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ABSTRACT

This paper deals with data uncertainties and with model uncertainties of a nonlinear dynamical system

subjected to seismic loads. The nonparametric probabilistic model of random uncertainties recently published and

extended to nonlinear dynamical system analysis is used in order to model random uncertainties induced by the

model errors which concern the linear part of the finit element model. The nonlinearities are due to restoring forces

whose parameters are uncertain and are modeled by the parametric approach. Jayne’s maximum entropy principle

with the constraints defined by the available information allows the probabilistic model of such random variables to

be constructed. Therefore, a nonparametric-parametric formulation is developed in order to model all the sources

of uncertainties in such a nonlinear dynamical system. Finally, a numerical application for earthquake engineering

analysis is proposed and concerned a reactor coolant system with data and model uncertainties subjected to seismic

loads.
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INTRODUCTION

This paper deals with the transient response of a nonlinear dynamical system with random uncertainties.

The source of random uncertainties is induced by the model uncertainties (or the model errors) and the data

uncertainties (errors on the parameters of the model). For the problem under consideration, data uncertainties

concern the local parameters of the finite element model and the parameters of the nonlinear forces. Usually,

parametric approaches are used to model data uncertainties [1,2] for evaluating and analyzing the response of

structures with uncertain parameters under seismic loads, like piping and equipement, power plant installations and

industrial structures [3-7]. Nevertheless, such approaches do not allowmodel uncertainties to be taken into account.

It should be noted that model uncertainties can only be modeled by using a nonparametric approach. Recently, a

nonparametric model of random uncertainties has been introduced for linear dynamical system analysis [8,9]. This

nonparametric model has also been extended to the transient response of nonlinear dynamical system [10] without

having random uncertainties on the nonlinear part. This nonparametric model is constructed by the use of Jayne’s

entropy principle which consists in maximizing the probabilistic uncertainties with the constraints defined by the

available information (for instance, related to algebraic properties of the finite element matrices). Nevertheless,

this nonparametric formulation does not allow the uncertainties related to the nonlinear restoring forces to be

modeled. This is the reason why a nonparametric-parametric formulation is proposed for analyzing nonlinear

dynamical systems subjected to seismic loads with data uncertainties for the nonlinearities. An application to a

multisupported reactor coolant system subjected to seismic loads is presented.

MEAN NONLINEAR DYNAMICAL SYSTEM

We consider a nonlinear dynamical system constituted of a damped structure subjected to ms deterministic

time-dependent dirichlet conditions corresponding to seismic loads applied to the supports of the structure. The

nonlinearities are due to stops with high stiffness, installed with a given gap at given points of the structure. Let

mf be the number of degrees of freedom of the mean finite element model of this nonlinear dynamical system. Let be the  mf -vector of the total displacements, including the displacements of the supports. We are interested in

the transient response t 7→  (t) from [0, T ] into  mf . Let [M], [D] and [K] be the mass, damping and stiffness
matrices of the linear part of the mean finite element model. It is assumed that the structure with fixed supports has

no rigid bodymodes. Consequently [M], [D] and [K] are positive-definite symmetric (mf ×mf) realmatrices. The
real-valued vector  (t) is rewritten as  (t) = (z(t), zs(t)) in which zs(t) ∈  ms is the vector of the constrained
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DOFs at the supports and where z(t) ∈  m is the vector of the m unconstrained DOFs with m = mf − ms. The

block splitting of matrices [M], [D] and [K] relative to  (t) = (z(t), zs(t)) are introduced,

[M] =

[

[!] [!ls]
[!ls]

T [!s]

]

, [D] =

[

["] ["ls]
["ls]

T ["s]

]

, [K] =

[

[#] [#ls]
[#ls]

T [#s]

]

. (1)

