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Abstract The parabolic surface of most large deployalilectors is formed by a reflective

mesh attached to a cable net. This paper presems approach to calculate a geodesic tension
truss that ensures both appropriate node posityaania uniform tension. It is based on a force
density strategy coupled with geometrical constsaidniform tension is achieved by iterations
on coefficients of force density. Nodes of netlagated on the paraboloid by controlling
additional forces. Several applications illustridte method on various types of net patterns and
parabolic surfaces. The accuracy of obtained ni#ieis evaluated by calculation of the
systematic surface error due to faceting. Attachiroéthe net to a rim structure with additional
cables is also discussed.

Keywords cable net, uniform tension, force density method

1. Introduction

Mesh reflectors are widely used for large apertyp@ce antenna systems because they are
lightweight, and can be packaged compactly andyedsieir radio-frequency surface consists of
facetted reflective mesh. It is knitted from ingexd electrically conductive thin wires, made of
gold-plated molybdenum, typically of 0.03 mm diaereflhis mesh is stretched over a cable net,
usually made of stiff unidirectional composite filants, attached to a framework. The reflective
surface is thus composed only of flexible elemanis can be easily folded. Its accuracy
however depends on the shape of the cable net.

Two main conceptual designs may be identified. fliseone is based on a division of the
parabolic surface in gores supported by radial sitb@dial cables attached to an outside ring
(umbrella-type reflectors). The second strategysmers a division of the surface in flat facets
formed by the cable net and tensioned with outtai@ forces applied at every junction node
(Figure 1). This tension truss concept was develdpeMiura [1].



Figure 1: Tension truss formed by out-of-plane ®écom Tibert [2])

Several large deployable antennas using the tetsies concept have been tested and launched,
such as the space radio telescope Halca or theMesh reflector (Figure 2). It has also been
studied by Tibert [3] to design an antenna based mmsegrity structure.
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Figure 2: Tension truss antennas: a) Halca; b)oMstish

A fairly isotropic and uniform tension in the refteve mesh ensures good electrical conductivity
and hence RF reflectivity. The mesh tension musiufigcient to withstand lateral accelerations
greater than those experienced in orbit withouesedistortion of the reflector surface. Mesh
tensions from 5 to 10 N/m have been used in prevebudies [4,5]; even if higher tension will
more effectively smooth out the creases of meshadé&ding and thereby give better antenna
performance. Uniform tension in the supporting eai®t is moreover interesting from a
geometrical and mechanical point of view. A cabithwa constant tension positioned on a
curved surface indeed follows its geodesic linesulting in shortest paths and hence in a
minimum quantity of material. It is also the motgttde position since it corresponds to the
minimum potential energy configuration: the netlwglturn to this position in the event of slight
perturbations. A cable net with a uniform tensitng the geodesic lines is usually named
“geotensoid”.

Most of the methods, available in the open litamtgenerate a “quasi” geotensoid cable net by
projecting a plane pattern on the parabolic surfaesometimes approximated by a spherical
surface. Then, they improve the accuracy by chantiea node positions with iterative
approaches or optimization algorithms. One metrasildeen for example proposed by Tibert
[6], however resulting in a variation of tensionghe cable elements (this technique will be
more deeply discussed in section 2.3). In all cagase these approaches can not guarantee a



uniform tension in the net, they do not producettbe minimal length configuration of the
tension truss.

In this paper, we propose therefore an innovatieéhod to generate cable nets with a uniform
tension and forming exactly a parabolic surfacestFive present the approach, based on the
force density method, and the used mechanical deraions. Several applications are then
shown to illustrate the efficiency of method.

Space antennas also require a very low shapeferrthreir parabolic surface. Faceting is
generally the second main source of surface efter manufacturing, even if it is also due to
thermal distortion, mesh saddling and deploymemagability. We therefore present some
considerations on the accuracy of computed surfagestimating the root mean square (rms)
faceting error. Finally, problems about connectimg tension truss to a rim structure are
discussed.

