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This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not apply in this work the usual duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null controls a functional involving weighted integrals of the state and the control. The optimality conditions show that both the optimal control and the associated state are expressed in terms of a new variable, the solution of a fourthorder elliptic problem defined in the space-time domain. We first prove that, for some specific weights determined by the global Carleman inequalities for the wave equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce a family of finite-dimensional approximate control problems and we prove a strong convergence result. Numerical experiments confirm the analysis. We complete our study with several comments.

Introduction. The null controllability problem

We are concerned in this work with the null controllability for the 1D wave equation with a potential. The state equation is the following:    y tt -(a(x)y x ) x + b(x, t)y = 0, (x, t) ∈ (0, 1) × (0, T ) y(0, t) = 0, y(1, t) = v(t), t ∈ (0, T ) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ (0, 1).

(

Here, T > 0 and we assume that a ∈ C 3 ([0, 1]) with a(x) ≥ a 0 > 0 in [0, 1], b ∈ L ∞ ((0, 1) × (0, T )), y 0 ∈ L 2 (0, 1) and y 1 ∈ H -1 (0, 1); v = v(t) is the control (a function in L 2 (0, T )) and y = y(x, t) is the associated state.

In the sequel, for any τ > 0 we denote by Q τ and Σ τ the sets (0, 1) × (0, τ ) and {0, 1} × (0, τ ), respectively. We will also use the following notation:

L y := y tt -(a(x)y x ) x + b(x, t)y.

(

For any (y 0 , y 1 ) ∈ Y := L 2 (0, 1) × H -1 (0, 1) and any v ∈ L 2 (0, T ), it is well known that there exists exactly one solution y to [START_REF] Asch | An implicit scheme uniformly controllable for the 2-D wave equation on the unit square[END_REF], with the following regularity: y ∈ C 0 ([0, T ]; L 2 (0, 1)) ∩ C 1 ([0, T ]; H -1 (0, 1)) [START_REF] Baudouin | Lipschitz stability in an inverse problem for the wave equation[END_REF] (see for instance [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]).

On the other hand, for any T > 0, the null controllability problem for (1) at time T is the following: for each (y 0 , y 1 ) ∈ Y , find v ∈ L 2 (0, T ) such that the corresponding solution to (1) satisfies y(• , T ) = 0, y t (• , T ) = 0 in (0, 1).

In view of the linearity and reversibility of the wave equation, ( 1) is null-controllable at T if and only if it is exactly controllable in Y at time T , i.e. if and only if for any (y 0 , y 1 ) ∈ Y and any (z 0 , z 1 ) ∈ Y there exist controls v ∈ L 2 (0, T ) such that the associated y satisfies y(• , T ) = z 0 , y t (• , T ) = z 1 in (0, 1).

It is well known that (1) is null-controllable at any large time T > T for some T that depends on a (for instance, see [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] for a ≡ 1 and b ≡ 0 leading to T = 2 and see [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF] for a general situation). As a consequence of the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], it is also known that the null controllability of (1) is equivalent to an observability inequality for the associated adjoint problem.

The goal of this paper is to design and analyze a numerical method allowing to solve the previous null controllability problem.

So far, the approximation of the minimal L 2 -norm control -the so-called HUM control -has focused most of the attention. The earlier contribution is due to Glowinski and Lions in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF] (see also [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems: a numerical approach Encyclopedia of Mathematics and its Applications[END_REF] for an update) and relies on duality arguments. Duality allows to replace the original constrained minimization problem by an unconstrained and a priori easier minimization (dual) problem. However, as observed in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF] and later in [START_REF] Zuazua | Propagation, observation, control and numerical approximations of waves approximated by finite difference methods[END_REF], depending on the approximation method that is used, this approach can lead to some numerical difficulties.

Let us be more precise. It is easily seen that the HUM control is given by v(t) = a(1)φ x (1, t), where φ solves the backwards wave system

   Lφ = 0 in Q T φ = 0 on Σ T (φ(• , T ), φ t (• , T )) = (φ 0 , φ 1 ) in (0, 1) (5) 
and (φ 0 , φ 1 ) minimizes the strictly convex and coercive functional

I(φ 0 , φ 1 ) = 1 2 a(1)φ x (1, •) 2 L 2 (0,T ) + 1 0 y 0 (x) φ t (x, 0) dx -y 1 , φ(• , 0) H -1 ,H 1 0 (6) 
over H = H 1 0 (0, 1) × L 2 (0, 1). Here • , • H -1 ,H 1 0 denotes the duality product for H -1 (0, 1) and H 1 0 (0, 1). The coercivity of I over H is a consequence of the observability inequality

φ 0 2 H 1 0 (0,1) + φ 1 2 L 2 (0,1) ≤ C φ x (1, •) 2 L 2 (0,T ) ∀(φ 0 , φ 1 ) ∈ H, (7) 
that holds for some constant C = C(T ). This inequality has been derived in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] using the multipliers method.

At the numerical level, for standard approximation schemes (based on finite difference or finite element methods), the discrete version of [START_REF] Cîndea | An approximation method for the exact controls of vibrating systems[END_REF] may not hold uniformly with respect to the discretization parameter, say h. In other words, the constant C = C(h) may blow up as h goes to zero. Consequently, in such cases the functional I h (the discrete version of I) fails to be coercive uniformly with respect to h and the sequence {v h } h>0 may not converge to v as h → 0, but diverge exponentially. These pathologies, by now well-known and understood, are due to the spurious discrete high frequencies generated by the finite dimensional approximation; we refer to [START_REF] Zuazua | Propagation, observation, control and numerical approximations of waves approximated by finite difference methods[END_REF] for a review on that topic; see [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF] for detailed examples of the behavior observed with finite difference methods.

Several remedies based on more elaborated approximations have been proposed and analyzed in the last decade. Let us mention the use of mixed finite elements [START_REF] Castro | Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square[END_REF], additional viscosity terms which have the effect to restore the uniform property [START_REF] Asch | An implicit scheme uniformly controllable for the 2-D wave equation on the unit square[END_REF][START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF] and also filtering technics [START_REF] Ervedoza | The wave equation: Control and numerics[END_REF]. Also, notice that some error estimates have been obtained recently, see [START_REF] Cîndea | An approximation method for the exact controls of vibrating systems[END_REF][START_REF] Ervedoza | The wave equation: Control and numerics[END_REF].

In this paper, following the recent work [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF] devoted to the heat equation, we consider a different approach. Specifically, we consider the following extremal problem :

     Minimize J(y, v) = 1 2 Q T ρ 2 |y| 2 dx dt + 1 2 T 0 ρ 2 0 |v| 2 dt
Subject to (y, v) ∈ C(y 0 , y 1 ; T ) [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF] where C(y 0 , y 1 ; T ) denotes the linear manifold C(y 0 , y 1 ; T ) = { (y, v) : v ∈ L 2 (0, T ), y solves (1) and satisfies (4) }.

Here, we assume that the weights ρ and ρ 0 are strictly positive, continuous and uniformly bounded from below by a positive constant in Q T and (0, T ), respectively.

As in the previous L 2 -norm situation (where we simply have ρ ≡ 0 and ρ 0 ≡ 1), we can apply duality arguments in order to find a solution to [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF], by introducing the unconstrained dual problem

             Minimize J (µ, φ 0 , φ 1 ) = 1 2 Q T ρ -2 |µ| 2 dx dt + 1 2 T 0 ρ -2 0 |a(1)φ x (1, t)| 2 dt + 1 0 y 0 (x) φ t (x, 0) dx -y 1 , φ(• , 0) H -1 ,H 1 0 Subject to (µ, φ 0 , φ 1 ) ∈ L 2 (Q T ) × H, (9) 
where φ solves the nonhomogeneous backwards problem

   Lφ = µ in Q T φ = 0 on Σ T (φ(• , T ), φ t (• , T )) = (φ 0 , φ 1 )
in (0, 1).

Here, J is the conjugate function of J in the sense of Fenchel and Rockafellar [START_REF] Ekeland | Convex analysis and variational problems[END_REF][START_REF] Rockafellar | Convex functions and duality in optimization problems and dynamics[END_REF] and, if ρ ∈ L ∞ (Q T ) and ρ 0 ∈ L ∞ (0, T ) (that is, ρ -2 and ρ -2 0 are positively bounded from below), J is coercive in L 2 (Q T ) × H thanks to [START_REF] Cîndea | An approximation method for the exact controls of vibrating systems[END_REF]. Therefore, if (μ, φ0 , φ1 ) denotes the minimizer of J , the corresponding optimal pair for J is given by

v = -a(1)ρ -2 0 φ x (1, •) in (0, T ) and y = -ρ -2 µ in Q T .
At the discrete level, at least for standard approximation schemes, we may suspect that the coercivity of J may not hold uniformly with respect to the discretization parameters, leading to the pathologies and the lack of convergence we have just mentioned.

On the other hand, the fact that the state variable y appears explicitly in the cost J makes it possible to avoid dual methods. We can use instead suitable primal methods to get an optimal pair (y, v) ∈ C(y 0 , y 1 ; T ). The formulation, analysis and practical implementation of these primal methods is the main goal of this paper.

More precisely, the optimality conditions for the functional J allow to express explicitly the optimal pair (y, v) in terms of a new variable, the solution of a fourth-order elliptic problem in the space-time domain Q T that is well-posed under some conditions on T , the coefficient a and the weights ρ and ρ 0 . Sufficient conditions are deduced from an appropriate global Carleman estimate, an updated version of the inequalities established in [START_REF] Baudouin | Lipschitz stability in an inverse problem for the wave equation[END_REF]. From a numerical viewpoint, this elliptic formulation is appropriate for a standard finite element analysis. By introducing adequate finite dimensional spaces, we are thus able to deduce satisfactory convergence results for the control, something that does not seem easy to get in the framework of a dual approach.

A similar primal approach, based on ideas by Fursikov and Imanuvilov [START_REF] Fursikov | Controllability of Evolution Equations[END_REF], has been used in [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF] for the numerical null controllability of the heat equation. This paper is organized as follows. In Section 2, adapting the arguments and results in [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF], we show that the solution to (8) can be expressed in terms of the unique solution p to the variational problem [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] in the Hilbert space P , defined as the completion of P 0 with respect to the inner product [START_REF] Yu | On Carleman estimates for hyperbolic equations[END_REF]; see Proposition 2.2. The well-posedness is deduced from the application of Riesz's Theorem: a suitable global Carleman inequality ensures the continuity of the linear form in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] for T large enough when ρ and ρ 0 are given by [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF]; see Theorem 2.1.

In Section 3, we analyze the variational problem [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] from the viewpoint of the finite element theory. Thus, we replace P by a conformal finite element space P h of C 1 (Q T ) functions defined by [START_REF] Zhang | Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities[END_REF] and we show that the unique solution ph ∈ P h to the finite dimensional problem (38) converges (strongly) for the P -norm to p as h goes to zero. Section 4 contains some numerical experiments that illustrate and confirm the convergence of the sequence {p h }.