Since [M], [D] and [K] are positive-definitematrices, then [!], ["] and [#] are also positive-definite symmetric (m×
m) real matrices. Consequently, the inverse matrix [#]−1 exists and the (m × ms) real matrix [R] = −[#]−1[#ls]
and the relative unconstrainedDOFs vectory(t) = z(t)−[R] zs(t) belonging to m can be defined. Let {ωα}0<α≤n

be the eigenfrequencies of the corresponding structural modes { α}0<α≤n such that [#] α = ω2
α[!] α. Let y

n(t)
be the projection of y(t) on the subspace of  m spanned by { α}0<α≤n with n ≪ m such that yn(t) = [Φn] qn(t),
in which [Φn] is the (m× n) real matrix whose columns are vectors { α}0<α≤n and where qn(t) is the vector of
the generalized coordinates belonging to  n. Let the positive-definite symmetric (n×n) real matrices [Mn], [Dn]
and [Kn] be the generalized mass, damping and stiffness matrices of the nonlinear dynamical system such that

[Mn] = [Φn]T [!] [Φn] , [Dn] = [Φn]T ["] [Φn] , [Kn] = [Φn]T [#] [Φn] . (2)

It can be shown that generalized coordinates qn(t) is a solution of the reduced matrix model of the nonlinear

dynamical system,

[Mn] q̈n(t) + [Dn] q̇n(t) + [Kn] qn(t) + Fn
c (t, qn(t), q̇n(t);w) = Fn(t) , t ∈ [0, T ] , (3)

with the initial conditions,

qn(0) = q̇
n(0) = 0 , (4)

in which Fn(t) ∈  m and Fn
c (t,! ," ;w) ∈  m are such that

Fn(t) = −[Φn]T ([!] [R] + [!ls]) z̈s(t) − [Φn]T (["] [R] + ["ls]) żs(t) , (5)

Fn
c (t," ,! ;w) = [Φn]T $c(t, [Φn] " + [R] zs(t), [Φn] ! + [R] żs(t);w) , (6)

where $c(t, z(t), ż(t);w) is the nonlinear forces induced by the stops whose parameters are represented by vector
w = (w1, . . . , wν) ∈  ν . Hereinafter, it is assumed that the nonlinear dynamical problem defined by Eqs. (3) and

(4) has an unique solution t 7→ qn(t) from [0, T ] into  n.

STOCHASTIC NONLINEAR DYNAMICAL SYSTEMWITH DATA AND MODEL UNCERTAINTIES

The nonparametric approach consists in substituting the mean generalized mass, damping and stiffness

matrices [Mn], [Dn] and [Kn] of the mean reduced matrix model by the random matrices [Mn], [Dn] and [Kn].
For the problem under consideration, the parametric approach consists in substituting parameter mean values w of

the nonlinear forces by the  ν-valued random variableW. Consequently, the m unconstrained DOFs and the m
unconstrained relative DOFs are represented by the  m-valued stochastic processes Zn(t) and Yn(t) indexed by
[0, T ], respectively, such that

Zn(t) = Yn(t) + [R] zs , Yn(t) = [Φn] Qn(t) , (7)

where the  n-valued stochastic processQ(t) indexed by [0, T ] is the unique second-order solution of the following
stochastic nonlinear dynamical system,

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn] Qn(t) + Fn
c (t,Qn(t), Q̇n(t);W) = Fn(t) , t ∈ [0, T ] , (8)

with the initial conditions,

Qn(0) = Q̇n(0) = 0 , a.s . (9)
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Random matrices [Mn], [Dn] and [Kn] and random vectorW = (W1, . . . , Wν) are second-order random variables

subjected to the following constraints defined by the available information,

[Mn] , [Dn] , [Kn] ∈ Mat+ (n) a.s , (10)

E{[Mn]} = [Mn] , E{[Dn]} = [Dn] , E{[Kn]} = [Kn] , (11)

E{‖[Mn]−1‖2
F } < +∞ , E{‖[Dn]−1‖2

F} < +∞ , E{‖[Kn]−1‖2
F } < +∞ , (12)

