2tK1c

t
1

)

.

Therefore, summing for all u of length t:

P2 ≤ ν(n)
(

upperµ + K1c
t
1 + |Q|Kcµ(n)−2tK1c

t
1

)

.

The remainder of the proof of Theorem 3.1 is a simple application of these upper bounds, to make sure

that all are exponentially small, super-polynomially small, or simply tend to 0.

3.2 Probability of multiple occurrences of long factors

In view of Lemma 2.1, we are interested in bounding the probability that a word of length βµ(n) has

several occurrences in the words of ~h±, at distances at least βµ(n) from the extremities (and then take

β = 1
8 , another value for β will be chosen in Section 4). This probability itself is bounded by the sum of

the following probabilities:

- the probability P1 that such a word has two occurrences in h±1
i and h±1

j for some i 6= j;

- the probability P2 that such a word has two occurrences in hi (or in h−1
i ) for some i;

- the probability P3 that such a word has an occurrence in hi and an occurrence in h−1
i for some i.

Proposition 3.2 There exist constants b1, b2, b3 > 0, L1, L2, L3 > 0 and 0 < d1, d2, d3 < 1, depending

on the Markovian automata, the constant β and the size of the alphabet, such that, for i = 1, 2, 3:

- if µ(n) > bi log n, then Pi tends to 0;

- if the length of the words generated is at most d
− 1

4
µ(n)

i , then Pi ≤ Lid
1

2
µ(n)

i .

Sketch of proof. We first sketch the proof concerning P1. Let 0 < a < β: the probability that h1 and h2

have a common factor of length aµ(n) at distance at least βµ(n) from the extremities, is greater than or

equal to P1. Let v be a word of length aµ(n) and let i > βµ(n).
Using Theorem 2.2 and Lemma 2.4, we find that the probability that v occurs as a factor of h starting

at position i is
∑

p,q∈Q

γ0(p)P[Qp
i = q]γ(q, v) ≤ γ̃(v) + Kcβµ(n) ≤ K1c

aµ(n)
1 + Kcβµ(n).
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It follows that the probability P1(v, i, j) that v occurs as a factor in h1 and h2, in positions i and j
respectively, i, j > βµ(n), satisfies

P1(v, i, j) ≤
(

γ̃(v) + Kcβµ(n)
)2

≤ γ̃(v)
(

K1c
aµ(n)
1 + 2Kcβµ(n)

)

+ K2c2βµ(n).

Therefore, the probability that h1 and h2 have a common factor of length aµ(n) starting at fixed positions

i, j > βµn, P1(i, j) =
∑

|v|=aµ(n) P1(v, i, j), satisfies

P1(i, j) ≤ K1c
aµ(n)
1 + 2Kcβµ(n) +

2r

2r − 1
(2r − 1)aµ(n)K2c2βµ(n).

Thus, if a < −2β log c
log(2r−1) (so that (2r − 1)ac2β < 1), we have P1(i, j) ≤ L′

1d
µ(n)
1 for some constants L1

and d1 (with d1 = max(ca
1 , cβ , (2r − 1)ac2β)).

Now P1 ≤
∑

i,j>βµ(n) P1(i, j), and bounding this sum raises a difficulty as we have not assumed, so

far, that Ln is bounded.

We can get simple convergence to 0 without assuming bounded length, if µ(n) grows sufficiently fast: if

µ(n) > b log n for some b > − 2
log d1

and if 1 < d < − b
2 log d1, then P[Ln > nd] < n−d

E(Ln) = 1
nd−1

(using Markov’s inequality and the fact that E(Ln) = n). So

P1 ≤ P[Ln > nd] +

(

nd

2

)

L′
1d

µ(n)
1 ≤ L′

1n
2dd

µ(n)
1 ≤ L′

1n
b log d1+2d,

and our assumptions guarantee that b log d1 + 2d < 0.

We also obtain a genericity result by imposing a generic bound on the length of the words under con-

sideration. More precisely, if |h1|, |h2| ≤ d
− 1

4
µ(n)

1 , then the probability P1 satisfies

P1 ≤

(

d
− 1

4
µ(n)

1

2

)

L′
1d

µ(n)
1 ≤ L′

1d
− 1

2
µ(n)

1 .

This is sufficient to conclude the proof concerning P1.

To bound P2, we observe that if a word w has two occurrences in some h, these occurrences may

overlap but whatever the situation, the prefix of w of length 1
4 |v| has two occurrences separated by a gap

of at least 1
4 |v|, using classical combinatorics on words. So we want to bound the probability that h1

contains two occurrences of a word v of length aµ(n), a < β
4 has occurrences at positions i > βµ(n) and

j > i+ β
2 µ(n). Using again Theorem 2.2 and Lemma 2.4, we find that for v, i and j fixed, this probability

satisfies

P2(v, i, j) =
∑

p,q,q′∈Q

γ0(p)P[Qp
i = q]γ(q, v)P[Qq·v

j−i−aµ(n) = q′]γ(q′, v)

≤ γ̃(v)2 + 2KK1c
βµ(n)
1 + K2c2βµ(n).

The proof then follows the same steps as for the bound of P1.

As for P3, we note that if w and w−1 both have occurrences in some reduced word h, then these

occurrences may not overlap: if v is the prefix of w of length 2
3 |w|, then v and v−1 have occurrences in h,

separated by a gap of at least 2
3 |w|. The proof then follows the same steps as for the bound of P2. ⊓⊔
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4 Applications

As observed in Section 2.1, if Tn(~h) < 1
2 min |hi|, then the Stallings graph Γ(H) is in the shape of a

central tree, of height Tn(~h), and of a collection of outer loops, one for hi. In that situation, ~h freely

generates the subgroup H . Moreover, Γ(H) is constructed in linear time, simply by computing the initial

cancellation in the tuple ~h±.