Finally, we present some additional comments in Section 5 and we provide some details of the proof of Theorem 2.1 in the Appendix.

A variational approach to the null controllability problem

With the notation introduced in Section 1, the following result holds: Proposition 2.1 Let T > 0 be large enough. Let us assume that ρ and ρ 0 are positive and satisfy ρ ∈ C 0 (Q T ), ρ 0 ∈ C 0 (0, T ) and ρ, ρ 0 ≥ ρ > 0. Then, for any (y 0 , y 1 ) ∈ Y , there exists exactly one solution to the extremal problem [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF].

The proof is simple. Indeed, for T ≥ T , null controllability holds and C(y 0 , y 1 ; T ) is non-empty. Furthermore, it is a closed convex set of L 2 (Q T ) × L 2 (0, T ). On the other hand, (y, v) → J(y, v) is strictly convex, proper and lower-semicontinuous in L 2 (Q T ) × L 2 (0, T ) and

J(y, v) → +∞ as (y, v) L 2 (Q T )×L 2 (Σ T ) → +∞.
Hence, the extremal problem (8) certainly possesses a unique solution.

In this paper, it will be convenient to assume that the coefficient a belongs to the family

A(x 0 , a 0 ) = { a ∈ C 3 ([0, 1]) : a(x) ≥ a 0 > 0, -min [0,1] a(x) + (x -x 0 )a x (x) < min [0,1] a(x) + 1 2 (x -x 0 )a x (x) } (10) 
where x 0 < 0 and a 0 is a positive constant.

It is easy to check that the constant function a(x) ≡ a 0 belongs to A(x 0 , a 0 ). Similarly, any nondecreasing smooth function bounded from below by a 0 belongs to A(x 0 , a 0 ). Roughly speaking, a ∈ A(x 0 , a 0 ) means that a is sufficiently smooth, strictly positive and not too decreasing in [0, 1].

Under the assumption [START_REF] Ekeland | Convex analysis and variational problems[END_REF], there exists "good" weight functions ρ and ρ 0 which provide a very suitable solution to the original null controllability problem. They can be deduced from global Carleman inequalities.

The argument is the following. First, let us introduce a constant β, with

-min [0,1] a(x) + (x -x 0 )a x (x) < β < min [0,1] a(x) + 1 2 (x -x 0 )a x (x) (11) 
and let us consider the function

φ(x, t) := |x -x 0 | 2 -βt 2 + M 0 , (12) 
where

M 0 is such that φ(x, t) ≥ 1 ∀(x, t) ∈ (0, 1) × (-T, T ), (13) 
i.e. M 0 ≥ 1 -|x 0 | 2 + βT 2 . Then, for any λ > 0 we set ϕ(x, t) := e λφ(x,t) .

The Carleman estimates for the wave equation are given in the following result:

Theorem 2.1 Let us assume that x 0 < 0, a 0 > 0 and a ∈ A(x 0 , a 0 ). Let β and ϕ be given respectively by [START_REF] Ervedoza | The wave equation: Control and numerics[END_REF] and [START_REF] Fernández-Cara | Numerical null controllability of a semi-linear 1D heat via a least squares reformulation[END_REF]. Moreover, let us assume that

T > 1 β max [0,1] a(x) 1/2 (x -x 0 ). ( 15 
)
Then there exist positive constants s 0 and M , only depending on x 0 , a 0 , a

C 3 ([0,1]) , b L ∞ (Q T )
and T , such that, for all s > s 0 , one has

s T -T 1 0 e 2sϕ |w t | 2 + |w x | 2 dx dt + s 3 T -T 1 0 e 2sϕ |w| 2 dx dt ≤ M T -T 1 0 e 2sϕ |Lw| 2 dx dt + M s T -T e 2sϕ |w x (1, t)| 2 dt ( 16 
)
for any w ∈ L 2 (-T, T ; H 1 0 (0, 1)) satisfying Lw ∈ L 2 ((0, 1) × (-T, T )) and w x (1, •) ∈ L 2 (-T, T ). There exists an important literature related to (global) Carleman estimates for the wave equation. Almost all references deal with the particular case a ≡ 1; we refer to [START_REF] Baudouin | Lipschitz stability in an inverse problem for the wave equation[END_REF][START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF][START_REF] Yu | On Carleman estimates for hyperbolic equations[END_REF][START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF][START_REF] Zhang | Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities[END_REF]. The case where a is non-constant is less studied; we refer to [START_REF] Fu | Exact controllability for multidimensional semilinear hyperbolic equations[END_REF].

The proof of Theorem 2.1 follows closely the ideas used in the proofs of Theorems 2.1 and 2.5 in [START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF] to obtain a global Carleman estimate for the wave equation when a ≡ 1. The parts of the proof which become different for non-constant a are detailed in the Appendix of this paper.

In the sequel, it is assumed that x 0 < 0 and a 0 > 0 are given, a ∈ A(x 0 , a 0 ) and

T > 2 β max [0,1] a(x) 1/2 (x -x 0 ), with β satisfying (11). ( 17 
)
Let us consider the linear space

P 0 = { q ∈ C ∞ (Q T ) : q = 0 on Σ T }.
The bilinear form (p, q) P :=

Q T ρ -2 Lp Lq dx dt + T 0 ρ -2 0 a(1) 2 p x (1, t) q x (1, t) dt (18) 
is a scalar product in P 0 . Indeed, in view of [START_REF] Fu | Exact controllability for multidimensional semilinear hyperbolic equations[END_REF], the unique continuation property for the wave equation holds. Accordingly, if q ∈ P 0 , Lq = 0 in Q T and q x = 0 on {1} × (0, T ), then q ≡ 0. This shows that (• , •) P is certainly a scalar product in P 0 . Let P be the completion of P 0 with respect to this scalar product. Then P is a Hilbert space for (• , •) P and we can deduce from Theorem 2.1 the following result, that indicates which are the appropriate weights ρ and ρ 0 for our controllability problem: Lemma 2.1 Let us assume that s > s 0 , let us set ρ(x, t) := e -sϕ(x,2t-T ) , ρ 0 (t) := ρ(1, t)

and let us consider the corresponding Hilbert space P . Then there exists a constant C 0 > 0, only depending on x 0 , a 0 , a

C 3 ([0,1]) , b L ∞ (Q T ) , λ, s and T , such that p(• , 0) 2 H 1 0 (0,1) + p t (• , 0) 2 L 2 (0,1) ≤ C 0 (p, p) P ∀p ∈ P. (20) 
Proof: For every p ∈ P , we denote by p ∈ L 2 ((0, 1) × (-T, T )) the function defined by

p(x, t) = p x, t + T 2 .
It is easy to see that p ∈ L 2 (-T, T ; H 1 0 (Ω)), Lp ∈ L 2 ((0, 1) × (-T, T )) and p x (1, •) ∈ L 2 (-T, T ), so that we can apply Theorem 2.1 to p. Accordingly, we have

s T -T 1 0 e 2sϕ |p t | 2 + |p x | 2 dx dt + s 3 T -T 1 0 e 2sϕ |p| 2 dx dt ≤ C T -T 1 0 e 2sϕ |Lp| 2 dx dt + Cs T -T e 2sϕ(1,t) |p x (1, t)| 2 dt (21)
where C depends on x 0 , a 0 , a

C 3 ([0,1]) , b L ∞ (Q T ) and T .
Replacing p by its definition in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems: a numerical approach Encyclopedia of Mathematics and its Applications[END_REF] and changing the variable t by t = 2t -T we obtain the following for any T satisfying [START_REF] Fu | Exact controllability for multidimensional semilinear hyperbolic equations[END_REF]:

s Q T ρ -2 (|p t | 2 + |p x | 2 ) dx dt + s 3 Q T ρ -2 |p| 2 dx dt ≤ C Q T ρ -2 |Lp| 2 dx dt + Cs T 0 ρ -2 0 |p x (1, t)| 2 dt,
where C is replaced by a slightly different constant. Finally, from Corollary 2.8 in [START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF], we obtain the estimate [START_REF] Glowinski | On the controllability of wave models with variable coefficients: a numerical investigation[END_REF].

2
Remark 1 The estimate (20) must be viewed as an observability inequality. As expected, it holds if and only if T is large enough. Notice that, when a(x) ≡ 1, the assumption (17) reads

T > 2(1 -x 0 ) .
This confirms that, in this case, whenever T > 2, ( 20) holds (it suffices to choose x 0 appropriately and apply Lemma 2.1; see [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]). 2

The previous results lead to a very useful characterization of the optimal pair (y, v) for J:

Proposition 2.2 Let us assume that s > s 0 , let us set ρ and ρ 0 as in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF] and let us consider the corresponding Hilbert space P . Let (y, v) ∈ C(y 0 , y 1 , T ) be the solution to [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF]. Then there exists

p ∈ P such that y = -ρ -2 Lp, v = -(a(x)ρ -2 0 p x ) x=1 . ( 22 
)
Moreover, p is the unique solution to the following variational equality:

         Q T ρ -2 Lp Lq dx dt + T 0 ρ -2 0 a 2 (1)p x (1, t) q x (1, t) dt = 1 0 y 0 (x) q t (x, 0) dx -y 1 , q(•, 0) H -1 ,H 1 0 ∀q ∈ P ; p ∈ P. (23) 
Here and in the sequel, we use the following duality pairing:

y 1 , q(•, 0) H -1 ,H 1 0 = 1 0 ∂ ∂x ((-∆) -1 y 1 )(x) q x (x, 0) dx,
where -∆ is the Dirichlet Laplacian in (0, 1).

Proof: From the definition of the scalar product in P , we see that p solves [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] if and only if (p, q) P = 1 0 y 0 (x) q t (x, 0) dx -y 1 , q(•, 0) H -1 ,H 1 0 ∀q ∈ P ; p ∈ P.

In view of Lemma 2.1 and Riesz's Representation Theorem, problem (23) possesses exactly one solution in P .

Let us now introduce y and v according to [START_REF] Lasiecka | Exact controllability of semi-linear abstract systems with applications to waves and plates boundary control[END_REF] and let us check that (y, v) solves [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF]. First, notice that y ∈ L 2 (Q T ) and v ∈ L 2 (0, T ). Then, by replacing y and v in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], we obtain the following:

Q T y Lq dx dt + T 0 a(1)v(t)q x (1, t) dt = 1 0 y 0 (x) q t (x, 0) dx -y 1 , q(•, 0) H -1 ,H 1 0 ∀q ∈ P. (24)
Hence, (y, v) is the solution of the controlled wave system (1) in the transposition sense. Since y ∈ L 2 (Q T ) and v ∈ L 2 (0, T ) the couple (y, v) belongs to C(y 0 , y 1 , T ).