W1 ∈ D1, . . . , Wν ∈ Dν , a.s , (13)

E{W} = w , (14)

in which E denotes the mathematial expectation and where ‖[A]‖F = (tr{[A] [A]T })1/2. In Eq. (10), Mat+ (n) is
the set of all the positive-definite symmetric (n×n) real matrices and in Eq. (13), for all 1 ≤ ℓ ≤ ν, Dℓ is a subset

of  .
Let Z1(t), . . . , Zn(t) be the coordinates of Zn(t). Let Sj(ξ, ω) be the random normalized response

spectrum of stochastic transient response Zn
j (t) with (ξ, ω) belonging to Jξ × Jω ⊂  2 where Jξ = [0, 1] and

Jω = [ωmin, ωmax]. We then have

Sj(ξ, ω) =
ω2

g
maxt∈[0,T ]|Xj(t)| , (15)

in which g is a normalization constant (for instance, the gravity acceleration) and where Xj(t) is the solution of
the linear dynamical system,

Ẍj + 2ξωẊj + ω2Xj = −Zn
j , t ∈ [0, T ] (16)

Xj(0) = Ẋj(0) = 0 . (17)

Normalized response spectrum Sj(ξ, ω) is a random variable whose mean valuesm1j(ξ, ω), second-ordermoment
m2j(ξ, ω), variance Vj(ξ, ω) and standard deviation σj(ξ, ω) are estimated by the Monte-Carlo numerical simu-

lation. The stochastic convergence of the probabilistic model is studied with respect to n and with respect to the

number ns of samples for the Monte-Carlo numerical simulation, by introducing the norm |||Z̈n
j ||| defined as

|||Z̈n
j |||2 = E{

∫ T

0

Z̈n
j (t)2dt} . (18)

This norm is estimated by |||Z̈n
j ||| ≃ Convj(ns, n) with

Convj(ns, n)2 =
1

ns

ns
∑

k=1

∫ T

0

Z̈n
j (t, θk)2dt , (19)

where θ1, . . . , θns
denotes the ns samples for the Monte-Carlo numerical simulation.

Let dB(ξ, ω) be the random variable such that dBj(ξ, ω) = log10(Sj(ξ, ω)). The confidence region associ-
ated with the probability level Pc is delimited by the upper envelope dB+

j (ξ, ω) and the lower envelope dB−
j (ξ, ω)

such thatProba{dB−
j (ξ, ω) < dBj(ξ, ω)≤ dB+

j (ξ, ω)} ≥ Pc inwhich dB+
j and dB−

j are constructed by using the

Tchebychev inequality and which are such that dB−
j (ξ, ω) = 2dB0

j (ξ, ω)− dB+
j (ξ, ω) and dB+

j (ξ, ω) = log10(

m1j(ξ, ω) + aj(ξ, ω)) in which dB0
j (ξ, ω) = log10( m1j(ξ, ω)) and aj(ξ, ω) = σj(ξ, ω)/(

√
1 − Pc).

The probability model of random matrices [Mn], [Dn] and [Kn] are defined in references [8-10]. The

probability model of random variable W is constructed by using Jayne’s maximum entropy principle with the

constraints defined by Eqs. (13) and (14). If Dℓ is a bounded interval of  such that Dℓ = [aℓ, bℓ] then it can be
shown that, for all 1 ≤ ℓ ≤ ν, the probability density function pWℓ

(w) of random variable Wℓ is written as

pWℓ
(w) = ![aℓ,bℓ](w)

kℓ

αℓ(kℓ)
e−kℓw , (20)

in which !B(ω) is is the indicatrix function of the set B and where the positive real kℓ is such that (wℓkℓ −
1)αℓ(kℓ)− kℓβℓ(kℓ) = 0 in which αℓ(k) = e−aℓk − e−bℓk and βℓ(k) = aℓ e−aℓk − bℓ e−bℓk. If there exists a real

aℓ such that Dℓ = [aℓ, +∞[, then it can be shown that

pWℓ
(w) = ![aℓ,+∞[(w)

e−(w−aℓ)/(w
ℓ
−aℓ)

wℓ − aℓ
. (21)
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If the additional constraint E{(Wℓ − aℓ)
−2} < +∞ is introduced, then the probability density function pWℓ