2. Geotensoid tension truss form-finding

2.1 Cable net form-finding with Force Density M ethod

The Force Density Method (FDM) was developed bykbitiz and Schek [7], mainly to design
the roof of the Munich Olympic Stadium in 1972 ldhea a tensile cable net covered with
Plexiglas panels (Figure 3a). Calculation of batbrgetry (node positioning) and tension
distribution was firstly based on physical modetgasured with photogrammetry and
extrapolated at scale one, but unsuccessful rdsats lead to the proposal of a new numerical
approach.

| , c)
Figure 3: a) Munich Olympic Stadium roof; b) cahk equilibrium; c) Force Density Method

The principle of FDM is to linearize the equilibnuequations of the nodes connecting the
tensile cable elements. We isolate a nodennected ta; cables of length’; with tensionT,;

and without external forces (Figure 3b). The nogieilibrium, written on X direction of a
coordinate systen X Y,Z)*, implies that:

iTj (X,=X)/£,=0 (1)

! See nomenclature at the end of paper



The same relations may be written¥nand Z directions. However, these non linear equations
can be linearized by introducing a “force densttgefficient g; for every cable element (equal

to the ratio of its tension by its length). Thisu#s in the following “barycenter” writing:
G G G
>.q,(X;=X)=0andthusX, = a; X)/Q.a; ) (2
=L j=L j=1

Applying this approach to the whole network leamla thode to node” process where successive
nodal positions are computed until the global elguim is obtained. Cable tensions are then

evaluated byl;, =q; ;. The FDM is implemented in numerous form-findirgt&are (mainly in

textile architecture): the designer generates @ialiflat net and specifies anchoring conditions
(Figure 3c). The resulting equilibrated shape ddpem the set of force density coefficients.
This method was then improved to investigate mithiceafigurations, mainly uniformly
tensioned nets [8]. It is known that such net $® a@f minimal length. To perform such
calculation, an iterative strategy can be used.priveiple is to iterate on the force density
coefficients to eventually obtain a required umfiaiensionT, . For instance, if step gives
tensionT” in an element, then the new coefficient used in the followingsts:

qft=a T, /TP (3)
If the boundary conditions allow forming a unifogmiénsioned cable net, this method generally
converges to a solution. However, conditions fanagence have not been explicitly written.
This analysis is indeed difficult to achieve simcgepends on many factors such as the net
topology and the anchoring conditions.
An application is presented in Figure 4 where arckastic saddle shape (not an antenna) is
computed with identical force density coefficie(a$ and, then, with different coefficients to
obtain a uniform tension (b). The difference imsrof resulting shapes may be clearly
observed.
In the first case (identical coefficients), it Hasen demonstrated [9] that the computed net

minimizes the sum of the squared element length& . We insist on this point because a

common mistake is to think that it minimizes thensof the Iengtthﬂ P

In the second situation, the cable elements hasdme tension, thus following the geodesic
lines of the surface they describe. It also imptieg only this configuration minimizes the sum
of the lengths. However, it may be observed in $hddle shape application that the geometry is
less regular than the previous one.



Figure 4: Saddle shape with a) identical force ter®efficients; b) uniform tension

Nevertheless, we observe that the method geneyatganticlastic surfaces. To obtain
equilibrated synclastic surfaces, additional exdefarces must be applied at every node.

2.2 Parabolic reflective surfaces

The tension truss concept considered for the aatenthis paper is based on two cable nets: a
“front” one (associated to the reflective surfacehnected by tension ties to a mirrored “rear”
one with the same shape (Figure 5). The ties dboming synclastic shapes by ensuring the
tension equilibrium in both nets (playing the rofé'external” forces).

mesh
front net

<Y

tension tie

/

Figure 5: Front cable net (with the reflective memsihd rear net with tension ties
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Parabolic antennas are based on the same prinalplecident rays parallel to the paraboloid
axis converge to the focal point (feed) after mften on the surface. Conversely, all emitted rays
are reflected parallel to the paraboloid axis. fdfeector surface is defined by the intersection of
a “parent” revolution paraboloid (with diametBx)) and a cylinder (diameted, ) parallel to the
paraboloid axis which characterizes the antennetape

In “prime focus” antenna (Figure 6), the axis ofgyd paraboloid and cylinder are coincident.
The reflector surface is thus a paraboloid of retioh (D, =D, ). In a Cartesian coordinate



system( XY,Z ) Z being the axis of revolution, the equation desegjlihis axi-symmetric
parabolic surface is:

Z=(X?+Y?)/(4F) whereF is the focal length  (4)
The heightH, of a reflector with diameteD, is thusH, =D?/ (L6F ).