It remains to check that (y, v) minimizes the cost function J in [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF]. But this is easy. Indeed, for any (z, w) ∈ C(y 0 , y 1 , T ) such that J(z, w) < +∞, one has:

J(z, w) ≥ J(y, v) + Q T ρ 2 y (z -y) dx dt + T 0 ρ 2 0 v(w -v) dt = J(y, v) - Q T Lp (z -y) dx dt + T 0 ρ 2 0 v(w -v) dt = J(y, v).
The last equality follows from the fact that

Q T Lp (z -y) dx dt = Q T p L(z -y) dx dt + 1 0 [p t (z -y)] T 0 dx -[< (z -y) t , p > H -1 ,H 1 0 ] T 0 - T 0 [a(x)p x (z -y)] 1 0 dt + T 0 [a(x)p (z -y) x ] 1 0 dt,
the boundary condition for p (see Remark 2 below), the fact that both (y, v) and (z, w) belong to C(y 0 , y 1 ; T ) and ( 22). 2

Remark 2 From ( 22) and ( 23), we see that the function p furnished by Proposition 2.2 solves, at least in the distributional sense, the following differential problem, that is of the fourth-order in time and space:

             L(ρ -2 Lp) = 0, (x, t) ∈ Q T p(0, t) = 0, (ρ -2 Lp)(0, t) = 0, t ∈ (0, T ) p(1, t) = 0, (ρ -2 Lp + aρ -2 0 p x )(1, t) = 0, t ∈ (0, T ) (ρ -2 Lp)(x, 0) = y 0 (x), (ρ -2 Lp)(x, T ) = 0,
x ∈ (0, 1) (ρ -2 Lp) t (x, 0) = y 1 (x), (ρ -2 Lp) t (x, T ) = 0, x ∈ (0, 1). [START_REF] Münch | Optimal design of the support of the control for the 2-D wave equation: a numerical method[END_REF] Notice that the "boundary" conditions at t = 0 and t = T are of the Neumann kind.

2

Remark 3 The weights ρ -1 and ρ -1 0 behave exponentially with respect to s. For instance, we have ρ(x, t)

-1 = exp s e λ(|x-x0| 2 -β(2t-T ) 2 +M0) .
For large values of the parameter s (greater than s 0 > 0, see the statement of Theorem 2.1), the weights ρ -2 and ρ -2 0 may lead in practice to numerical overflow. One may overcome this situation by introducing a suitable change of variable.

More precisely, let us introduce the variable z = ρp and the Hilbert space M = ρP , so that the formulation (23) becomes:

       Q T ρ -2 L(ρz) L(ρz) dx dt + T 0 ρ -2 0 a 2 (1)(ρz) x (1, t) (ρz) x (1, t) dt = 1 0 y 0 (x) (ρz) t (x, 0) dx -y 1 , (ρz)(•, 0) H -1 ,H 1 0 ∀z ∈ M ; z ∈ M. (26) 
The well-posedness of this formulation is a consequence of the well-posedness of [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]. Then, after some computations, the following is found:

ρL(ρ -1 z) = ρ -1 (ρz) t -(a(ρz) x ) x + bρz = (ρ -1 ρ t )z + z t -a x ((ρ -1 ρ x )z + z x ) -a(2ρ -1 ρ x z x + ρ -1 ρ xx z + z xx ) + b z with ρ -1 ρ x = -sϕ x (x, 2t -T ), ρ -1 ρ t = -2sϕ t (x, 2t -T ), ρ -1 ρ xx = -sϕ xx + (sϕ x ) 2 .
Similarly, (ρ

-1 0 (ρz) x )(1, t) = z x (1, t).
Consequently, in the bilinear part of ( 26), there is no exponential (but only polynomial) function of s. In the right hand side (the linear part), the change of variable introduces negative exponentials in s. A similar trick has been used in [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF] in the context of the heat equation, where we find weights that blow up exponentially as t → T -.
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Remark 4 The exponential form of the weights ρ and ρ 0 is purely technical and is related to Carleman estimates. Actually, since for any s and λ these weights are uniformly bounded and uniformly positive in Q T , the space P is independent of ρ and ρ 0 and one could apply the primal approach to the cost J (defined in ( 8)) for any bounded and positive weights. In particular, one could simply take ρ ≡ 1 and ρ 0 ≡ 1; the estimates (20) would then read as follows:

p(• , 0) 2 H 1 0 (0,1) + p t (• , 0) 2 L 2 (0,1) ≤ C 0 L p 2 L 2 (Q T ) + a(1) p x (1, •) 2 L 2 (0,T ) ∀p ∈ P (27) 
for some constant C 0 > 0. This inequality can also be obtained directly by the multipliers method; we refer to [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF] and references therein. 2

Remark 5 As remarked in [START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF] (see Remark 2.7), the estimate (20) can be proven for a weight ρ 0 which blows up at t = 0 and t = T . For this purpose, we consider a function

θ δ ∈ C 2 ([0, T ]) with θ δ (0) = θ δ (1) = 0 and θ δ (x) = 1 for every x ∈ (δ, T -δ).
Then, introducing again p(x, t) := θ δ (t)p(x, (t + T )/2), it is not difficult to see that the proofs of Lemma 2.1 and Theorem 2.1 can be adapted to obtain [START_REF] Glowinski | On the controllability of wave models with variable coefficients: a numerical investigation[END_REF] with

ρ(x, t) = e -sϕ(x,2t-T ) , ρ 0 (t) = θ δ (t) -1 ρ(1, t).
Thanks to the properties of θ δ , the control v defined by

v = -θ 2 δ ρ -2 0 a(1)p x x=1
vanishes at t = 0 and also at t = T , a property which is very natural and useful in the boundary controllability context. In the sequel, we will use this modified weight ρ 0 , imposing in addition, for numerical purposes, the following behavior near t = 0 and t = T :

lim t→0 + θ δ (t) √ t = O(1), lim t→T - θ δ (t) √ T -t = O(1). ( 28 
)
2

Numerical analysis of the variational approach

We now highlight that the variational formulation [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] allows to obtain a sequence of approximations {v h } that converge strongly towards the null control v furnished by the solution to (8).

A conformal finite dimensional approximation

Let us introduce the bilinear form m(•, •) over

P × P m(p, q) := (p, q) P = Q T ρ -2 Lp Lq dx dt + T 0 a(1) 2 ρ -2 0 p x (1, t) q x (1, t) dt
and the linear form , with

, q := 1 0 y 0 (x) q t (x, 0) dx -y 1 , q(•, 0) H -1 ,H 1 0 .
Then ( 23) reads as follows:

m(p, q) = , q , ∀q ∈ P ; p ∈ P.

Let us assume that a finite dimensional space P h ⊂ P is given for each h ∈ R 2 + . Then we can introduce the following approximated problems:

m(p h , q h ) = , q h , ∀q h ∈ P h ; p h ∈ P h . (30) 
Obviously, each ( 30) is well-posed. Furthermore, we have the following classical result:

Lemma 3.1 Let p ∈ P be the unique solution to (29) and let p h ∈ P h be the unique solution to [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions[END_REF]. Then we have:

p -p h P ≤ inf q h ∈P h p -q h P .
Proof: We write that

p h -p 2 P = m(p h -p, p h -p) = m(p h -p, p h -q h ) + m(p h -p, q h -p).
The first term vanishes for all q h ∈ P h . The second one is bounded by p h -p P q h -p P . So, we get p -p h P ≤ p -q h P ∀q h ∈ P h and the result follows. 2

As usual, this result can be used to prove that p h converges towards p when the spaces P h are chosen appropriately. More precisely, let us assume that an interpolation operator Π h : P 0 → P h is given for any h ∈ R 2 + and let us suppose that p -Π h p P → 0 as h → (0, 0) ∀p ∈ P 0 .

We then have the following convergence result: Proposition 3.1 Let p ∈ P be the solution to (29) and let p h ∈ P h be the solution to [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions[END_REF] for

each h ∈ R 2 + . Then p -p h P → 0 as h → (0, 0). ( 32 
)
Proof: Let us choose > 0. Since P 0 is dense in P , there exists p ∈ P 0 such that p -p P ≤ . Therefore, we find from Lemma 3.1 that

p -p h P ≤ p -Π h p P ≤ p -p P + p -Π h p P ≤ + p -Π h p P .
But we know from (31) that p -Π h p P goes to zero as h ∈ R 2 + , h → (0, 0). Consequently, we also have [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF].

The finite dimensional spaces P h

The spaces P h must be chosen such that ρ -1 Lp h belongs to L 2 (Q T ) for any p h ∈ P h . This means that p h must possess second-order derivatives in L 2 loc (Q T ). Therefore, a conformal approximation based on a standard quadrangulation of Q T requires spaces of functions continuously differentiable with respect to both variables x and t.

For large integers N x and N t , we set ∆x = 1/N x , ∆t = T /N t and h = (∆x, ∆t). We introduce the associated quadrangulations Q h , with Q T = K∈Q h K and we assume that {Q h } h>0 is a regular family. Then, we introduce the space P h as follows:

P h = { z h ∈ C 1 (Q T ) : z h | K ∈ P(K) ∀K ∈ Q h , z h = 0 on Σ T }. (33) 
Here, P(K) denotes the following space of polynomial functions in x and t:

P(K) = (P 3,x ⊗ P 3,t )(K) ( 34 
)
where P r,ξ is by definition the space of polynomial functions of order r in the variable ξ.

Obviously, P h is a finite dimensional subspace of P . Let us introduce the notation

K kl := [x k , x k+1 ] × [t l , t l+1 ],
where

x k := (k -1)∆x, t l := (l -1)∆t, for k = 1, . . . , N x + 1, l = 1, . . . , N t + 1.
For any k, we denote by (L ik ) 0≤i≤3 the Hermite functions associated to [x k , x k+1 ]. They are given by

     L 0k (x) := (1 + 2c)(1 -c) 2 , L 1k (x) := c 2 (3 -2c) L 2k (x) := ∆x c(1 -c) 2 , L 3k (x) := ∆x c 2 (c -1) c := (x -x k )/∆x.
Recall that, for any f ∈ C 1 ([x k , x k+1 ]), the function

(Π ∆x f )(x) := 1 i=0 L ik (x)f (x i+k ) + 1 i=0 L i+2,k (x)f x (x i+k ) is the unique element in P 3 ([x k , x k+1 ]) that satisfies (Π ∆x f )(x k+i ) = f (x k+i ), (Π ∆x f ) x (x k+i ) = (f x )(x k+i ), i = 0, 1.
In a similar way, we denote by (L jl ) 0≤j≤3 the Hermite functions associated to the time interval [t l , t l+1 ]. Then, from the definition of P(K kl ), we can obtain easily for any u ∈ P 0 the polynomial function in P(K kl ) uniquely determined by the values of u, u x , u t and u xt at the vertices of K kl : Lemma 3.2 For each u ∈ P 0 , let us define the function Π h u as follows: for any k and l,

Π h u(x, t) := 1 i,j=0 L ik (x)L jl (t)u(x i+k , t j+l ) + 1 i,j=0 L i+2,k (x)L jl (t)u x (x i+k , t j+l ) + 1 i,j=0 L ik (x)L j+2,l (t)u t (x i+k , t j+l ) + 1 i,j=0 L i+2,k (x)L j+2,l (t)u xt (x i+k , t j+l ) in K kl = [x k , x k + ∆x] × [t l , t l + ∆t].
Then Π h u is the unique function in P h that satisfies

