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This paper deals with data uncertainties and with model uncertainties of a nonlinear dynamical system subjected to seismic loads. The nonparametric probabilistic model of random uncertainties recently published and extended to nonlinear dynamical system analysis is used in order to model random uncertainties induced by the model errors which concern the linear part of the finit element model. The nonlinearities are due to restoring forces whose parameters are uncertain and are modeled by the parametric approach. Jayne's maximum entropy principle with the constraints defined by the available information allows the probabilistic model of such random variables to be constructed. Therefore, a nonparametric-parametric formulation is developed in order to model all the sources of uncertainties in such a nonlinear dynamical system. Finally, a numerical application for earthquake engineering analysis is proposed and concerned a reactor coolant system with data and model uncertainties subjected to seismic loads.

INTRODUCTION

This paper deals with the transient response of a nonlinear dynamical system with random uncertainties. The source of random uncertainties is induced by the model uncertainties (or the model errors) and the data uncertainties (errors on the parameters of the model). For the problem under consideration, data uncertainties concern the local parameters of the finite element model and the parameters of the nonlinear forces. Usually, parametric approaches are used to model data uncertainties [START_REF] Ibrahim | Structural dynamics with parameters uncertainties[END_REF][START_REF] Ghanem | Stochastic Finite Elements. A Spectral Approach[END_REF] for evaluating and analyzing the response of structures with uncertain parameters under seismic loads, like piping and equipement, power plant installations and industrial structures [START_REF] Zhao | Response uncertainty and time-variant reliability analysis for hysteretic MDF structures[END_REF][START_REF] De La Llera | Accidental torsion in buiuldings due to stiffness uncertainty[END_REF][START_REF] Shenton | Effect of stiffness variability on the response of isolated structures[END_REF][START_REF] Labbé | Stochastic approach for the seismic design of nuclear power plant equipments[END_REF][START_REF] Cambier | Computational methods for accounting of structural uncertainties, applications to dynamic behaviour prediction of piping systems[END_REF]. Nevertheless, such approaches do not allow model uncertainties to be taken into account. It should be noted that model uncertainties can only be modeled by using a nonparametric approach. Recently, a nonparametric model of random uncertainties has been introduced for linear dynamical system analysis [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximim entropy approach for modeling random uncertainties in transient elastodynamics[END_REF]. This nonparametric model has also been extended to the transient response of nonlinear dynamical system [START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF] without having random uncertainties on the nonlinear part. This nonparametric model is constructed by the use of Jayne's entropy principle which consists in maximizing the probabilistic uncertainties with the constraints defined by the available information (for instance, related to algebraic properties of the finite element matrices). Nevertheless, this nonparametric formulation does not allow the uncertainties related to the nonlinear restoring forces to be modeled. This is the reason why a nonparametric-parametric formulation is proposed for analyzing nonlinear dynamical systems subjected to seismic loads with data uncertainties for the nonlinearities. An application to a multisupported reactor coolant system subjected to seismic loads is presented.

MEAN NONLINEAR DYNAMICAL SYSTEM

We consider a nonlinear dynamical system constituted of a damped structure subjected to m s deterministic time-dependent dirichlet conditions corresponding to seismic loads applied to the supports of the structure. The nonlinearities are due to stops with high stiffness, installed with a given gap at given points of the structure. Let m f be the number of degrees of freedom of the mean finite element model of this nonlinear dynamical system. Let DOFs at the supports and where z(t) ∈ Ê m is the vector of the m unconstrained DOFs with m = m f -m s . The block splitting of matrices 

[M], [D] and [K] relative to Þ (t) = (z(t), z s (t)) are introduced, [M] = [Å] [Å ls ] [Å ls ] T [Å s ] , [D] = [ ] [ ls ] [ ls ] T [ s ] , [K] = [Ã] [Ã ls ] [Ã ls ] T [Ã s ] . (1) 
× m s ) real matrix [R] = -[Ã] -1 [Ã ls ]
and the relative unconstrained DOFs vector y(t) = z(t)-[R] z s (t) belonging to Ê m can be defined. Let {ω α } 0<α≤n be the eigenfrequencies of the corresponding structural modes