Z

incident rays Ifocal point

H,

F

D,
Figure 6: Prime focus parabolic reflector

One drawback of the axi-symmetric reflector is tiet feed and its support are bulky and can
block a part of the rays. To eliminate this probl@na improve performance, antennas with
offset feed are used. The cylinder axis is theeef@mparated to the paraboloid revolution axis of
an offset distancel andD, =d + D,/ 2(Figure 7).

Figure 7: Axonometric view of offset parabolic aoé

In the coordinate systefiX,Y,Z (ith an angleg betweenX axis and the plane
perpendicular to the paraboloid axis), the equaticithe surface is in the form & = f ( X)Y) :
a=2F cosp+sing(d +cospX)
Z =(a-+b)/sin’e with {b=4FsingX —sin’@Y? + (2F sing+ cospd)? (5)
tanp=d/(2F)
This surface is symmetric in relation ¢X,Z aid its peripheral points are located on an flat
ellipse parallel ta( XY )

2.3 Form-finding strategy
To calculate a geotensoid cable net forming a mdi@burface, the proposed method is to act on

the additional forces due to the tension ties Zodirection) connecting the front and rear cable
nets. Their value will be chosen to ensure the mmdgtioning on the surface defined by the
relationships in Eq. 4 or 5.



From an initial net and a given set of force degnsttefficientsq; , the equilibrium position of a

nodei on X andY directions is determined by the FDM (Eg. 2). Wtikse two coordinates

and the surface equation, the corresponding aecpraition alongZ is determined. The force
in the tension tie necessary to equilibrate theereddng this direction is then calculated by:

F=Y0,(Z,-2) @)

Lengths and tensions in the cable elements arecaédlated and the condition of uniform
tension is tested. The process is resumed byiitehathanging the force density coefficients
(Eq. 3) until it results in the same tensignin every cable connected to nad&his method is

successively applied to all the free nodes unti (iniform tension is obtained in all the cables,
(ii) the nodes are in equilibrium and (iii) themgtions do not vary.

If the process converges, a uniformly tensionectlsgtic cable net with every node exactly on
the parabolic surface is computed. The overall oteik presented in Figure 8 as an algorithm.

net pattern and periphery
node 7 initial positions X,,Y,, Z,
force density coefficients ¢, =17,/¢,

node equilibrium position on ¥ and 7:

X,=>4q,X,/>q,.,=>4qY,/>4q,
g

S
=
g node Z, position on the parabola:
é equation (4) or (5)
3 / ¥
A S 4 N tension tie vertical force:

R
.\:6\ j FZ‘:ZQ;'(Zj_Z,‘)

I, 7

cable lengths and tensions:
_ 2 2 23172 L
| =(AX A HAZYE T =g

|T,~T,|/T, <tol,

test:

~uniform tension
(cables connected to 1)

fd coeff. actualization:
q;ww — ql ]’; /T,

|7,-7,]/T, < tol,

test:

- uniform tension
(all cables)

no

<,

tests;

=node equilibrium

- node positions
all nodes

no

[AF, <ol

I end of calculation ]
Figure 8: Algorithm for geometry calculation




The criterions used to decide on convergence arétlowing. To check the uniform tension
requirement, it is verify if the difference withelobjectiveT, is lower than a tolerancel, (set

to 0.1% in the applications presented in the negtisn). Moreover, a node is considered in
equilibrium if the norm of its total out-balanceatde F, is inferior thantol. (10™° N in
applications) and considered stable in positidretiveen two consecutive iterations, its
coordinates variatiodX; is inferior thantol, (set to10° m).

Compared to the method proposed by Tibert in [8$ &pproach guarantees a uniform tension
and a node positioning exactly on the parabolitaser(that is to say the computation of a true
geotensoid configuration). In [6], a starting plamed with identical force density coefficients is
first vertically projected on the surface. We nibtat these two configurations can not have a
uniform tension and a minimal length. Then, forirethe ties are calculated to ensure the
vertical equilibrium for each node by assuming astant tension in the cable elements. These
forces are subsequently homogenized by rounding\hkies to integers (multiples of 1 N, to
reduce the spectrum of values). The net correspgrtdithat distribution is then computed while
keeping the nodes on the parabolic surface. Neslesh, in the application presented for a 12.25
m offset antenna, tensions in the cables vary #&ml to 120 N, hence meaning a non constant
distribution and a non geotensoid truss.