Theorem 4.1 (Base) Under the hypotheses of Theorem 3.1, a randomly chosen tuple is a basis of the

subgroup it generates exponentially generically (resp. super-polynomially generically, generically).

Touikan [19] proposed an algorithm that computes the folding of the bouquet (see Section 1.2) of ~h
in time O(m log∗ N), where N is the size of the bouquet, and m is the number of states that have been

merged in the process. Using this result in our generic settings, we obtain the following theorem.

Theorem 4.2 (Stallings graph computation) Under the hypotheses of Theorem 3.1 and assuming fur-

thermore that µ(n) = O( n
log∗ n

), the Stallings graph of a random subgroup is computed in linear time

exponentially generically (resp. super-polynomially generically, generically).

By Lemma 2.1, the probability that H is not malnormal is bounded by the sum that Tn(~h) > 1
8µ(n)

and the probabilities that, assuming Tn(~h) ≤ 1
8µ(n), a word of length 1

8µ(n) has two occurrences in the

words of ~h±, at distance at least 1
8µ(n) from the extremities. In view of Proposition 3.2, this leads to the

following statement. Let lboundL be the probability that Ln > max(d1, d2, d3)
1

4
µ(n).

Theorem 4.3 (Malnormality) Let ~h be a tuple of elements of F generated at random and let H = 〈~h〉.
If µ grows at least linearly, ν grows sub-exponentially and upperµ, lowerν and lboundL are exponen-

tially small, then H is exponentially generically malnormal.

If µ grows faster than log n, ν grows at most polynomially and upperµ, lowerν and lboundL are super-

polynomially small, then H is exponentially generically malnormal.

Each of the following conditions is sufficient to guarantee that H is generically malnormal:

• ν is bounded and upperµ, lowerν and lboundL tend to 0;

• ν(n) = O(logd n) for some d > 0, upperµ = o( 1
log2d n

), and lowerν and lboundL tend to 0,

• ν(n) = O(nd) for some d > 0, upperµ = o(n−2d), and lowerν and lboundL tend to 0;

• ν is bounded, µ(n) > max(b1, b2, b3) log n and upperµ and lowerν tend to 0.

We finally discuss the properties of the quotient of F by the normal closure of a random subgroup

under our model. Recall that a reduced word h its cyclically reduced when every cyclic permutation of u
is reduced. To any reduced word h we associate its cyclic reduction c(h) obtained by repeatedly remove

the first and the last letter while they are the inverse of each other. The normal subgroup generated by a set
~h = {h1, . . . , hk} is the same as as the one generated by ~c = {c(h1), . . . , c(hk)}. The small cancellation

theory [11] can greatly help in studying the properties of the quotient: if whenever a word u is a factor

of two distinct cyclic conjugates of ~c then |u| ≤ λ mini∈{1...k} |c(hi)|, then ~h is said to satisfy the small

cancellation property C ′(λ). If ~h satisfies C ′(1/6), then the quotient has a lot of nice algebraic properties;

we state some in the following theorem and, due to the lack of space, refer to [11] for the definitions.

Theorem 4.4 (Quotient) Under the hypotheses of Theorem 3.1 and Proposition 3.2, the small cancella-

tion condition C ′(1/6) holds generically. In particular, the group G = 〈A | ~h〉 is generically torsion-free,

word-hyperbolic and has solvable word problem and conjugacy problem.



12 Frédérique Bassino and Cyril Nicaud and Pascal Weil

References
[1] Goulnara N. Arzhantseva. A property of subgroups of infinite index in a free group. Proc. Amer. Math. Soc.,

128(11):3205–3210, 2000.

[2] Goulnara N. Arzhantseva and Alexander Yu. Ol′shanskiı̆. Generality of the class of groups in which subgroups

with a lesser number of generators are free. Mat. Zametki, 59(4):489–496, 638, 1996.

[3] Frédérique Bassino, Armando Martino, Cyril Nicaud, Enric Ventura, and Pascal Weil. Statistical properties of

subgroups of free groups. Random Structures and Algorithms, to appear.

[4] Frédérique Bassino, Cyril Nicaud, and Pascal Weil. Random generation of finitely generated subgroups of a

free group. Internat. J. Algebra Comput., 18(2):375–405, 2008.

[5] Christophe Champetier. Propriétés statistiques des groupes de présentation finie. Journal of Advances in Math-

ematics, 116(2):197–262, 1995.

[6] Mikhail Gromov. Essays in Group Theory, chapter Hyperbolic groups, pages 75–265. Springer, 1987.

[7] Toshiaki Jitsukawa. Malnormal subgroups of free groups. In Computational and statistical group theory (Las

Vegas, NV/Hoboken, NJ, 2001), volume 298 of Contemp. Math., pages 83–95. Amer. Math. Soc., Providence,

RI, 2002.

[8] Ilya Kapovich, Alexei Miasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case complexity, decision

problems in group theory, and random walks. J. Algebra, 264(2):665–694, 2003.

[9] Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free groups. J. Algebra, 248(2):608–

668, 2002.

[10] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. American Mathemat-

ical Society, Providence, RI, 2009.

[11] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag, Berlin, 1977. Ergebnisse

der Mathematik und ihrer Grenzgebiete, Band 89.

[12] Alexei Miasnikov, Enric Ventura, and Pascal Weil. Algebraic extensions in free groups. In Geometric group

theory, Trends Math., pages 225–253. Birkhäuser, Basel, 2007.
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