{ α } 0<α≤n such that [Ã] α = ω 2 α [Å] α . Let y n (t)
be the projection of y(t) on the subspace of Ê m spanned by { α } 0<α≤n with n ≪ m such that y n (t) = [Φ n ] q n (t), in which [Φ n ] is the (m × n) real matrix whose columns are vectors { α } 0<α≤n and where q n (t) is the vector of the generalized coordinates belonging to Ê n . Let the positive-definite symmetric

(n × n) real matrices [M n ], [D n ]
and [K n ] be the generalized mass, damping and stiffness matrices of the nonlinear dynamical system such that

[M n ] = [Φ n ] T [Å] [Φ n ] , [D n ] = [Φ n ] T [ ] [Φ n ] , [K n ] = [Φ n ] T [Ã] [Φ n ] . (2) 
It can be shown that generalized coordinates q n (t) is a solution of the reduced matrix model of the nonlinear dynamical system,

[M n ] qn (t) + [D n ] qn (t) + [K n ] q n (t) + F n c (t, q n (t), qn (t); w) = F n (t) , t ∈ [0, T ] , (3) 
with the initial conditions,

q n (0) = qn (0) = 0 , (4) 
in which F n (t) ∈ Ê m and F n c (t, Õ , Ô ; w) ∈ Ê m are such that

F n (t) = -[Φ n ] T ([Å] [R] + [Å ls ]) zs (t) -[Φ n ] T ([ ] [R] + [ ls ]) żs (t) , (5) 
F n c (t, Ô , Õ ; w) = [Φ n ] T c (t, [Φ n ] Ô + [R] z s (t), [Φ n ] Õ + [R] żs (t); w) , (6) 
where c (t, z(t), ż(t); w) is the nonlinear forces induced by the stops whose parameters are represented by vector w = (w 1 , . . . , w ν ) ∈ Ê ν . Hereinafter, it is assumed that the nonlinear dynamical problem defined by Eqs. ( 3) and ( 4) has an unique solution t → q n (t) from [0, T ] into Ê n .

STOCHASTIC NONLINEAR DYNAMICAL SYSTEM WITH DATA AND MODEL UNCERTAINTIES

The nonparametric approach consists in substituting the mean generalized mass, damping and stiffness matrices [M n ], [D n ] and [K n ] of the mean reduced matrix model by the random matrices

[M n ], [D n ] and [K n ].
For the problem under consideration, the parametric approach consists in substituting parameter mean values w of the nonlinear forces by the Ê ν -valued random variable W. Consequently, the m unconstrained DOFs and the m unconstrained relative DOFs are represented by the Ê m -valued stochastic processes Z n (t) and Y n (t) indexed by

[0, T ], respectively, such that Z n (t) = Y n (t) + [R] z s , Y n (t) = [Φ n ] Q n (t) , (7) 
where the Ê n -valued stochastic process Q(t) indexed by [0, T ] is the unique second-order solution of the following stochastic nonlinear dynamical system,

[M n ] Qn (t) + [D n ] Qn (t) + [K n ] Q n (t) + F n c (t, Q n (t), Qn (t); W) = F n (t) , t ∈ [0, T ] , (8) 
with the initial conditions,

Q n (0) = Qn (0) = 0 , a.s . (9) 
Random matrices [M n ], [D n ] and [K n ] and random vector W = (W 1 , . . . , W ν ) are second-order random variables subjected to the following constraints defined by the available information,

[M n ] , [D n ] , [K n ] ∈ Mat + Ê (n) a.s , (10) E{[M n ]} = [M n ] , E{[D n ]} = [D n ] , E{[K n ]} = [K n ] , (11) E{ [M n ] -1 2 F } < +∞ , E{ [D n ] -1 2 F } < +∞ , E{ [K n ] -1 2 F } < +∞ , (12) W 1 ∈ D 1 , . . . , W ν ∈ D ν , a.s , ( 13 
) E{W} = w , (14) 
in which E denotes the mathematial expectation and where

[A] F = (tr{[A] [A] T }) 1/2
. In Eq. ( 10), Mat + Ê (n) is the set of all the positive-definite symmetric (n × n) real matrices and in Eq. ( 13), for all 1 ≤ ℓ ≤ ν, D ℓ is a subset of Ê.