Π h u(x k+i , t l+j ) = u(x k+i , t l+j ), (Π h u(x k+i , t l+j )) x = u x (x k+i , t l+j ), (Π h u(x k+i , t l+j )) t = u t (x k+i , t l+j ), (Π h u(x k+i , t l+j )) xt = u xt (x k+i , t l+j )
for all i, j ∈ {0, 1}. The linear mapping Π h : P 0 → P h is by definition the interpolation operator associated to P h . This result allows to get an expression of u -Π h u on each element K kl that will be used in the next section:

Lemma 3.3 For any u ∈ P 0 , we have u -Π h u = 1 i,j=0 m ij u x (x i+k , t j+l ) + n ij u t (x i+k , t j+l ) + p ij u tx (x i+k , t j+l ) + 1 i,j=0 L ik L jl R[u; x i+k , t j+l ] (35)
in K kl , where the m ij , n ij and p ij are given by

             m ij (x, t) := L ik (x)(x -x i ) -L i+2,k (x) L j (t) n ij (x, t) := L ik (x) L j (t)(t -t j ) -L j+2 (t) p ij (x, t) := L ik (x)L jl (t)(x -x i )(t -t j ) -L i+2 (x)L j+2 (t) and R[u; x i+k , t j+l ](x, t) := t t j+l (t -s)u tt (x i+k , s) ds + (x -x i+k ) t t j+l (t -s)u xtt (x i+k , s) ds + x x i+k (x -s)u xx (s, t) ds.
The proof is very simple. In fact, [START_REF] Zuazua | Control and numerical approximation of the wave and heat equations[END_REF] is a consequence of the following Taylor expansion for u with integral remainder:

u(x, t) = u(x k , t l ) + (t -t l )u t (x k , t l ) + t t l (t -s)u tt (x k , s) ds + (x -x k ) u x (x k , t l ) + (t -t l )u xt (x k , t l ) + t t l (t -s)u xtt (x k , s) ds + x x k (x -s)u xx (s, t) ds
and the identity

1 i,j=0 L ik (x)L jl (t) ≡ 1.

An estimate of p -Π h p P and some consequences

Let us now prove that (31) holds when the P h are given by ( 33)- [START_REF] Zuazua | Propagation, observation, control and numerical approximations of waves approximated by finite difference methods[END_REF].

Thus, let us fix p ∈ P 0 and let us first check that

Q T ρ -2 |L(p -Π h (p))| 2 dx dt → 0 as h = (∆x, ∆t) → (0, 0). ( 36 
)
For each K kl ∈ Q h (simply denoted by K in the sequel), we write:

K ρ -2 |L(p -Π h p)| 2 dx dt ≤ ρ -2 L ∞ (K) K |L(p -Π h p)| 2 dx dt ≤ 3 ρ -2 L ∞ (K) K |(p -Π h p) tt | 2 dx dt + K |(a(x)(p -Π h p) x ) x | 2 dx dt + b 2 L ∞ (K) K |p -Π h p| 2 dx dt . (37) 
Using Lemma 3.3, we have:

K |p -Π h p| 2 dx dt = K i,j m ij p x (x i , t j ) + n ij p t (x i , t j ) + p ij p tx (x i , t j ) + L i L j R[p; x i , t j ] 2 dx dt ≤ 16 p x 2 L ∞ (K) i,j K |m ij | 2 dx dt + 16 p t 2 L ∞ (K) i,j K |n ij | 2 dx dt + 16 p tx 2 L ∞ (K) i,j K |p ij | 2 dx dt + 16 i,j K |L i L j R[p; x i , t j ]| 2 dx dt,
where we have omitted the indices k and l. Moreover,

|R[p; x i+k , t j+l ]| 2 ≤|t -t j | 3 p tt (x i , •) 2 L 2 (t l ,t l+1 ) + |x -x i | 2 |t -t j | 3 p xtt (x i , •) 2 L 2 (t l ,t l+1 ) + |x -x i | 3 p xx (• , t) 2 L 2 (x k ,x k+1 ) .
Consequently, we get:

i,j K |L i L j R[p; x i+k , t j+l ]| 2 dx dt ≤ sup x∈(x k ,x k+1 ) p tt (x, •) 2 L 2 (t l ,t l+1 ) i,j K |L i (x)L j (t)| 2 |t -t j | 3 dx dt + sup x∈(x k ,x k+1 ) p xtt (x, •) 2 L 2 (t l ,t l+1 ) i,j K |L i (x)L j (t)| 2 |t -t j | 3 |x -x i | 2 dx dt + sup t∈(t l ,t l+1 ) p xx (• , t) 2 L 2 (x k ,x k+1 ) i,j K |L i (x)L j (t)| 2 |x -x i | 3 dx dt.
After some tedious computations, one finds that

i,j K |m ij | 2 dx dt = 104 11025 (∆x) 3 ∆t, i,j K |n ij | 2 dx dt = 104 11025 ∆x(∆t) 3 , i,j K |p ij | 2 dx dt = 353 198450 (∆x) 3 (∆t) 3 and i,j K |L i (x)L j (t)| 2 |t -t j | 3 dx dt = 143 7350 ∆x(∆t) 4 , i,j K |L i (x)L j (t)| 2 |x -x i | 3 dx dt = 143 7350 (∆x) 4 ∆t, i,j K |L i (x)L j (t)| 2 |x -x i | 2 |t -t j | 3 dx dt = 209 132300 (∆x) 3 (∆t) 4 .
This leads to the following estimate for any

K = K kl ∈ Q h : K |p -Π h p| 2 dx dt ≤ 1664 11025 (∆x) 3 ∆t p x 2 L ∞ (K) + 1664 11025 ∆x(∆t) 3 p t 2 L ∞ (K) + 2824 99225 (∆x) 3 (∆t) 3 p tx 2 L ∞ (K) + 1144 3675 (∆x) 4 ∆t sup x∈(x k ,x k+1 ) p tt (• , t) 2 L 2 (t l ,t l+1 ) + 1144 3675 ∆x(∆t) 4 sup t∈(t l ,t l+1 ) p xx (• , t) 2 L 2 (x k ,x k+1 ) + 836 33075 (∆x) 3 (∆t) 3 sup x∈(x k ,x k+1 ) p xtt (• , t) 2 L 2 (t l ,t l+1 ) .
We deduce that

Q T |p -Π h p| 2 dx dt ≤K 1 T p x 2 L ∞ (Q T ) (∆x) 2 + K 1 T p t 2 L ∞ (Q T ) (∆t) 2 + K 2 T p tx 2 L ∞ (Q T ) (∆x) 2 (∆t) 2 + K 3 p tt (• , t) 2 L 2 (0,T ;L ∞ (0,1)) (∆x) 3 + K 3 p xx (• , t) 2 L ∞ (0,T ;L 2 (0,1) (∆t) 3 + K 4 p xtt (• , t) 2 L 2 (0,T ;L ∞ (0,1)) (∆x) 2 (∆t) 2
for some positive constants K i . Hence, for any p ∈ P 0 one has

Q T |p -Π h p| 2 dx dt → 0 as h → (0, 0).
Proceeding as above, we show that the other terms in (37) also converge to 0. Hence, (36) holds.

On the other hand, a similar argument yields

T 0 ρ -2 0 a(1) 2 |(p -Π h p) x | 2 dx dt → 0 as h → (0, 0)
and, consequently, we find that (31) holds.

We can now use Proposition 3.1 and deduce convergence results for the approximate control and state variables: Proposition 3.2 Let p h ∈ P h be the unique solution to [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions[END_REF], where P h is given by (33)- [START_REF] Zuazua | Propagation, observation, control and numerical approximations of waves approximated by finite difference methods[END_REF]. Let us set

y h := ρ -2 Lp h , v h := -ρ -2 0 a(x)p h,x x=1 . Then one has y -y h L 2 (Q T ) → 0 and v -v h L 2 (0,T ) → 0,
where (y, v) is the solution to (8).

A second approximated problem

For simplicity, we will assume in this section that y 1 ∈ C 0 ([0, 1]).

In order to take into account the numerical approximation of the weights and the data that we necessarily have to perform in practice, we will also consider a second approximated problem. It is the following:

m h (p h , q h ) = h , q h ∀q h ∈ P h ; ph ∈ P h , (38) 
where the bilinear form m h (• , •) is given by

m h (p h , q h ) := Q T π h (ρ -2 )Lp h Lq h dx dt + T 0 a(1) 2 π ∆x (ρ -2 0 )p h q h dt
and the linear form h is given by

h , q := 1 0 (π ∆x y 0 )(x) q t (x, 0) dx -π ∆x y 1 , q(•, 0) H -1 ,H 1 0 .
Here, for any function f ∈ C 0 (Q T ), π h (f ) denotes the piecewise linear function which coincides with f at all vertices of Q h . Similar (self-explanatory) meanings can be assigned to π ∆x (z) and π ∆t (w) when z ∈ C 0 ([0, 1]) and w ∈ C 0 ([0, T ]), respectively.

Since the weight ρ -2 is strictly positive and bounded in Q T (actually ρ -2 ≥ 1), we easily see that the ratio π h (ρ -2 )/ρ -2 is bounded uniformly with respect to h (for |h| small enough). The same holds for the vanishing weight θ 2 δ ρ(1, •) -2 under the assumptions [START_REF] Rockafellar | Convex functions and duality in optimization problems and dynamics[END_REF]. As a consequence, it is not difficult to prove that (38) is well-posed. Moreover, we have: Lemma 3.4 Let p h and ph be the solutions to [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions[END_REF] and (38), respectively. Then,

ph -p h P ≤ max π h (ρ -2 ) ρ -2 -1 L ∞ (Q T ) , π ∆t (ρ -2 0 ) ρ -2 0 -1 L ∞ (0,T ) ph P + C 1 π ∆x (y 0 ) -y 0 L 2 + C 2 π ∆x (y 1 ) -y 1 H -1 , (39) 
where C 1 and C 2 are positive constants independent of h.

Proof: Since p h and ph respectively solve [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions[END_REF] and (38), one has:

ph -p h 2 P = m(p h -p h , ph -p h ) = m(p h , ph -p h ) -m h (p h , ph -p h ) + l h , ph -p h -l, ph -p h = Q T (ρ -2 -π h (ρ -2 ))Lp h L(p h -p h ) dx dt + T 0 (ρ -2 0 -π ∆t (ρ -2 0 ))a(1) 2 px,h (p x,h -p x,h ) dt + l h , ph -p h -l, ph -p h = Q T 1 - π h (ρ -2 ) ρ -2 (ρ -1 Lp h )(ρ -1 L(p h -p h )) dx dt + T 0 1 - π ∆t ρ -2 0 ρ -2 0 a(1) 2 (ρ -1 0 ph )ρ -1 0 (p h,x -p h,x ) dt + Ω (π ∆x (y 0 ) -y 0 )(x) (p t,h -p t,h )(x, 0) dx -π ∆x (y 1 ) -y 1 , (p h -p h )(x, 0) H -1 ,H 1 0 .
In view of the definitions of the bilinear forms m(• , •) and m h (• , •), we easily find (39). 2

Taking into account that (31) holds and

max π h (ρ -2 ) ρ -2 -1 L ∞ (Q T ) , π ∆t (ρ -2 0 ) ρ -2 0 -1 L ∞ (0,T ) → 0,
we find that, as h goes to zero, the unique solution to (38), converges in P to the unique solution to (29):

p -ph P ≤ p -p h P + p h -ph P → 0.

