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An analytical solution for the out-of-equilibrium quasi-stationary states of the paradigmatic
Hamiltonian Mean Field (HMF) model can be obtained from a maximum entropy principle. The
theory has been so far tested with reference to a specific class of initial condition, the so called
(single-level) water-bag type. In this paper a step forward is taken by considering an arbitrary
number of overlapping water bags. The theory is benchmarked to direct microcanonical simulations
performed for the case of a two-levels water-bag. The comparison is shown to return an excellent
agreement.

PACS numbers: 05.20.-y, 05.45.-a, 05.70.Ce, 05.70.Fh

I. INTRODUCTION

Long range interacting systems (LRS) are becoming a
popular topic of investigation [2] in physics, due to the
rich and intriguing phenomenology that they display. A
system is said to fall in the realm of LRS if the two body
potential scales as r−α with α < d, and where r stands
for the inter-particle distance and d the dimension of the
embedding space. Several physical systems share this
property, which ideally embraces distinct domains of ap-
plications. Gravity [3] is certainly the most spectacular
example among the wide gallery of systems governed by
long range interactions, but equally important are the
cases of turbulence [4], plasmas [5] and wave-particle in-
teractions [6, 7].
Peculiar and counterintuitive thermodynamics features

manifest in LRS: negative specific heat can occasionally
develop in the microcanonical ensemble, close to first or-
der phase transitions, a surprising fact first discovered in
astrophysical context, that seeds statistical ensemble in-
equivalence. As concerns the dynamics, LRS have been
reported to experience a very slow relaxation towards
the deputed thermodynamic equilibrium. Indeed, they
can be trapped in long lasting out-of-equilibrium phases
called Quasi Stationary States (QSSs). The lifetime of
the QSSs diverges with the systems size N . Interestingly,
it displays different scaling behaviors versus N , which
range from exponential to power law, being relic of the
specific initial condition selected. As a consequence, the
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orders the limits N → ∞ and t → ∞ are taken do mat-
ter. Performing the continuum limit before the infinite
time limit, implies preventing the system from eventually
attaining its equilibrium and so freezing it indefinitely in
the QSS phase.

In physical applications where long-range couplings are
at play, as the ones mentioned above, the number of ele-
mentary constituents composing the system being exam-
ined, is generally large. The time of duration of the out-
of-equilibrium phase can therefore be exceedingly long,
definitely longer the the time of observation to which ex-
perimentalists are bound. Given this scenario, it is of
paramount importance to develop dedicated analytical
strategies to gain quantitative insight into the complex
and diverse zoology of the QSSs, as revealed by direct
numerical simulations. Working along these lines, it was
shown that QSS can be successfully interpreted as equi-
libria of the collisionless Vlasov equation which appears
to rule the dynamics of a broad family of long range mod-
els, when recovering the continuum picture from the gov-
erning discrete formulation. The average characteristics
of the QSS, including the emergence of out-of-equilibrium
transitions, can be analytically predicted via a maxi-
mum entropy variational principle, pioneered by Lynden-
Bell in [14] and more recently revisited with reference to
paradigmatic long-range applications [7, 8, 15].
As we shall clarify in the forthcoming sections, the pre-
dictive adequacy of the Lynden-Bell violent relaxation
theory has been so far solely assessed for a very specific
class of initial conditions. These are the so called (single)
water-bags: particles are assumed to initially populate
a bound domain of phase space and therein distributed
with a uniform probability. The aim of this paper is to
take one simple step forward and challenge the validity of
the theory when particles are instead distributed within
two (uniformly filled) levels. In principle, any smooth
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profile could be approximated by a piecewise function,
made of an arbitrary number of collated water-bags [16].
Our idea is to perform a first step towards the general-
ized multi-levels setting, by first evaluating the formal
complexity of the procedure involved and then drawing a
direct comparison with the numerics relative to the two
level case.
To accomplish this task, we will focus on the cele-

brated Hamiltonian Mean Field model, often referred to
as the representative model of long range interactions.
The HMF describes the motion on a circle of an ensem-
ble of N rotors mutually coupled via an all-to-all cosines
like potential. In the continuum limit, the single parti-
cle distribution function obeys to the Vlasov equation,
the driving potential being self-consistently provided by
the global magnetization, namely the degree of inher-
ent bunching. QSSs exist for the HMF model and have
been deeply studied, both with analytical and numerical
means, for the single water-bag case.
The paper is organized as follows. In the next section

we shall introduce the discrete HMF model and discuss
its continuum Vlasov based representation. We will also
introduce the basic of the violent relaxation approach.
Then, in section III, we shall turn to discussing the gen-
eralized water bag setting, solving, in section IV, the cor-
responding variational problem. We will then specialize
in section V on the two levels case and compare the the-
ory predictions to the simulations. Finally in section VI
we will sum up and conclude.