Let Z 1 (t), . . . , Z n (t) be the coordinates of Z n (t). Let S j (ξ, ω) be the random normalized response spectrum of stochastic transient response Z n j (t) with (ξ, ω) belonging to J ξ × J ω ⊂ Ê 2 where J ξ = [0, 1] and

J ω = [ω min , ω max ]. We then have S j (ξ, ω) = ω 2 g max t∈[0,T ] |X j (t)| , (15) 
in which g is a normalization constant (for instance, the gravity acceleration) and where X j (t) is the solution of the linear dynamical system,

Ẍj + 2ξω Ẋj + ω 2 X j = -Z n j , t ∈ [0, T ] (16) 
X j (0) = Ẋj (0) = 0 . (17) 
Normalized response spectrum S j (ξ, ω) is a random variable whose mean values m 1j (ξ, ω), second-order moment m 2j (ξ, ω), variance V j (ξ, ω) and standard deviation σ j (ξ, ω) are estimated by the Monte-Carlo numerical simulation. The stochastic convergence of the probabilistic model is studied with respect to n and with respect to the number n s of samples for the Monte-Carlo numerical simulation, by introducing the norm ||| Zn j ||| defined as

||| Zn j ||| 2 = E{ T 0 Zn j (t) 2 dt} . ( 18 
)
This norm is estimated by

||| Zn j ||| ≃ Conv j (n s , n) with Conv j (n s , n) 2 = 1 n s ns k=1 T 0 Zn j (t, θ k ) 2 dt , (19) 
where θ 1 , . . . , θ ns denotes the n s samples for the Monte-Carlo numerical simulation. Let dB(ξ, ω) be the random variable such that dB j (ξ, ω) = log 10 (S j (ξ, ω)). The confidence region associated with the probability level P c is delimited by the upper envelope dB + j (ξ, ω) and the lower envelope dB - j (ξ, ω) such that P roba{dB - j (ξ, ω) < dB j (ξ, ω) ≤ dB + j (ξ, ω)} ≥ P c in which dB + j and dB - j are constructed by using the Tchebychev inequality and which are such that dB

- j (ξ, ω) = 2dB 0 j (ξ, ω)-dB + j (ξ, ω) and dB + j (ξ, ω) = log 10 ( m 1j (ξ, ω) + a j (ξ, ω)) in which dB 0 j (ξ, ω) = log 10 ( m 1j (ξ, ω)) and a j (ξ, ω) = σ j (ξ, ω)/( √ 1 -P c ).
The probability model of random matrices [M n ], [D n ] and [K n ] are defined in references [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximim entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF]. The probability model of random variable W is constructed by using Jayne's maximum entropy principle with the constraints defined by Eqs. ( 13) and ( 14). If D ℓ is a bounded interval of Ê such that D ℓ = [a ℓ , b ℓ ] then it can be shown that, for all 1 ≤ ℓ ≤ ν, the probability density function p W ℓ (w) of random variable W ℓ is written as

p W ℓ (w) = ½ [a ℓ ,b ℓ ] (w) k ℓ α ℓ (k ℓ ) e -k ℓ w , (20) 
in which ½ B (ω) is is the indicatrix function of the set B and where the positive real k ℓ is such that (w ℓ k ℓ -

1) α ℓ (k ℓ ) -k ℓ β ℓ (k ℓ ) = 0 in which α ℓ (k) = e -a ℓ k -e -b ℓ k and β ℓ (k) = a ℓ e -a ℓ k -b ℓ e -b ℓ k .
If there exists a real a ℓ such that D ℓ = [a ℓ , +∞[, then it can be shown that

p W ℓ (w) = ½ [a ℓ ,+∞[ (w) e -(w-a ℓ )/(w ℓ -a ℓ ) w ℓ -a ℓ . (21) 
If the additional constraint E{(W ℓ -a ℓ ) -2 } < +∞ is introduced, then the probability density function p W ℓ (w) is such that

p W ℓ (w) = ½ [a ℓ ,+∞[ (w) × C W ℓ × (w -a ℓ ) (1-δ 2 ℓ )/(δ 2 ℓ ) × e -(w-a ℓ )/((w ℓ -a ℓ ) δ 2 ℓ ) , (22) 
in which

C W ℓ = (w ℓ δ 2 ℓ -a ℓ δ 2 ℓ ) -1 δ 2 ℓ /Γ( 1 δ 2 ℓ ) , (23) 
where the real parameter δ ℓ > 0 allows the dispersion of random variable W ℓ to be fixed. Let σ ℓ be the standard deviation of random variable W ℓ . It can be shown that δ ℓ = σ ℓ /|w ℓ -a l |.