An obvious consequence is the following: Proposition 3.3 Let ph ∈ P h be the unique solution to (38), where P h is given by (33)- [START_REF] Zuazua | Propagation, observation, control and numerical approximations of waves approximated by finite difference methods[END_REF]. Let us set

ŷh := π h (ρ -2 )Lp h , vh := -π ∆x (ρ -2 0 )a(x)p h,x x=1 . ( 40 
)
Then one has

y -ŷh L 2 (Q T ) → 0 and v -vh L 2 (0,T ) → 0,
where (y, v) is the solution to (8). 2

Numerical experiments

We now present some numerical experiments concerning the solution of (38), which can in fact be viewed as a linear system involving a banded sparse, definite positive, symmetric matrix of order 4N x N t . We will denote by M h this matrix. If {p h } stands for the corresponding vector solution of size 4N x N t , we may write (p h , q h ) P h = (M h {p h }, {q h }) for any q h ∈ P h . We will use an exact integration method in order to compute the components of M h and the (direct) Cholesky method with reordering to solve the linear system.

After the computation of ph , the control vh is given by (40). Observe that, in view of the definition of the space P h , the derivative with respect to x of ph is a degree of freedom of {p h }; hence, the computation of vh does not require any additional calculus.

The corresponding controlled state ŷh may be obtained by using the pointwise first equality (40) or, equivalently, by solving [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF]. However, in order to check the action of the control function vh properly, we have computed ŷh by solving (1) with a C 1 finite element method in space and a standard centered scheme of second order in time.

Thus, let us introduce the finite dimensional spaces

Z h = { z h ∈ C 1 ([0, 1]) : z h [xi,xi+∆x] ∈ P 3,x ∀i = 1, . . . , N x } and Z 0h = { z h ∈ Z h : z h (0) = z h (1) = 0 }.
Then, a suitable approximation ŷh of the controlled state y is defined in the following standard way:

• At time t = 0, ŷh is given by y h (•, 0) = P Z h (y 0 ), the projection of y 0 on Z h ;

• At time t 1 = ∆t, ŷh (•, t 1 ) ∈ Z h is given by the solution to

             2 1 0 (ŷ h (x, t 1 ) -ŷh (x, t 0 ) -∆t y 1 (x)) (∆t) 2 φ dx + 1 0 [a(x)ŷ h,x (x, t 0 )φ x + b(x, t 0 )ŷ h (x, t 0 )φ] dx = 0 ∀φ ∈ Z h0 ; ŷh (0, t 1 ) ∈ Z h , ŷh (0, t 1 ) = 0, ŷh (1, t 1 ) = vh (t 1 ). (41) 
• At time t = t n = n∆t, n = 2, • • • , N t , ŷh (•, t n ) solves the following linear problem:

             2 1 0 (ŷ h (x, t n ) -2ŷ h (x, t n-1 ) + ŷh (•, t n-2 ) (∆t) 2 φ dx + 1 0 [a(x)ŷ h,x (x, t n-1 )φ x + b(x, t n )ŷ h (x, t n-1 )φ] dx = 0 ∀φ ∈ Z h0 ; ŷh (0, t n ) ∈ Z h , ŷh (0, t n ) = 0, ŷh (1, t n ) = vh (t n ). (42) 
This requires a preliminary projection of vh on a grid on (0, T ) fine enough in order to fulfill the underlying CFL condition. To this end, we use the following interpolation formula: for any p h ∈ P h and any θ ∈ [0, 1], we have:

p h,x (1, t j + θ∆t) = (2θ + 1)(θ -1) 2 p h,x (1, t j ) + ∆t θ(1 -θ) 2 p h,xt (1, t j ) + θ 2 (3 -2θ) p h,x (1, t j+1 ) + ∆t θ 2 (θ -1) p h,xt (1, t j+1 ) ( 43 
)
for all t ∈ [t j , t j+1 ].

We will consider a constant coefficient a(x) ≡ a 0 = 1 and a constant potential b(x, t) ≡ 1 in Q T . We will take T = 2.2, x 0 = -1/20, β = 0.99 and M 0 = 1 -x 2 0 + βT 2 , so that (17) holds. Finally, concerning the parameters λ and s (which appear in ( 21)), we will take λ = 0.1 and s = 1.

Remark 6 Let us emphasize that our approach does not require in any way the discretization meshes to be uniform. 2

Estimating the Carleman constant

Before prescribing the initial data, let us check that the finite dimensional analog of the observability constant C 0 in ( 20) is uniformly bounded with respect to h when ( 17) is satisfied. We consider here the case a ≡ 1 and b ≡ 1.

In the space P h , the approximate version of ( 20) is

(A h {p h }, {p h }) ≤ C 0h (M h {p h }, {p h }) ∀{p h } ∈ P h ,
where A h is the square matrix of order 4N t N x defined by the identities

(A h {p h }, {q h }) := 1 0
(p h,x (x, 0) q h,x (x, 0) + p h,t (x, 0) q h,t (x, 0)) dx.

Therefore, C 0h is the solution of a generalized eigenvalue problem:

C 0h = max{ λ : ∃p h ∈ P h , p h = 0, such that A h {p h } = λM h {p h } }. (44) 
We can easily solve (44) by the power iteration algorithm. Table 1 collects the values of C 0h for various h = (∆x, ∆t) for T = 2.2 and T = 1.5, with ∆t = ∆x. As expected, C 0h is bounded in the first case only. The same results are obtained for ∆t = ∆x. In agreement with Remark 4, we obtain the same behavior of the constant with respect to T for any s, in particular for s = 0 leading to ρ ≡ 1 and ρ 0 ≡ 1.

Smooth initial data and constant speed of propagation

We now solve [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] with a ≡ 1 and smooth initial data. For simplicity, we also take a constant potential b ≡ 1.

For (y 0 , y 1 ) = (sin(πx), 0), Table 2 collects relevant numerical values with respect to h = (∆x, ∆t). We have taken ∆t = ∆x for simplicity but, in this finite element framework, any other choice is possible. In particular, we have reported the condition number κ(M h ) of the matrix M h , defined by 

κ(M h ) = |||M h ||| 2 |||M -1 h ||| 2 (the
(x)) ≡ (sin(πx), 0), a ≡ 1, b ≡ 1 -T = 2.2.
Table 2 clearly exhibits the convergence of the variables ph and vh as h goes to zero. Assuming that h = (1/160, 1/160) provides a reference solution, we have also reported in Table 2 the estimates p -ph P and v -vh L 2 (0,T ) . We observe then that

p -ph P = O(h 1.91 ), v -vh L 2 (0,T ) = O(h 1.56 ).
The corresponding state ŷh is computed from the main equation ( 1), as explained above, taking ∆t = ∆x/4. That is, we use (43) with θ = 0, 1/4, 1/2 and 3/4 on each interval [t j , t j+1 ]. We observe the following behavior with respect to h:

ŷh (•, T ) L 2 (0,1) = O(h 1.71 ), ŷt,h (•, T ) H -1 (0,T ) = O(h 1.31 ),
which shows that the control vh given by the second equality in (40) is a good approximation of a null control for (1). Figure 2-Left displays the function ph ∈ P (the unique solution to (38)) for h = (1/80, 1/80). Figure 2-Right displays the associated control vh . As a consequence of the introduction of the function θ δ in the weight, we see that vh vanishes at times t = 0 and t = T . Finally, Figure 3 displays the corresponding controlled state ŷh .

Table 3 and Figures 4 and5 provide the results for y 0 (x) ≡ e -500(x-0.2) 2 and y 1 (x) ≡ 0. We still observe the convergence of the variables ph , vh and ŷh , with a lower rate. This is due in part to the shape of the initial condition y 0 . Precisely, we get p- 

ph P = O(h 1.74 ), vh -v L 2 (0,T ) = O(h 0.68 ), ŷh (•, T ) L 2 (0,1) = O(h 1.35 ) and ŷt,h (•, T ) H -1 (0,T ) = O(h 1.11
- vh L 2 (0,T ) 1.48 × 10 -1 1.33 × 10 -1 1.53 × 10 -1 1.64 × 10 -1 1.67 × 10 -1 vh -v L 2 (0,T )
9.81 × 10 -2 6.28 × 10 -2 3.80

× 10 -2 1.11 × 10 -2 - ŷh (• , T ) L 2 (0,1)
1.09 × 10 -1 7.67 × 10 -2 3.70 × 10 -2 1.11 × 10 -2 1.87 × 10 -3 ŷt,h (• , T ) H -1 (0,1) 1.36 × 10 -1 8.82 × 10 -2 5.16 × 10 -2 1.76 × 10 -2 2.82 × 10 -3 Table 3: (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 , 0) and a ≡ 1, b ≡ 1 -T = 2.2. 4.3 Initial data (y 0 , y 1 ) ∈ H 1 (0, 1) × L 2 (0, 1) and constant speed of propagation

Let us enhance that our approach, in agreement with the theoretical results, also provides convergent results for irregular initial data. We take a continuous but not differentiable initial state y 0 and a piecewise constant initial speed y 1 :

y 0 (x) ≡ x 1 [0,1/2] (x) + (1 -x) 1 ]1/2,1] (x), y 1 (x) ≡ 10 × 1 [1/5,1/2] (x). ( 45 
)
The other data are unchanged, except b, that is taken equal to zero.

Observe that these functions remain compatible with the C 1 finite element used to approximate p, since y 0 and y 1 only appear in the right hand side of the variational formulation and π ∆x y 0 and π ∆x y 1 make sense; see (38). The unique difference is that, once ph and vh are known, ŷh must be computed from (41)-(42) using a C 0 (and not C 1 ) spatial finite element method.

Recall however that these initial data typically generate pathological numerical behavior when the usual dual approach, based on the minimization of ( 6), is used. Some numerical results are given in Table 4 and Figures 6 and7. As before, we observe the convergence of the variable ph and therefore vh and ŷh as h → 0. We see that ph -p P = O(h 1.48 ) and vh -v L 2 (0,1) = O(h 1.23 ). In particular, we do not observe oscillations for the control or the functions ph and ph,t at the initial time. 2.52 × 10 -1 1.25 × 10 -1 5.57 × 10 -2 1.90 × 10 -2 ŷh (• , T ) L 2 (0,1)

1.09 × 10 -1 5.40 × 10 -2 2.20 × 10 -2 1.09 × 10 -2 6.20 × 10 -3 ŷt,h (• , T ) H -1 (0,1) 7.25 × 10 -2 4.62 × 10 -2 2.85 × 10 -2 5.12 × 10 -3 6.75 × 10 -3 Table 4: (y 0 , y 1 ) given by (45) and a ≡ 1 -T = 2.2. 