2.4 Applications on tension trusses

2.4.1 Prime focus configuration

The method has been applied on several types && oabs. The initial net patterns are planar
and located inside a circle which represents thensa anchoring structure. The rim nodes are

located on a circle (center & =0 andY = O, diameterD, ).

Figure 9a shows an example of a 6 by 6 “diamatattgyn, one of the most frequently used. It is
composed of 6 disc sectors where each boundaryssaieided into 6 elements. The resulting
net, forming an axi-symmetric paraboloid with afann tension, is presented in Figure 9b. This
pattern is based on triangular facets but thedtemare definitively not equilateral and identical
(elements with different lengths, as for a geoddsime). It is clear that no geotensoid
configuration for a paraboloid using equilater&ngles exists.
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Figure 9: Diamatic net on axi-symmetric parabol@iinitial flat net; b) computed net

Figure 10 shows the distribution of forces in thesion ties forD, = 12n and a specified net

tension equal to 100 N in every cable elementae®fF / D, respectively equal to 0.4 and
0.6, the average tie force is 32.17 N and 22.3&ith(standard deviations 2.60 N and 0.89 N).
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Figure 10: Tension tie force distribution in axngyetric case

The computation method has been tested on diff@atérns and some computed nets are
presented in Figure 11. The method eventually cay@gebut the resulting nets are highly
dependent on the pattern and, in some cases,déesiae can vary widely.
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Figure 11: Different calculated configurations

2.4.2 Convergence
The conditions for convergence of the algorithmdifigcult to write analytically. We however

present in Figure 12 some graphs showing the vamiaff the position for two nodes during
iterations: one is at the center of the axi-symmogtaraboloid O, = 12m, F/ D, = Q6); the
other one is located laterally and close to thgperal rim circle. In this case, computations
converge to stabilized equilibrium positions a0 iterations.
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Figure 12: Two nodes positioning during iterati¢gwalues of coordinateg andZ in m)

2.4.3_Offset configuration

The three main parameters of offset reflector laeesiperture diametdd, , the focal lengthF
and the offset distanak A large diameter results in a higher gain. Theafdength (or the

F /D, ratio) must not be too high for structural reasdre offset distance should be large
enough to eliminate the obstruction of rays byfées.

Hence, the first numerical application is given oy =12m, F/ D, = 045 andd =83 m
(values close to those of existing reflectors WetroMesh [10], Figure 2b). A diamatic pattern
of 6 sectors of 10 divisions is considered withpegral nodes attached to an elliptical rim
structure (center aK = H_sing andY = Q) at the altitudeZ = H, cosp=H_ . The transverse

diameter of the rim structure 3,/cosp (on X ) and its small diameter is equal i (on Y).

For a 100 N uniform tension in the net, the formdfng method converges to an average force in
the tension ties close to 7.14 N (standard dewidi®d3 N). The resulting force distribution is
presented in Figure 13.
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Figure 13: Tension tie force distribution in offeaise with elliptical rim (sphere diameter
proportional to the tension tie force)

A second application is given to illustrate theecadhere the net is connected to edge tensile
cables (such as for the Halca reflector, Figure & consider the same antenna characteristics
(D, =12m, F/D, =045, d =83m, 100 N uniform tension) and the resulting netrsspnted

in Figure 14. Tension tie forces in the net vapnirl1.68 N to 6.69 N (average force 10.38 N,
standard deviation 0.84 N). Higher forces (randmg 22.67 N to 60.26 N) appear for the
nodes connected to the edge cables. The forcetdensificients for these edge elements have
been set constants; it results in a maximal tensidri54 N and the corresponding peripheral
nodes are not on the parabola.

'E-‘. —h—a 7{‘
L Falh'
IR KA KSR

Y VAVAVAVAVAVAYAY S

DN\ AVAVAVAVAVAVAVAVAVAVA 2%
ANAVAVAVAVAVAVAVAVAVAY/4
" AVAVAVAVAVAVAVAVAY/
J}V&é}}%‘%y
WA 2.'!,.,"& vy

et Tes,

Figure 14: Offset antenna with edge cables (isameigw and top view with tension tie force
distribution given by spheres)

Since the main driving parameter is the “quality’tiee obtained surface, we have now to discuss

if the computed nets by the proposed form-findirgthnod give an acceptable surface error due
to faceting.