(w)
is such that

pWℓ
(w) =  [aℓ,+∞[(w) × CWℓ

× (w − aℓ)
(1−δ2

ℓ )/(δ2
ℓ ) × e−(w−aℓ)/((w

ℓ
−aℓ) δ2

ℓ ) , (22)

in which

CWℓ
= (wℓ δ2

ℓ − aℓ δ2
ℓ )

− 1

δ2
ℓ /Γ(

1

δ2
ℓ

) , (23)

where the real parameter δℓ > 0 allows the dispersion of random variable Wℓ to be fixed. Let σℓ be the standard

deviation of random variable Wℓ. It can be shown that δℓ = σℓ/|wℓ − al|.

REACTOR COOLANT SYSTEMWITH DATA AND MODEL UNCERTAINTIES

The structure under consideration is a typical four loops reactor coolant system [11]. Each loop is constituted

of a reactor vessel, a reactor coolant pump and a steam generator (see Fig. 1). These three elements are connected

to each other by three primary coolant pipes: a hot leg which links the reactor vessel with the steam generator,

a cold leg which links the reactor vessel with a reactor coolant pump and an intermediate leg which links the

reactor coolant pump with the steam generator. The structure is multisupported with 36 supports. Its supports are

constituted of anchors located under the reactor coolant pumps, the steam generators and the reactor vessel. Due to

seismic loads, the displacement field of all the 36 supports are constrained by time-dependent Dirichlet conditions

(mesh nodes 1 of Fig. 1).

X1 X3

2X

A

A

B

Fig. 1. Finite element mesh of a steam generator (figure on the left), of one loop (figure on the middle) and of
the four loops reactor coolant system (figure on the right).

The vibrations of each steam generator are limited by three elastic stops located at their connection point

with the intermediate leg and the hot leg (mesh nodes 3 of Fig. 1) and by four elastic stops located at the middle of
each steam generator (mesh nodes 2 of Fig. 1). These elastic stops induce nonlinear restoring forces. Futhermore,
each elastic stops is subjected to seismic load and consequently, at each stop, the displacement is constrained by a

time-dependent Dirichlet condition. The mean finite element model of the reactor coolant system is composed of

beam finite elements. Let jB be the DOF number corresponding to the vertical translation of the node B which is

close to three stops (see Fig.1). Let jA be the DOF number corresponding to the vertical translation of the node A
(see Fig. 1).

Figure 2 shows the normalized response spectra of themean reducedmatrixmodel of the nonlinear dynamical

system for DOF number jA (Fig 2 on the left) and for DOF number jB (Fig. 2 on the right). The dispersions of

random matrices [Mn], [Dn] or [Kn] are controlled by parameters δM , δD and δK . The stochastic convergence

analysis is performed for n ≥ 5 which yields n0 = 5. Consequently, parameters δM , δD and δK are such that

0 < δM , δD, δK < 0.9258 =

√

n0 + 1

n0 + 5
. (24)
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Fig. 2. Normalized response spectrum of the mean reduced matrix model of the nonlinear dynamical system
for DOF number jA (figure on the right) and for DOF number jB (figure on the left). The horizontal axis in
log scale correspond to the frequency (in Hz).