II. THE HMF MODEL

The HMF model describes the dynamics of N particles
(rotors) moving on a circle and interacting via a mean
field potential which is self-consistently generated by the
particles themselves. Formally, the HMF is defined by
the following Hamiltonian:

H =
N
∑

i=1

p2i
2

+
1

2N

N
∑

i,j=1

(1 − cos(θi − θj)), (1)

where θi identifies the position of particle i on the
circle and pi is the canonically conjugated momentum.
Because the interactions are not bounded to a small
number of neighboring particles, the interaction is
all-to-all thus the potential is inherently long range.

Starting from the water bag initial condition, the HMF
system experiences a fast relaxation towards an interme-
diate regime, before the final equilibrium is eventually
attained. This metastable phase is a Quasi Stationary
State (QSS), the out-of-equilibrium transient to which
we have alluded to in the introduction. The lifetime of
the QSS is shown to diverge with the system size N , an
observation that has non-trivial consequences when one
wishes to inspect the continuum (N → ∞) limit. QSSs
are in fact stable, attractive equilibria of the continuous

analogue of the discrete Hamiltonian picture, and bear
distinctive traits that make them substantially different
from the corresponding equilibrium solutions.

To monitor the dynamics of the system it is customary
to record the time evolution of the magnetization. This
latter is defined as:

M =

N
∑

i=1

eiθ. (2)

It is a complex quantity whose modulus M measures
the degree of bunching of the distribution of particles.
Depending on the selected characteristics of the initial
(single) water-bag, the system can evolve towards an (al-
most) homogeneous QSS or, conversely, result in a mag-
netized phase. The swap between the two regimes can
be understood as a genuine phase transition, with en-
ergy and initial magnetization playing the role of control
parameters.

It can be rigorously shown [13] that, in the contin-
uum limit, the HMF system is formally described by the
Vlasov equation, which governs the evolution of the sin-
gle particle distribution function f(θ, p, t). In formula:

∂f

∂t
+ p

∂f

∂θ
− (Mx[f ] sin θ −My[f ] cos θ)

∂f

∂p
= 0, (3)

where Mx =
∫

f cos θdθdp and My =
∫

f sin θdθdp are
the two components of the magnetizationM. With refer-
ence to cosmological applications, Lynden-Bell proposed
an analytical approach to determine the stationary solu-
tions of the Vlasov equation, pioneering the theory that
it is nowadays referred to as to the violent relaxation the-
ory. He first considered the coarse grained distribution
f̄ , obtained by averaging the microscopic f(θ, p, t) over
a finite grid. Then, the key idea is to associate to f̄ a
mixing entropy S[f̄ ], via a rigorous counting of the mi-
croscopic configurations that are compatible with a given
macroscopic state. The steps involved in the derivation
are highlighted in the remaining part of this section.

Let us label with ρ(θ, p, η) the probability density of
finding the level of phase density η in the neighborhood of
the position [θ, p] in phase space. We are here implicitly
assuming to deal with a continuum spectrum of allowed
levels. Following Lynden-Bell the coarse grained locally
averaged single particle distribution reads:

f̄(θ, p) =

∫

ρ(θ, p, η)η dη . (4)

The Vlasov equation, which rules the dynamics of f̄ ,
conserves the hypervolumes ν(η) associated to each of
the selected levels [17]. Mathematically, the quantities
ν(η) reads:

ν(η) =

∫

ρ(θ, p, η)dθdp , (5)
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and are therefore invariant of the dynamics. Assume now
to deal with a discrete set of n distinct levels. The prob-
ability density function reads therefore:

ρn (θ, p, η) =
n
∑

i=1

f̄(θ, p)αiδ(η − fi) +

(

1−
n
∑

i=1

f̄(θ, p)αi

)

δ(η),

(6)

where fi refers to the value of the i-th level and αi stands
for the portion of phase space that is hosting the se-
lected level. The rightmost term in the previous equa-
tion, stands thus for the background. We shall return on
these aspects later on, when commenting on the under-
lying normalization condition.
Starting from this setting, Lynden-Bell suggested to

divide the phase space macrocell [θ, θ+ dθ; p, p+ dp] into
microcells each occupied by just one of the allowed lev-
els. The Lynden-Bell mixing entropy is obtained as the
logarithm of the total number of microstates associated
to a given macrostate. A combinatorial calculation [17]
yields to:

S = −
∫

ρn(θ, p, η) ln ρn(θ, p, η) dθdpdη, (7)

The statistical equilibrium of the system follows from
maximizing the entropy functional S while imposing the
constraints of the dynamics: energy, momentum and nor-
malization are in fact conserved quantities, as well as the
quantities ν(η). In the following we shall discuss a spe-
cific class of initial condition, the multi-level waterbags,
which naturally extends beyond the single water bag case
study, so far explicitly considered in the literature. It is
our intention to test the predictive ability of the Lynden-
Bell theory within such generalized framework. The the-
ory will be developed with reference to the general set-
ting, including n levels. The benchmark with direct sim-
ulations will be instead limited to the two-levels case, i.e.
n = 2.

III. THE GENERALIZED WATER-BAG

The single water-bag initial condition takes a constant
value f1 within a finite portion of the phase space, and
zero outside of it. Although this is the only prescrip-
tion to be accommodated for, rectangular domains are
usually chosen for practical computational reasons. Fol-
lowing [15], we shall label [∆θ,∆p] the widths of such
a rectangle, as calculated respectively along θ and p di-
rections. A second simplification is also customarily be
assumed: the rectangle is centered in the origin, so that
θ ∈ [−∆θ

2 , ∆θ
2 ] and p ∈ [−∆p

2 , ∆p
2 ].

By operating in this context, the Lynden-Bell varia-
tional problem studied in e.g. [15] is shown to yield to

FIG. 1: Pictorial representation of a tree-levels (n = 3) water-
bag initial condition.

a Fermionic stationary distribution, which successfully
enables to capture some of the essential traits of the
QSS. These includes an accurate characterization of the
out-of-equilibrium transitions from magnetized to non-
magnetized QSS. First and second order phase transi-
tions, that merge in a tricritical point, were in fact sin-
gled out for the HMF model, a theoretical prediction con-
firmed by direct numerical inspection. As stated above,
the general philosophy that inspires the Lynden-Bell the-
ory is however broader than the specific realm to which it
was relegated and its potentiality deserves to be further
clarified. We will here extend the treatment to the multi-
levels water bag initial condition, a step that opens up
the perspective to eventually handle more realistic sce-
narios, where smooth distributions could be considered.
Following the notation introduced above, the arbitrary

integer n quantifies the total number of distinct levels
that are to be allowed for, when considering the general-
ized initial distribution function finit. Arguably, by ac-
counting for a large enough collection of independent and
discrete levels, one can approximately mimic any smooth
profile. A pictorial representation of the family of initial
conditions to which we shall refer to in the forthcoming
sections when discussing the specific case study n = 3 is
depicted in figure 1.
Mathematically, the initial distribution function finit

can be written as:

finit(θ, p) =

{

fj if θ ∈ Θj and p ∈ Pj,

f0 = 0 elsewhere,
(8)

Here Γj = [Θj , Pj ], j = 1, . . . , n identifies the domain
in phase space associated to level fj . The corresponding
volume is labeled αj .
A simple algebraic manipulation starting from the def-

inition of the probability density (6) yields to:

∫

finit(θ, p) dθdp =

∫

ρn(θ, p, η)η dθdpdη =

n
∑

j=0

fjαj = 1.

(9)
The scalar relation (9) links together the 2n constants,
fj and αj , that are to be assigned to fully specify the
initial condition. In other words, only 2n− 1 scalars are
needed to completely parameterize the initial condition.
Importantly, the single water bag limit is readily recov-
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ered once the phase space support of the levels indexed
with j other than j = 1 shrinks and eventually fades out.
This condition implies requiring αj → 0 for j > 1. In
formula:

ρ1 = lim
αj→0,j>1

ρn = f̄α1δ (η − f1) +
(

1− f̄α1

)

δ (η) .

(10)
Moreover, by making use of the normalization condition
one gets α1 = 1

f1
, which, inserted (10), returns immedi-

ately the well known form of the one level density dis-
tribution function. Notice that the initial value of the
macroscopic observables can be computed from the ex-
plicit knowledge of ρ1.

IV. THE GENERALIZED N-LEVELS

EQUILIBRIUM

The QSS distribution function f̄eq(θ, p) for the HMF
model, relative to the generalized n-levels water-bag
initial condition, is found by maximizing the Lynden
Bell entropy, under the constrains of the dynamics.
This in turn implies solving a variational problem. The
solution is relative to the microcanonical ensemble, since
the Vlasov equation implies that we work with fixed
total energy.