Discontinuous initial data y 0 and constant speed of propagation

The method also provides convergent results for data y 0 only in L 2 (0, 1). We consider the following initial condition:

y 0 (x) ≡ 1 [0.5,0.7] (x), y 1 (x) ≡ 0. ( 46 
)
The other data are unchanged with respect to Section 4.3. This leads to pathological numerical behavior when other frequently used dual methods are employed (we refer to [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF]). Some numerical results are given in Table 5 and Figure 8. Once again, the convergence of the variable ph and therefore vh and ŷh as h → 0 is observed.

∆x, ∆t 1/10 1/20 1/40 1/80 1/160 ph P 1.01 × 10 -1 1.00 × 10 -1 9.71 × 10 -2 9.53 × 10 -2 9.47 × 10 -2 vh L 2 (0,T )

3.42 × 10 -1 3.27 × 10 -1 3.19 × 10 -1 3.14 × 10 -1 3.14 × 10 -1 ŷh (• , T ) L 2 (0,1)

1.24 × 10 -1 9.27 × 10 -2 7.26 × 10 -2 5.88 × 10 -2 3.12 × 10 -2 ŷt,h (• , T ) H -1 (0,1) 1.55 × 10 -1 1.16 × 10 -1 1.06 × 10 -1 7.13 × 10 -2 6.02 × 10 -2 Table 5: (y 0 , y 1 ) given by ( 46) and a ≡ 1 -T = 2.2. 

Non constant smooth speed of propagation

Finally, let us consider a non-constant function a = a(x) (we refer to [START_REF] Glowinski | On the controllability of wave models with variable coefficients: a numerical investigation[END_REF] for the dual approach in this case). In order to illustrate the robustness of our method, we will take a coefficient a ∈

C 1 ([0, 1]) with a(x) =      1 x ∈ [0, 0.45] ∈ [1., 5.] (a (x) > 0), x ∈ (0.45, 0.55) 5 x ∈ [0.55, 1] (47) 
so that condition ( 17) is equivalent to T > 2(1 + 1/20) √ 5 ≈ 4.69 (taking again x 0 = -1/20). In order to reduce the computational cost, we take as before T = 2.2 and we still observe that the constant C 0h in (44) is uniformly bounded.

We take again (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 , 0) and b ≡ 0. Table 6 illustrates the convergence of the approximations with respect to h. Figures 9 and 10 depict for h = (1/80, 1/80) the functions ph , vh and ŷh . In particular, in Figure 10, we can observe the diffraction of the wave when crossing the transitional zone (0.45, 0.55). 7.74 × 10 -2 6.53 × 10 -2 9.16 × 10 -2 1.01 × 10 -1 1.03 × 10 -1 vh -v L 2 (0,T )

5.07 × 10 -1 4.17 × 10 -2 2.03 × 10 -2 4.86

× 10 -3 - ŷh (• , T ) L 2 (0,1)
1.09 × 10 -1 7.89 × 10 -2 1.81 × 10 -2 1.16 × 10 -2 1.71 × 10 -3 ŷt,h (• , T ) H -1 (0,1) 1.01 × 10 -1 8.39 × 10 -2 4.81 × 10 -2 7.52 × 10 -3 1.55 × 10 -3 Table 6: (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 ,0) and a given by (47) -T = 2.2.

Further comments and concluding remarks

Let us begin this section with some general considerations on the use of Carleman weights that serve to justify our approach:

(i) The search of a control minimizing J in [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF], where y is involved, is very appropriate from the numerical viewpoint. As shown in Section 2, the explicit occurrence of the state variable y leads to an elliptic problem in Q T , that is easy to analyze and solve (at this level, the particular choice of the weight is less important). This approach does not require the discretization of the wave operator, as for usual dual approachs; therefore, it does not generate any spurious oscillations and leads to numerical well-posedness. This is an important feature of the approach.

(ii) The Carleman weights provide regularity of the solution to [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] and therefore allows to derive estimates of the errors p -p h P in term of h = (∆x, ∆t). This will be detailed in a forthcoming work. (iii) The process can be viewed as a first step for the numerical controllability of semi-linear problems: if we just apply a fixed-point argument, we will find at each iterate a linear equation with non-regular coefficients depending on x and t for which the present approach is adequate.

(iv) In our numerical experiments we have not found any essential difference for small or large s or λ: this is in full agreement with Remark 4 and Section 4.1.

(v) Furthermore, we mention that the approach has been considered by analogy with the similar analysis in references [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF] to [START_REF] Fernández-Cara | Numerical null controllability of semi-linear 1D heat equations: fixed points, least squares and Newton methods[END_REF], dealing with heat equations.

Primal versus dual approach (I): analogies

The solution to the variational formulation ( 23) is also the unique minimizer of the functional I, with

I(p) := 1 2 Q T ρ -2 |Lp| 2 dx dt + 1 2 T 0 ρ -2 0 a(1) 2 |p x (1, •)| 2 dt - 1 0 y 0 (x) p t (x, 0) dx + y 1 , p(•, 0) H -1 ,H 1 0 . (48) 
This is similar to the conjugate functional J in [START_REF] Lebeau | Experimental study of the HUM control operator for linear waves[END_REF]. Actually, we notice that J (µ, φ 0 , φ 1 ) = I(-φ) for all (µ, φ 0 , φ 1 ) ∈ L 2 (Q T ) × H. Therefore, the extremal problems ( 9) and ( 48) are connected to each other having (8) as starting point. The problem [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], deduced from the primal approach belongs to the framework of elliptic variational problems in two dimensions and is well tailored for a resolution with finite elements. The dual problem ( 9) is of hyperbolic nature: the time variable is kept explicitly and time integration is required.

Note that we may also derive the optimality conditions for J (as we did in Section 2 for J): this leads, at least formally, to the problem [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF].

We also mention [START_REF]A variational perspective on controllability[END_REF] where a (different) variational approach is introduced.

Primal versus dual approaches (II): discrete properties

The variational approach used here leads to satisfactory convergence results, in particular the strong convergence of the approximate controls vh towards a null control of the wave equation. This relies in a fundamental way on the fact that we work in a subspace P h of P . Indeed, this allows to write directly the Carleman estimate in P h and get that the function I (given by ( 48)) is uniformly coercive with respect to the discretization parameter h. On the other hand, notice that no wave equation has to be solved in order to compute the approximations vh . For each h, once vh is known, we must solve the wave equation, in a posttreatment process, to compute the corresponding state ŷh (recall that, actually, this may be avoided by using directly the optimality condition y = -ρ -2 Lp).

This is in contrast with the dual approach. Indeed, the minimization of J by an iterative process requires the resolution of wave equations, through a decoupled space and time discretization. As recalled in the introduction, this may lea to numerical pathologies (the occurrence of spurious high frequency solutions) and, therefore, needs some specific numerical approximations and techniques. We mention the work [START_REF] Baudouin | Convergence of an inverse problem for discrete wave equations[END_REF], where the authors prove, in a close context and within a dual approach, a weaker uniform semi-discrete Carleman estimate with an additional term in the right hand side, necessary to absorb these possibly spurious high frequencies (see [START_REF] Baudouin | Convergence of an inverse problem for discrete wave equations[END_REF], Theorem 2.3).

Notice that the computed vh are not a priori null controls for discrete systems (associated to the wave equation ( 1)), but simply approximations of the control v furnished by the solution to [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF]. If one wants to go further in the comparison, it can be said that the primal approach aims to first compute the control for (1) and then approximate it, while the dual classical method aims first to discretize (1) and then control the corresponding finite dimensional system.

Let us also observe that the (primal) approach in this paper is relatively easy to implement. In practice, the resolution is reduced to solve a linear system, with a banded sparse, symmetric and definite positive matrix, for which efficient direct LU type solvers are known and available. Furthermore, we may want to adapt (and refine locally) the mesh of Q T in order to improve convergence and such adaptation is much simpler than in the dual approach, where t is "conserved" as a time variable. For additional considerations, see also [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF] and [START_REF] Lebeau | Experimental study of the HUM control operator for linear waves[END_REF].

Mixed formulation and C 0 -approximation

The approach can be extended to the higher dimensional case of the wave equation in a bounded set Ω ⊂ R N , with N ≥ 2. However, the use of C 1 -finite element is a bit more involved. Arguing as in [START_REF] Fernández-Cara | Strong convergent approximations of null controls for the heat equation[END_REF], we may avoid this difficulty by introducing a mixed formulation equivalent to [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF].

The idea is to keep explicit the variable y in the formulation and to introduce a Lagrange multiplier, associated to the constraint ρ 2 y + Lp = 0 (see [START_REF] Lasiecka | Exact controllability of semi-linear abstract systems with applications to waves and plates boundary control[END_REF]). We obtain the following mixed formulation: find (y, p, λ) ∈ Z × P × Z such that

                   Q T ρ 2 y y dx dt + T 0 ρ -2 0 a(1) 2 p x (1, t)p x (1, t) dt + Q T λ(ρ 2 y + Lp) dx dt = 1 0 y 0 (x) p t (x, 0) dx -y 1 , p(•, 0) H -1 ,H 1 0 ∀(y, p) ∈ Z × P, Q T λ(ρ 2 y + Lp) dx dt = 0 ∀λ ∈ Z, (49) 
where

Z = L 2 (ρ 2 ; Q T ) := { z ∈ L 1 loc (Q T ) : Q T ρ 2 |z| 2 dx dt < +∞ }.
Taking advantage of the global estimate ( 16), we may show, through an appropriate inf-sup condition, that (49) is well-posed in Z × P × Z. Moreover, the approximation of this formulation may be addressed using C 0 -finite element, which is very convenient. The approximation is non-conformal. More precisely, the variable p is now sought in a space R h of C 0 -functions that is not included in P .

At the discrete level, (49) reduces the controllability problem to the inversion of a square, banded and symmetric matrix. Moreover, as before, no wave equation has to be solved, whence the numerical pathology described above is not expected. However, since the underlying approximation is not conformal (this is the price to pay to avoid C 1 finite elements), a careful (and a priori not straightforward) choice for R h has to be done in order to guarantee a uniform discrete inf-sup condition. The analysis of this point, as well as the use of stabilized finite elements, will be detailed in a future work.

Extensions

The approach presented here can be extended and adapted to other equations and systems. What is needed is, essentially, an appropriate Carleman estimate.

In particular, we can adapt the previous ideas and results to the inner controllability case, i.e. the null controllability of the wave equation with distributed controls acting on a (small) subdomain ω of (0, 1). Furthermore, using finite element tools, we can also get results in the case where the sub-domain ω varies in time, that is non-cylindrical control domains q T of the form

q T = { (x, t) ∈ Q T : g 1 (t) < x < g 2 (t), t ∈ (0, T ) },
where g 1 and g 2 are smooths functions on [0, T ], with 0 ≤ g 1 < g 2 ≤ 1. This opens the possibility to optimize numerically the domain q T , as was done in a cylindrical situations in [START_REF] Münch | Optimal design of the support of the control for the 2-D wave equation: a numerical method[END_REF] (see also [START_REF] Periago | Optimal shape and position of the support of the internal exact control of a string[END_REF]).