11



3. Systematic faceting error

The ideal mathematical shape defined by eq. (4%)is however purely theoretical since it has
to be realized by a faceted mesh stretched oretiwan truss. The typology of the net
determines the forms and dimensions of the flattiacrhe faceted (and discrete) surface no
longer corresponds to the continuous one. The pécadurface that the faceted paraboloid best
approximates may be then calculated; this is refeto as the “best-fit paraboloid” (Figure 15).
It is characterized by a resulting focal lengthiataon and a translation compared to the
theoretical surface.

Figure 15: Best fit paraboloid

The faceting error is limited relatively to the stest wavelength to be transmitted. For example,
in the 12 m AstroMesh reflector, the faceting rmeeis 1.15 mm [11].

Different approaches have been proposed to caécthiat error. Agrawal [12] estimates that, if
the reflector is shallow, it can be approximatedatsphere of radiug F . In this case, the

faceting rms error with regular polygonal facetslise tod,. = L* /(F C* ) whereL is the

facet length side and a constant respectively equal to 7.872, 6.16Q@6ifor triangular,
square and hexagonal facets. This formula is aft& to determine the maximum length of a
net for a given error. In the caseBf=1287 (wvalue considered for the offset paraboloid in

section 2.4.3) and a faceting error of 1 mm, tingle of triangular facet side calculated with
Agrawal’s relation should be less than 0.893 nthin6 by 10 diamatic net with an elliptical rim
that we have computed (Figure 13), the maximalechbigth is 0.898 m while the average
length is 0.685 m (which corresponds to an errd.59 mm with Agrawal’s relation).

Because of such difference, we tried to estimagddhbeting error in order to take into account
the irregularity of facets. To do this, techniqlike the half-path length method [13] are
available to compute the surface error due to ifiegdons by comparing pairs of points (the
first one on the real paraboloid, the second onthernheoretical paraboloid). Results however
depend on the number and on the type of chosensp&imce our study only aims to estimate
the error, we decided to compare only #ig values (position of the gravity centre of every

computed triangular facetn the vertical axi' of the parent paraboloid) with th&, values
(theoretical position of this point on the parabaurface calculated with thex', ,Y', )
coordinates). The “axial” faceting rms error ighs case given by [2]:

12



5= (L A2, I XA ()

where A is the projected area of the triangular facetrenglane( X' Y' ) The best fit
paraboloid which minimizes the faceting rms ersothie theoretical paraboloid transformed with

a translationAZ' alongZ' direction and two rotations arourld andY' axis. However, these
rotations are small and assumed to be negligiblearapplication we will present. To improve
again the accuracy, the focal lend¥) of the best fit paraboloid may be also adjusted.
The resulting equation of the best fit parabolsid i

Ly Z(X'2+Y'2)/(4be)+AZ' (8)

For the configuration we study (diamatic net willip&cal rim), the axial faceting rms error
obtained by (7) is roughly 3 mm. The error relativehe best fit paraboloid (whei#,,

replaceZ',in (7)) is 0.33 mm. The large difference betweenttho errors can be explained by

the fact that the best fit paraboloid is closethi centers of gravity of the triangles and no
longer to the cable intersections (as for theahttieoretical paraboloid). The translati6d’ is
guasi equal to this difference and can be detemiriyethe following relation:

=Y AZZ)IYA O

The parameteAZ' and F,; of the best fit paraboloid can be determined bpdard

optimization algorithms to reduce the error, likewdon’s or conjugate gradient methods (we
used the Excel™ solver in this study).

3.1 Results
Several computed diamatic nets in offset configanstare presented in Table 1 to compare the

incidence of the discretization (number of facets) of theF / D, ratio. It shows that the
faceting error increases if the number of facetedasiced or if the curvature is larger. We also

observe that the presented computation methodgee\a faceting error lower than 1 mm, even
with few facets.