From equation (7) and (6), the generic n-levels entropy
takes the following functional form:

S[f̄ ] =−
∫

{
n
∑

j=1

f̄αj ln(f̄αj)+

+ (1−
n
∑

j=1

f̄αj) ln(1−
n
∑

j=1

f̄αj)} dθdp
(11)

The conserved quantities are respectively the energy E:

E
[

f̄
]

=

∫

p2

2
f̄(θ, p) dθdp − M [f̄ ]2 − 1

2
≡ En , (12)

and the total momentum P

P [f̄ ] =

∫

f̄(θ, p)p dθdp ≡ Pn . (13)

The scalar quantity En relates to the geometric char-
acteristics of the bounded domains that define our
initial condition. Conversely, as we will be dealing with
patches Γj symmetric with respect to the origin, one can
immediately realize that Pn = 0.

The n volumes of phase space, each deputed to host-
ing one of the considered levels, are also invariant of the
dynamics. We have therefore to account for the conser-
vation of n additional quantities, the volumes νj [f̄ ] for

j = 1, ..n, defined as:

νj [f̄ ] =

∫

f̄(θ, p)αj dθdp , (14)

Moreover using the normalization condition for the
coarse grained distribution function f̄(θ, p), we get
νj [f̄ ] = αj . Equivalently, by imposing the above con-
straints on the hypervolumes, we also guarantee the nor-
malization of the distribution function, which physically
amounts to impose the conservation of the mass.
Summing up, the variational problem that needs to be

solved to eventually recover the stationary distribution
f̄eq(θ, p) reads:

max
f̄

{S[f̄ ] | E
[

f̄
]

= En;P
[

f̄
]

= Pn; νi
[

f̄
]

= αi}, (15)

where the entropy functional S[f̄ ] is given by eq. (11).
This immediately translates into:

δS − βδE − λδP −
n
∑

j=1

µjδνj = 0. (16)

where β, λ and µj stands for the Lagrange multipliers
associated respectively to energy, momentum and vol-
umes (or equivalently mass) conservations.

A straightforward calculation yields to the following
expression for f̄eq(θ, p):

f̄eq =
1

B +Ae
β′

(

p2

2
−M[f̄eq ]·m

)

+λ′p+µ′

(17)

where

B =

n
∑

j=1

αj ; A =





n
∏

j=1

α
αj

j





1

B

(18)

where

β′ =
β

B
,

λ′ =
λ

B
,

µ′ =

∑n
j=1 µj

B
,

(19)

and m = [cos(θ), sin(θ)].
The above solution is clearly consistent with that ob-

tained for the single water bag case study [15]. This latter
is in fact recovered in the limit (αj → 0 for j > 1 while
α1 = 1

f1
):

lim
αj→0,j>1

f̄eq =
f1

1 + e
f1

[

β
(

p2

2
−M·m

)

+λp+µ1

] (20)
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Notice that the equilibrium distribution f̄eq depends on
M, which is in turn function of f̄eq itself. The two com-
ponents of the magnetization, respectively Mx and My

are therefore unknowns of the problem, implicitly depen-
dent on f̄eq. This latter is parameterized in terms of
the Lagrange multipliers. Their values need to be self-
consistently singled out. As a first simplification, we ob-
serve that the specific symmetry of the selected initial
condition (Pn = 0) implies λ = 0. Hence, just the two
residual Lagrange multipliers are to be computed: the
Lynden-Bell inverse temperature β and the cumulative
chemical potential µ′ [19]. The number of unknowns total
therefore to four (Mx, My, β, µ

′) and enter the following
system of implicit equations for the constraints:

E =
Ã

2β′3/2

∫

eβ
′M·mF2(y) dθ −

M2 − 1

2
(21)

1 =
Ã√
β′

∫

eβ
′M·mF0(y) dθ (22)

Mx =
Ã√
β′

∫

eβ
′M·mF0(y) cos(θ) dθ (23)

My =
Ã√
β′

∫

eβ
′M·mF0(y) sin(θ) dθ (24)

Here we have expressed the relations as function

of the Fermi integrals Fh(y) =
∫

phe−p2/2

1+ye−p2/2
dp, with

y = ÃBeβ
′M·m and Ã = A−1e−µ′

. The system of equa-
tions (21),(22),(23),(24) can be solved numerically. In
doing so one obtains a numerical value for the involved
Lagrange multipliers, as well as for the magnetization
components, by varying the parameters that encode for
the initial condition. We numerically checked (data not
shown) that in the limit of a single water bag αj>1 → 0
the solution reported in [15] is indeed recovered. In
the following section we turn to discussing the theory
predictions with reference to the simple case of two
water bag (n = 2), validating the results versus direct
numerical simulations.