Let us finally mention that many non-linear situations can be considered through a suitable linearization and iterative process. We refer to [START_REF] Fernández-Cara | Numerical null controllability of a semi-linear 1D heat via a least squares reformulation[END_REF][START_REF] Fernández-Cara | Numerical null controllability of semi-linear 1D heat equations: fixed points, least squares and Newton methods[END_REF] for some ideas in a similar parabolic situation.

A Appendix: On the proof of Theorem 2.1

We first prove a global Carleman estimate for functions w satisfying vanishing initial and final conditions. In what follows, L stands for the operator given in (2) with b ≡ 0. It is easy to check that, if the estimate [START_REF] Fursikov | Controllability of Evolution Equations[END_REF] holds in this particular case, then the same estimate holds for any potential b ∈ L ∞ ((0, 1) × (-T, T )).

Theorem A.1 With the notation of Section 2, let x 0 < 0 be a fixed point, let φ and ϕ be the weight functions defined by ( 12)-( 14) and let a ∈ A(x 0 , a 0 ) with a 0 > 0. Then there exist positive constants s 0 and M , only depending on x 0 , a 0 , a C 3 ([0,1]) and T such that, for all s > s 0 , one has:

s T -T 1 0 e 2sϕ |v t | 2 + |v x | 2 dx dt + s 3 T -T 1 0 e 2sϕ |v| 2 dx dt ≤ M T -T 1 0 e 2sϕ |Lv| 2 dx dt + M s T -T e 2sϕ |v x (1, t)| 2 dt (50) for any v ∈ L 2 (-T, T ; H 1 0 (0, 1)) satisfying Lv ∈ L 2 ((0, 1) × (-T, T )), v x (1, •) ∈ L 2 (-T, T ) and v(• , ±T ) = v t (• , ±T ) = 0.
The proof of this result follows step-by-step the proof of Theorem 2.1 in [START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF]. However, since the argument provides conditions on the set of admissible a and, to our knowledge, these conditions have not been stated in this form before, we provide here the detailed proof.

Proof: Let us introduce w = e sϕ v and let us set P w := e sϕ L(e -sϕ w) = e sϕ (e -sϕ w) tt -(a(e -sϕ w) x ) x .

After some computations, we find that P w = P 1 w + P 2 w + Rw, with

P 1 w = w tt -(aw x ) x + s 2 λ 2 ϕ 2 w |ψ t | 2 -a|ψ x | 2 P 2 w = (α -1)sλϕw (ψ tt -(aψ x ) x ) -sλ 2 ϕw |ψ t | 2 -a|ψ x | 2 -2sλϕ (ψ t w t -aψ x w x ) Rw = -αsλϕw (ψ tt -(aψ x ) x ) ,
where the parameter α will be chosen below.

Recall that ψ(x, t) ≡ |x -x 0 | 2 -βt 2 + M 0 , ϕ(x, t) ≡ e λψ(x,t) and ψ(x, t) ≥ 1 ∀(x, t) ∈ (0, 1) × (-T, T ).

In this proof, we will denote by M a generic positive constant that can depend on x 0 , a 0 , a C 3 ([0,1]) and T . As in the constant case a ≡ 1, the first part of the proof is devoted to estimate from below the integral

I = T -T Ω (P 1 w) (P 2 w) dx dt = 3 i,j=1 I ij . (51) 
By integrating by parts in time and/or space, we can compute the integrals I ij in (51). We obtain:

I 11 = (α -1)sλ T -T 1 0 w tt ϕw(ψ tt -(aψ x ) x ) dx dt = (1 -α)sλ T -T 1 0 ϕ|w t | 2 (ψ tt -(aψ x ) x ) dx dt - (1 -α) 2 sλ 2 T -T 1 0 ϕ|w| 2 ψ tt (ψ tt -(aψ x ) x ) dx dt - (1 -α) 2 sλ 3 T -T 1 0 ϕ|w| 2 |ψ t | 2 (ψ tt -(aψ x ) x ) dx dt, I 12 = -sλ 2 T -T 1 0 w tt ϕw(|ψ t | 2 -a|ψ x | 2 ) dx dt = sλ 2 T -T 1 0 ϕ|w t | 2 (|ψ t | 2 -a|ψ x | 2 ) dx dt -sλ 2 T -T 1 0 ϕ|w| 2 |ψ tt | 2 dx dt - 3sλ 3 2 T -T 1 0 ϕ|w| 2 |ψ t | 2 ψ tt dx dt + sλ 3 2 T -T 1 0 ϕ|w| 2 a|ψ x | 2 ψ tt dx dt - sλ 4 2 T -T 1 0 ϕ|w| 2 |ψ t | 2 (|ψ t | 2 -a|ψ x | 2 ) dx dt and 
I 13 = -2sλ T -T 1 0 w tt ϕ(ψ t w t -aψ x w x )) dx dt = sλ T -T 1 0 ϕ|w t | 2 ψ tt dx dt + sλ 2 T -T 1 0 ϕ|w t | 2 |ψ t | 2 dx dt +sλ T -T 1 0 ϕ|w t | 2 (aψ x ) x dx dt + sλ 2 T -T 1 0 ϕ|w t | 2 a|ψ x | 2 dx dt -2sλ 2 T -T 1 0 ϕaψ x ψ t w x w t dx dt.
Also,

I 21 = (1 -α)sλ T -T 1 0 (aw x ) x ϕw(ψ tt -(aψ x ) x ) dx dt = -(1 -α)sλ T -T 1 0 ϕa|w x | 2 (ψ tt -(aψ x ) x ) dx dt + (1 -α) 2 sλ 2 T -T 1 0 ϕ|w| 2 (aψ x ) x (ψ tt -(aψ x ) x ) dx dt + (1 -α) 2 sλ 3 T -T 1 0 ϕa|w| 2 |ψ x | 2 (ψ tt -(aψ x ) x ) dx dt -(1 -α)sλ 2 T -T 1 0 ϕ|w| 2 aψ x (aψ x ) xx dx dt - (1 -α) 2 sλ T -T 1 0 ϕ|w| 2 (a x (aψ x ) xx + a(aψ x ) xxx ) dx dt, I 22 = sλ 2 T -T 1 0 (aw x ) x ϕw(|ψ t | 2 -a|ψ x | 2 )) dx dt = -sλ 2 T -T 1 0 ϕa|w x | 2 (|ψ t | 2 -a|ψ x | 2 )) dx dt - sλ 2 2 T -T 1 0 ϕ|w| 2 (|a x | 2 + aa xx )|ψ x | 2 + 4aa x ψ x ψ xx + 2a(aψ x ) x ψ xx dx dt + sλ 3 2 T -T 1 0 ϕ|w| 2 (aψ x ) x (|ψ t | 2 -a|ψ x | 2 )) dx dt + sλ 4 2 T -T 1 0 ϕ|w| 2 a|ψ x | 2 (|ψ t | 2 -a|ψ x | 2 )) dx dt -sλ 3 T -T Ω ϕ|w| 2 aψ x a x |ψ x | 2 + 2aψ x ψ xx dx dt and 
I 23 = 2sλ T -T 1 0 (aw x ) x ϕ (ψ t w t -aψ x w x ) dx dt = sλ T -T 1 0 ϕa|w x | 2 (ψ tt + aψ xx ) dx dt +sλ 2 T -T 1 0 ϕa|w x | 2 |ψ t | 2 + a|ψ x | 2 dx dt -2sλ 2 T -T 1 0 ϕaψ x ψ t w x w t dx dt -sλ T -T a(1) 2 |w x (1, t)| 2 ϕ(1, t)ψ x (1, t) -a(0) 2 |w x (0, t)| 2 ϕ(0, t)ψ x (0, t) dt.
Finally,

I 31 = (α -1)s 3 λ 3 T -T 1 0 ϕ 3 |w| 2 (|ψ t | 2 -a|ψ x | 2 )(ψ tt -(aψ x ) x ) dx dt, I 32 = -s 3 λ 4 T -T 1 0 ϕ 3 |w| 2 (|ψ t | 2 -a|ψ x | 2 ) 2 dx dt and 
I 33 = -2s 3 λ 3 T -T 1 0 ϕ 3 w(|ψ t | 2 -a|ψ x | 2 ) (ψ t w t -aψ x w x ) dx dt = s 3 λ 3 T -T 1 0 ϕ 3 |w| 2 (|ψ t | 2 -a|ψ x | 2 )(ψ tt -(aψ x ) x ) dx dt +2s 3 λ 3 T -T 1 0 ϕ 3 |w| 2 |ψ t | 2 ψ tt + aa x ψ x |ψ x | 2 + a 2 |ψ x | 2 ψ xx dx dt +3s 3 λ 4 T -T 1 0 ϕ 3 |w| 2 (|ψ t | 2 -a|ψ x | 2 ) 2 dx dt.
Gathering together all terms I ij for i, j ∈ {1, 2, 3}, we obtain

I = T -T 1 0 (P 1 w) (P 2 w) dx dt = sλ T -T 1 0 ϕ|w t | 2 (2ψ tt -α(ψ tt -(aψ x ) x )) dx dt + sλ T -T 1 0 ϕa|w x | 2 (α(ψ tt -(aψ x ) x ) + 2(aψ x ) x -a x ψ x ) dx dt + 2sλ 2 T -T 1 0 ϕ |w t | 2 |ψ t | 2 -2aψ x ψ t w x w t + a 2 |w x | 2 |ψ x | 2 dx dt + 2s 3 λ 4 T -T 1 0 ϕ 3 |w| 2 |ψ t | 2 -a|ψ x | 2 2 dx dt + s 3 λ 3 T -T 1 0 ϕ 3 |w| 2 (|2ψ t | 2 ψ tt + aa x ψ x |ψ x | 2 + 2a 2 |ψ x | 2 ψ xx ) dx dt + αs 3 λ 3 T -T 1 0 ϕ 3 |w| 2 (|ψ t | 2 -a|ψ x | 2 )(ψ tt -(aψ x ) x ) dx dt -sλ T -T a(1) 2 |w x (1, t)| 2 ϕ(1, t)ψ x (1, t) -a(0) 2 |w x (0, t)| 2 ϕ(0, t)ψ x (0, t) dx dt + X 0 ,
where X 0 is the sum of all "lower order terms": Secondly, notice that, under the assumption a ∈ A(x 0 , a 0 ), if β satisfies [START_REF] Ervedoza | The wave equation: Control and numerics[END_REF], we can choose α in such a way that the terms of order sλ are positive. Indeed, we have in this case -a(x) -(x -x 0 )a x (x) < β < a(x) + 2a(x) + (x -x 0 )a x (x) β + a(x) + (x -x 0 )a x (x) .

|X 0 | ≤ M sλ 4
Then, an explicit computation of the derivatives of ψ shows that Obviously, the last two terms in the right hand side can be absorbed by the second term in the left for s large enough. Therefore, there exists s 0 > 0, only depending on x 0 , a 0 , a C 3 ([0,1]) and T , such that, for all s > s 0 , one has: (56)

Since w = ve sϕ and P w = e sϕ Lv, we can easily rewrite (56) in the form (50). This ends the proof. 2

In the remaining part of the Appendix, we will use the Carleman estimate (50) to prove Theorem 2.1.