Data uncertainties are relative to the stiffnesses of the stops whose probabilistic models are defined by

Eqs.(22) to (23). Parameters {Wℓ}1≤ℓ≤ν correspond to the 28 stiffnesses of the 28 elastic stops. Therefore, each

parameter belongs to Dℓ = [0, +∞[. Since the structure is multisupported and the number of nonlinear elastic
stops is large, then the solution is very sensitive to the value of the time-step size∆t of the time integration scheme.
Time-step size ∆t has the same value for all n ∈ {5, 50, 150, 200}. For each sample θk, Eq. (8) is solved by using

the Euler explicit step-by-step integration scheme with ∆t = 1/25000s and for a time duration T = 15s. The
Monte-Carlo numerical simulation is performedwith ns = 700 samples. Figure 3 shows the graphs of the functions
ns 7→ log10{ConvjA

(ns, n)} for n = {5, 50, 150} and for δM = δD = δK = 0.2 and δ1 = . . . = δ28 = 0.2. It
can be seen that convergence with respect to n and ns is obtained for n = 50 and ns = 60.

20 40 60 80 100 120 140 160 180
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Fig. 3. Graph of function ns 7→ log10{ConvjA
(ns, n)} for n = 5 (lower dotted line), n = 50 (upper thin

solid line) and n = 150 (upper thick solid line).

Figures 4 to 6 show the confidence regions associated with the probability level Pc = 0.95 for ns = 700,
n = 200, ξ = 0.001. Figure 4 correspond to a nonparametric level and a parametric level of uncertainties equal

to 0.2. Figure 5 show s the confidence regions with just a parametric level of uncertainties equal to 0.2 and with

a very low nonparametric level of uncertainties equal to 0.00002 while Fig. 6 show the confidence regions whith

just a non zero nonparametric level of uncertainties equal to 0.02.
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Figure 7. Confidence regions of DOF number jA (figure on the right) and of DOF jB (figure on the left)
with a nonparametric and a parametric level of uncertainties equal to 0.2. The upper line corresponds to the
upper envelope dB+

j
(ξ,ν) and the lower line corresponds to the lower envelope dB−

j
(ξ,ν). The frequency ν is

represented on the horizontal axis in log scale (in Hz).
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Figure 9. Confidence region of DOF number jA (figure on the right) jB and of DOF (figure on the left) with a
nonparametric equal to 0.00002 and a parametric level of uncertainties equal to 0.2 The upper line corresponds
to the upper envelope dB+

j
(ξ,ν) and the lower line corresponds to the lower envelope dB−

j
(ξ,ν). The frequency

ν is represented on the horizontal axis in log scale (in Hz).
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Figure 9. Confidence region of DOF number jA (figure on the right) jB and of DOF (figure on the left) with
a nonparametric equal to 0.2 and a parametric level of uncertainties equal to 0. The upper line corresponds to
the upper envelope dB+

j
(ξ,ν) and the lower line corresponds to the lower envelope dB−

j
(ξ,ν). The frequency ν

is represented on the horizontal axis in log scale (in Hz).

CONCLUSIONS

A nonparametric-parametric probabilistic model of random uncertainties has been developed for nonlinear

dynamical system in the time domain. A nonparametric probabilistic model of random uncertainties is used for
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modeling the random uncertainties concerning the linear part of the system. The random uncertainties of the

nonlinear part is modeled by the use of a parametric approach.

From the analysis of the normalized response spectra, it can be seen that a DOF not close to a stop (for

instance DOF jA) can be sensitive to the both data and model uncertainties. This result underlines that a local

data uncertaintie can be propagated in all the structure. However, the model uncertainties have not to be neglected

even if the DOF under consideration is close to a stop with data uncertainties. For instance, DOF jB is close to a

stop with data uncertainties but the model uncertainties are clearly not negligible because the confidence regions of

DOF jB seem to be controlled by the nonparametric level of uncertainties. Consequently, it is necessary to model

the uncertainties for such a nonlinear dynamical system in order to allow an efficient seismic capacity assessment

of such a structure to be performed. For such a dynamical system, the nonparametric-parametric approach allows

the level of uncertainties to be extended and is well adapted to this kind of problem.
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