Number of divisions 5 6 8 10 10 10
Number of triangular facets 150 216 384 600 600 600
RatioF/D, 045 045 045 045 030 0.60

Faceting erro®, ., (mm) 1219 850 480 3.08 504 224

Error with only AZ' translation (mm) 1.05 0.79 0.49 0.34 0.88 0.21

Error with AZ' & F,, optimization (mm) 0.99 0.75 0.48 0.33 0.82 0.21
Table 1: Faceting errors for diamatic nets withttadl nodes on the parabolic surface

3.2 Connection to therim structure

The attachment of the net to the antenna rim imgdeundary conditions which are not
necessarily compatible with all net patterns. B@meple, in case of the AstroMesh, the rim is

13



realized with a 30 bays ring. The net is thus atdcat 30 points to the ring truss, whereas it
requires 60 points to fix a 6 by 10 diamatic patter

S \ Y A7

/g/ </\/</ </\/< JAVAVAY

WAV \/\/ \ ( \( AV '\)\'
N/ ,\ / /) /

/\/\ N

Figure 16: Diamatic net a) under uniform tensionljke the Astromesh net

For this specific pattern, the method can be tHeviong. We firstly performed the form-finding
with all nodes on the paraboloid (with ellipticah). Then we extract a 6 side’s part with 9
elements on each side to create the reflective @éigare 16a). This “hexagonal” net is
connected to the rim by a new set of anchoringesalitach side node is attached to the rim by
two cables for which the tensions are calculateketp a uniform tension in and on the hexagon.
Figure 16b shows a pattern like the AstroMesh nébkher configurations are possible [3] while
there are at least two cables to ensure the equitbof nodes. The tensions in these two

elements are calculated to equilibrate the respftince due to other connected cableirand
Y directions. The corresponding tension tie forcénén revaluated to equilibrate the nodeZin

direction. This approach allows attaching a caleleto the rim structure without changing
significantly the reflective surface and its acayraOnly cables connected to the rim are not in

the same tensiom, as the others. Faf,= 100 N, tensions in anchoring cables vary fromi@7

181 N. The resulting forces in tension ties aregsgnted in Figure 17 for both configurations;
they differ only close to the peripheral zone (bstw 5 and 6 m).
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Figure 17: Tension tie force distribution with metrim attachment
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However, the kinematic and static indeterminacytaiso be checked. This may be performed
by determining the number of mechanismand of self-stress state$with
m-s=C-3(N-N,) whereC, Nand N, are respectively the number of cable elements, of

nodes and of nodes attached to the rim) [6]. Foh subig structure, it has to be calculated by
computing the rank. of the equilibrium matri>{E] of the structure (that verifies the global

relationship[ E]{q} ={0} where the two nets with their tension ties aresimered) and then
usingm=b-rg.
For the configuration in Figure 16a with= 2194 =662 and N, = 120 it comesr, =1626

and thereforan=({i.e. no mechanism) witts= 56self-stress vectors comprising tensile and
compressive forces). For the configuration 16b (@dgesh like) withC = 2005 N =590 and
N, =60, thenr. =1595 and m= Owith s=415.

The results show that the tensioned net can lealfitt the rim without mechanism, even if the
number of anchoring points is reduced.

4. Conclusion

A new method to calculate a uniformly tensionedeatet is presented. The approach is based
on an improvement of the force density methodidea is to use the nodal forces due to the
tension ties to position them on the target sutfactan iterative computation, a cable net with a
uniform tension is obtained by variation of thec®density coefficients. Tests on different
surfaces show the efficiency of the method. Thaiokd values of systematic faceting error
show that this approach is able to meet the reopangs of space applications. The proposed
form-finding method hence provides nets with a faseting error and a uniform tension, so a
good reflectivity of the surface. It is applied feflectors but could be used in other fields or
applications to design uniformly tensioned synitastirfaces.
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Appendix A: nomenclature
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projected area of mesh elementary triahgle
number of cable elements connected to mode

total number of cable elements
offset distance
aperture diameter

diameter of parent paraboloid
equilibrium matrix
root mean square error

axial translation
focal length
focal length of the best fit paraboloid

force in the tension tie connected to node
height of axi-symmetric reflector

height of offset reflector

length of cable elemept

number of mechanisms
number of triangular facets in the mesh
total number of nodes

angle betweerX and horizontal plane
force density coefficient for cable elemgnt

number of self-stress states
tension in cable elemgnt

uniform tension in the cable net

paraboloid coordinate system

parent paraboloid coordinate system (case oébféflector)
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