Thus, let us assume that (15) holds , w ∈ L 2 (-T, T ; H 1 0 (0, 1)), Lw ∈ L 2 ((0, 1) × (-T, T )) and w x (1, •) ∈ L 2 (-T, T ). Thanks to [START_REF] Fernández-Cara | Numerical null controllability of semi-linear 1D heat equations: fixed points, least squares and Newton methods[END_REF], there exists η ∈ (0, T ) and ε > 1 such that

(1 -ε)(T -η)β ≥ max [0,1]
a(x) 1/2 (x -x 0 ). Moreover, simple computations show that, for every t ∈ (-T, -T + η) ∪ (T -η, T ), the function ψ(• , t) satisfies: 

     (1 -ε) min [0,1]
Then, the argument employed in the proof of Theorem 2.5 in [START_REF] Baudouin | Global Carleman estimates for wave and applications[END_REF] (using the modified energy given by ( 59)) can be used to deduce ( 16) from (58).

Figure 1 :

 1 Figure 1: log 10 p -ph P ( ) and log 10 v -vh L 2 (0,T ) (•) vs. log 10 (h).

Figure 2 :

 2 Figure 2: (y 0 (x), y 1 (x)) ≡ (sin(πx), 0) and a ≡ 1 -The solution ph over Q T (Left) and the corresponding variable vh on (0, T ) (Right) -h = (1/80, 1/80).

Figure 3 :

 3 Figure 3: (y 0 (x), y 1 (x)) ≡ (sin(πx), 0) and a ≡ 1 -The solution ŷh over Q T -h = (1/80, 1/80).

Figure 4 :

 4 Figure4: (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 , 0) and a ≡ 1 -The solution ph over Q T (Left) and the corresponding variable vh on (0, T ) (Right) -h = (1/80, 1/80).

Figure 5 :

 5 Figure 5: (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 , 0) and a ≡ 1 -The solution ŷh over Q T -h = (1/80, 1/80).

Figure 6 :

 6 Figure 6: (y 0 , y 1 ) given by (45) and a ≡ 1-The solution ph over Q T (Left) and the corresponding variable vh on (0, T ) (Right) -h = (1/80, 1/80).

Figure 7 :

 7 Figure 7: (y 0 , y 1 ) given by (45) and a ≡ 1 -The solution ŷh over Q T -h = (1/80, 1/80).

Figure 8 :

 8 Figure 8: (y 0 , y 1 ) given by (46) and a ≡ 1-The solution ph over Q T (Left) and the corresponding variable vh on (0, T ) (Right) -h = (1/80, 1/80).

Figure 9 :

 9 Figure9: (y 0 (x), y 1 (x)) ≡ (e -500(x-0.2) 2 , 0) and a given by (47) -The solution ph over Q T (Left) and the corresponding variable vh on (0, T ) (Right) -h = (1/80, 1/80).

Figure 10 :

 10 Figure 10: y 0 (x) ≡ e -500(x-0.2) 2 and a given by (47) -The solution ŷh over Q T -h = (1/80, 1/80).

ϕ 3 2 T -T 1 0ϕ

 321 |w| 2 dx dt.Let us analyze the high order terms arising in the previous expression of I. First, remark thatsλ |w t | 2 |ψ t | 2 -2aψ x ψ t w x w t + a 2 |w x | 2 |ψ x | 2 dx dt ≥ 0.(52)

1 2 (

 2 x -x 0 )a x (x) ∀x ∈ [0, 1], whence 2β β + a(x) + (x -x 0 )a x (x) < 2a(x) + (x -x 0 )a x (x) β + a(x) + (x -x 0 )a x (x) ∀x ∈ [0, 1]. Let α satisfy sup [0,1] 2β β + a(x) + (x -x 0 )a x (x) < α < inf [0,1]

1 0T 1 0T 1 0T 1 03 λ 4 T -T 1 0ϕ 3 + s 3 λ 3 T -T 1 0ϕ 3 + αs 3 λ 3 T -T 1 0ϕ 3 = s 3 λ 3 T -T 1 0ϕ 3 Fs 3 λ 3 T -T 1 0ϕ 3 3 T -T 1 0ϕ 3 (P 1 T 1 0ϕ 3 T -T 1 0ϕ 3 4 T -T 1 0ϕ 3 T 1 0(|P 1 w| 2 1 0T 1 0T 1 0|P w| 2 dx dt + M s 2 λ 2 T|P w| 2 dx dt + M s 2 λ 2 Tϕ|P w| 2 + M sλ 4 T -T 1 0ϕ 3 2 T -T 1 0ϕ 2

 11114133133133133133131131341312111222413212 2ψ tt -α(ψ tt -(aψ x ) x ) > 0 and α(ψ tt -(aψ x ) x ) + 2(aψ x ) x -a x ψ x > 0 in [0, 1] × [-T,ϕ|w t | 2 (2ψ tt -α(ψ tt -(aψ x ) x )) dx dt + sλ T -ϕa|w x | 2 (α(ψ tt -(aψ x ) x ) + 2(aψ x ) x -a x ψ x ) dx dt ≥ M sλ T -ϕ|w t | 2 dx dt + M sλ T -ϕ|w x | 2 dx dt.The remaining terms in I can be written in the form2s |w| 2 |ψ t | 2 -a|ψ x | 2 2 dx dt |w| 2 (2|ψ t | 2 ψ tt + aa x ψ x |ψ x | 2 + 2a 2 |ψ x | 2 ψ xx ) dx dt |w| 2 (|ψ t | 2 -a|ψ x | 2 )(ψ tt -(aψ x ) x ) dx dt |w| 2 F λ (x, Y (x, t)) dx dt, where Y := |ψ t | 2 -a|ψ x | 2 and λ (x, Y ) := 2λY 2 + (2ψ tt + α(ψ tt -(a(x)ψ x ) x )) Y + a(x)|ψ x | 2 (2ψ tt + a x (x)ψ x + 2a(x)ψ xx ) = 2λY 2 + (4β + α(2β + a(x) + (x -x 0 )a x (x))) Y + 8a(x)(x -x 0 ) 2 (-2β + 2a(x) + (x -x 0 )a x (x)).Since F λ is polynomial of the second degree in Y , one hasF λ (x, Y ) ≥ 8a(x)(x -x 0 ) 2 (-2β + 2a(x) + (x -x 0 )a x (x)) α(2β + a(x) + (x -x 0 )a x (x))] 2for all x ∈ [0, 1] and Y ∈ R. Therefore, if β satisfies[START_REF] Ervedoza | The wave equation: Control and numerics[END_REF], for λ large enough (depending on x 0 and a C 3 ([0,1]) ), we obtain:|w| 2 F λ (X) dx dt ≥ M s 3 λ |w| 2 dx dt. (53)Putting together the estimates (52)-(53), the following is found:w) (P 2 w) dx dt ≥ M sλ T -|w t | 2 + |w x | 2 dx dt +M s 3 λ |w| 2 dx dt -M sλ T -T |w x (1, t)| 2 dx dt -M sλ |w| 2 dx dt.(54)On the other hand, recalling the definition of P, P 1 , P 2 and R, we observe that T -+|P 2 w| 2 ) dx dt + 2 |P w-Rw| 2 dx dt It is not difficult to see that there a exists M such that T -|P w -Rw| 2 dx dt ≤ M T -|w t | 2 + |w x | 2 dx dt + s 3 λ 3 dx dt + M sλ T -T |w x (1, t)| 2 dt |w| 2 dx dt + M s 2 λ |w| 2 dx dt.

ϕ 3 T|P w| 2

 32 |w t | 2 + |w x | 2 dx dt + s 3 λ dx dt + M sλ T -T |w x (1, t)| 2 dt.

  |ψ t (x, t)| ≥ max [0,1] a(x) 1/2 |ψ x (x, t)| max [0,1] ψ(x, t) < min [0,1]ψ(x, 0).

e 3 Teee-η 1 0e 1 0e

 311 χ ∈ C ∞ c (R) a cut-off function such that 0 ≤ χ ≤ 1 andχ(t) = 1, if |t| ≤ T -η 0, if |t| ≥ TThen we can apply Theorem A.1 to the function w := χw, whence the following Carleman estimate holdss 2sϕ | wt | 2 + | wx | 2 dx dt + s 2sϕ |L w| 2 dx dt + M s T -T e 2sϕ | wx (1, t)| 2 dt.Since L w = χLw + χ tt w + 2χ t w t , we deduce from (57) thats 2sϕ |w t | 2 + |w x | 2 dx dt + s 3 2sϕ (|w t | 2 + |w| 2 ) dx dt + M T T 2sϕ (|w t | 2 + |w| 2 ) dx dt.(58)Let us denote by E s = E s (t) the energy associated to the operator L, that is,E s (t) := 1 2 2sϕ |w t | 2 + a|w x | 2 dx.

Table 1 :

 1 The constant C 0h with respect to h.

	∆x, ∆t	1/10	1/20	1/40	1/80
	T = 2.2 6.60 × 10 -2 7.61 × 10 -2 8.56 × 10 -2 9.05 × 10 -2
	T = 1.5	0.565	2.672	17.02	96.02

  norm |||M h ||| 2 stands for the largest singular value of M h ). We observe that this number behaves polynomially with respect to h.

	∆x, ∆t	1/10	1/20	1/40	1/80
	κ(M h )	3.06 × 10 8	1.57 × 10 10	6.10 × 10 11	2.47 × 10 13
	ph P	1.541 × 10 -1 1.548 × 10 -1 1.550 × 10 -1 1.550 × 10 -1
	ph -p P	4.46 × 10 -2	1.45 × 10 -2	4.01 × 10 -3	8.38 × 10 -4
	vh L 2 (0,T )	5.421 × 10 -1 5.431 × 10 -1 5.434 × 10 -1 5.434 × 10 -3
	vh -v L 2 (0,T )	2.39 × 10 -2	8.12 × 10 -3	2.48 × 10 -3	9.57 × 10 -4
	ŷh (• , T ) L 2 (0,1)	1.80 × 10 -2	8.18 × 10 -3	1.64 × 10 -3	5.85 × 10 -4
	ŷt,h (• , T ) H -1 (0,1)	3.06 × 10 -2	8.25 × 10 -3	3.59 × 10 -3	1.93 × 10 -3

Table 2 :

 2 

(y 0 (x), y 1

  ). 10 -2 3.95 × 10 -2 4.20 × 10 -2 4.31 × 10 -2 4.33 × 10 -2 ph -p P 1.80 × 10 -1 6.30 × 10 -2 1.66 × 10 -2 2.78 × 10 -3

	∆x, ∆t	1/10	1/20	1/40	1/80	1/160
	ph P	4.38 ×