V. THE CASE n = 2: THEORY PREDICTIONS

AND NUMERICAL SIMULATIONS.

We here consider the simplifying setting where two
levels (n = 2) water-bag are allowed for. We are in
particular interested in monitoring the dependence of

M =
√

M2
x +M2

y versus the various parameters that

characterize the initial condition. We recall in fact that,
for the case of a single water-bag, out of equilibrium tran-
sitions have been found [15], which separates between ho-
mogeneous and magnetized phases. A natural question
is thus to understand what is going to happen if one ad-

ditional level is introduced in the initial condition. The
level f1 is associated to a rectangular domain Γ1 of re-
spective widths ∆θ1 and ∆p1. The level f2 insists instead
on an adjacent domain Γ2, whose external perimeter is
delimited by a rectangle of dimensions ∆θ2 and ∆p2. The
corresponding surface totals hence ∆θ2∆p2 −∆θ1∆p1.

Recall that the energy E2 (En for n = 2) can be es-
timated as dictated by formula (12) and reads in this
specific case:

E2 =
1

24

(

f1∆θ1∆p31 + (f2 − f1)f2∆θ2∆p32
)

(25)

+
1− 16(f1∆p1 sin∆θ1/2 + (f2 − f1)∆p2 sin∆θ2/2)

2
.

The one-level limit is readily recovered by simultane-
ously imposing ∆θ2 → 0 and ∆p2 → 0 (which also im-
plies α2 → 0). By invoking the normalization condition
(9) the following relation holds:

lim
∆θ2,∆p2→0

E2 =
1

6
∆p21 +

1

2
(1−M2

0 ) (26)

where M0 = 2 sin(∆θ1/2)/∆θ1. The above relation coin-
cides with the canonical expression for E1, as e.g. derived
in [1].

Relation (25) enables us to estimate the energy asso-
ciated to the selected initial condition and can be used
in the self-consistency equations (21). Before turning to
illustrate the predicted solution, let us note that the nor-
malization (9) reduces for n = 2 to:

α1f1 + α2f2 = 1. (27)

To explore the parameter space we have decided to
monitor the dependence of M on f1, which therefore acts
as a control parameter. To this end, we proceed by fixing
the quantity ∆f ≡ f2 − f1, the difference in hight of the
considered levels. Furthermore, we specify the quantity
α1, while α2 is calculated so to match the normalization
constraint.

The analysis is then repeated for distinct choices of
∆f , so to eventually elaborate on the importance of such
crucial parameter. The results are displayed in figure 2.
The curves collapse towards a point that corresponds to
the limiting condition α2 → 0 (f1 = 1/α1): this spe-
cial solution is met when the hypervolume populated by
the level f2 shrinks to zero, so driving the system to-
wards the standard one level setting. By progressively
reducing f1 the predicted magnetization first increases
and subsequently decreases to eventually reach zero at a
critical threshold f c

1 . For f1 > f c
1 the system is predicted

to evolve towards a magnetized, hence non homogeneous
phase. Alternatively, for 0 < f1 < f c

1 a homogeneous
phase is expected to occur. Interestingly, the transition
point f c

1 depends on the selected ∆f : the larger ∆f the
smaller the value of the transition point, corresponding
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FIG. 2: Analytical predictions for the equilibrium magnetiza-
tion M [f̄eq ] as obtained for different values of the initial two
levels water-bag distribution. The two levels are respectively
labeled f1 and f2. We here work at constant α1 = 5 and
∆f = f2 − f1, while moving the control parameter f1. The
analysis is repeated for distinct values of ∆f (from left to right
∆f = 0.2, 0.15, 0.1, 0.05 ). α2 is computed according to eq.
(9). For f1 → 1/α1 = 0.2 the normalization condition yields
to α2 → 0, and the distribution collapses to the limiting case
of a single water-bag.
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FIG. 3: The analytical curves (same setting as in figure (2))
are now plotted in the plane (E2, f1). (from left to right ∆f =
0.2, 0.15, 0.1, 0.05 ). We here only represent the points that
are associated to positive M [f̄eq ]. The transition occurs at
constant energy E2 ≃ 0.675, regardless of the specific domains
that result in the two level water-bag distribution.

to a shift to the left in figure 2. Notice that above a
limiting value of ∆f , which self-consistently corresponds
to imposing α2 > ∆f , the value of f1 has to forcefully
become negative so to respect the normalization condi-
tion. A well hence opens up in phase space, an intriguing
scenario that can be formally handled within the descrip-
tive Vlasov framework but that we have here deliberately
omitted to deepen any further. The smooth phase tran-
sition as depicted in figure 2 is therefore lost above a
threshold value of ∆f , when the predicted value of M
associated to f1 = 0 turns out to be greater than zero.
To elucidate the specificity of the outlined transition,

we plot in figure 3 the energyE2, associated to each of the
selected initial conditions, versus f1, for the same selec-
tion of parameters as employed in figure 2. As suggested
by visual inspection of the figure, the transitions, which
we recall take place within a finite window in f1, always
occur for an identical value of the energy (in this case
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FIG. 4: Magnetization M as a function of time t, as seen in a
typical simulation. The system experiences a fast growth and
then settle down into the lethargic QSS phase, whose dura-
tion (data not shown) increases with N . Later on the system
moves towards the deputed equilibrium. In this simulation
a two levels water-bag is assumed with f1 = 0.14, f2 = 0.1,
α1 = 0.2, α2 = 0.3. The energy is E2 = 1.0 and N = 104.

Ec
2 ≃ 0.675). The transition point is hence insensitive to

the specificity of the two water-bags, being neither de-
pendent on their associated volumes nor relative heights.
It is in principle possible to extend the above analysis
and so reconstruct the complete transition surface in the
(f1, f2, E2) space, a task which proves however demand-
ing from the computational viewpoint and falls outside
the scope of the present paper.
To test the validity of the theory we have run a se-

ries of numerical simulations of the HMF model. The
implementation is based on fifth order McLachlan-Atela
algorithm [18] with a time-step δt = 0.1. The initial con-
dition is of a two levels water-bag type, with respective
domains assigned as follows the aforementioned prescrip-
tions. As a preliminary check we have monitored the
approach to equilibrium, figure 4.
As expected and generalizing the conclusion that have

been shown to hold for the simpler one level water-bag
family of initial conditions, the system settles down into
a QSS, whose lifetime grows with the number of simu-
lated particles (data not shown). The QSS are indeed
the target of our analysis and it is the magnetization
as recorded in the QSS phase that needs to be compared
to the Lynden-Bell predictions. The comparison between
theory and simulations is reported in figure 5. Filled sym-
bols refer to the simulation while the solid line stand for
the theory, for two distinct choice of ∆f . The agreement
is certainly satisfying and points to the validity of the
Lynden-Bell interpretative framework, beyond the case
of the single water-bag, so far discussed in the literature.

VI. CONCLUSIONS

The dynamics of long range interacting system is stud-
ied, as concerns the intriguing emergence of long lasting
Quasi Stationary States. The problem is tackled within
the context of the Hamiltonian Mean Field model, a very
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FIG. 5: The analytical predictions (solid line) for the QSS
magnetization as a function of f1 in the two-levels water-bag
case, are compared (filled circles) to the numerical simulations
performed for N = 104. The comparison is drawn for two
distinct values of ∆f (∆f = 0.1 (left) and ∆f = 0.2 (right)).
α1 = 5 and α2 follows the normalization condition. Numerical
values of M are computed as a time average over a finite time
window where the QSS holds. The data are further mediated
over 4 independent realizations. Expected uncertainties are
about the size of the circle.

popular and paradigmatic case study. Building on previ-
ous evidences, the QSS are interpreted as stable equilib-
ria of the Vlasov equation, which rules the dynamics of
the discrete HMF system in the infinite system size limit
(N → ∞). The QSS are hence characterized analytically
by means of a maximum entropy principle inspired to the
seminal work of Lynden Bell. This technique is known
to yield to reliable predictions, when dealing with a very
specific class of initial condition, the so called (single)
water-bag. The scope of this paper is to push forward
the analysis by considering the case where multiple wa-
ter bags are allowed for. The theory is challenged with
reference to the case of a two levels water-bag initial con-
dition and the comparison with the simulations proves
accurate. Phase transitions are in fact predicted and ob-
served in direct N -body simulations. Motivated by this
success, we argue that the Lynden-Bell approach could
be adapted to more complex, and so realistic, family of
initial conditions.
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