REACTOR COOLANT SYSTEM WITH DATA AND MODEL UNCERTAINTIES

The structure under consideration is a typical four loops reactor coolant system [START_REF] Duval | Estimation methods for seismic behavior of a PWR primary system[END_REF]. Each loop is constituted of a reactor vessel, a reactor coolant pump and a steam generator (see Fig. 1). These three elements are connected to each other by three primary coolant pipes: a hot leg which links the reactor vessel with the steam generator, a cold leg which links the reactor vessel with a reactor coolant pump and an intermediate leg which links the reactor coolant pump with the steam generator. The structure is multisupported with 36 supports. Its supports are constituted of anchors located under the reactor coolant pumps, the steam generators and the reactor vessel. Due to seismic loads, the displacement field of all the 36 supports are constrained by time-dependent Dirichlet conditions (mesh nodes 1 of Fig. 1). The vibrations of each steam generator are limited by three elastic stops located at their connection point with the intermediate leg and the hot leg (mesh nodes 3 of Fig. 1) and by four elastic stops located at the middle of each steam generator (mesh nodes 2 of Fig. 1). These elastic stops induce nonlinear restoring forces. Futhermore, each elastic stops is subjected to seismic load and consequently, at each stop, the displacement is constrained by a time-dependent Dirichlet condition. The mean finite element model of the reactor coolant system is composed of beam finite elements. Let j B be the DOF number corresponding to the vertical translation of the node B which is close to three stops (see Fig. 1). Let j A be the DOF number corresponding to the vertical translation of the node A (see Fig. 1).

Figure 2 shows the normalized response spectra of the mean reduced matrix model of the nonlinear dynamical system for DOF number j A (Fig 2 Data uncertainties are relative to the stiffnesses of the stops whose probabilistic models are defined by Eqs.( 22) to (23). Parameters {W ℓ } 1≤ℓ≤ν correspond to the 28 stiffnesses of the 28 elastic stops. Therefore, each parameter belongs to D ℓ = [0, +∞[. Since the structure is multisupported and the number of nonlinear elastic stops is large, then the solution is very sensitive to the value of the time-step size ∆t of the time integration scheme. Time-step size ∆t has the same value for all n ∈ {5, 50, 150, 200}. For each sample θ k , Eq. ( 8) is solved by using the Euler explicit step-by-step integration scheme with ∆t = 1/25000s and for a time duration T = 15s. The Monte-Carlo numerical simulation is performed with n s = 700 samples. Figure 3 shows the graphs of the functions n s → log 10 {Conv jA (n s , n)} for n = {5, 50, 150} and for δ M = δ D = δ K = 0.2 and δ 1 = . . . = δ 28 = 0.2. It can be seen that convergence with respect to n and n s is obtained for n = 50 and n s = 60. Figures 4 to 6 show the confidence regions associated with the probability level P c = 0.95 for n s = 700, n = 200, ξ = 0.001. Figure 4 correspond to a nonparametric level and a parametric level of uncertainties equal to 0.2. Figure 5 show s the confidence regions with just a parametric level of uncertainties equal to 0.2 and with a very low nonparametric level of uncertainties equal to 0.00002 while Fig. 6 show the confidence regions whith just a non zero nonparametric level of uncertainties equal to 0.02. with a nonparametric and a parametric level of uncertainties equal to 0.2. The upper line corresponds to the upper envelope dB + j (ξ,ν) and the lower line corresponds to the lower envelope dB - j (ξ,ν). The frequency ν is represented on the horizontal axis in log scale (in Hz). 

0 < δ M , δ D , δ K < 0.9258 = n 0 + 1 n 0 + 5 . (24) 

CONCLUSIONS

A nonparametric-parametric probabilistic model of random uncertainties has been developed for nonlinear dynamical system in the time domain. A nonparametric probabilistic model of random uncertainties is used for modeling the random uncertainties concerning the linear part of the system. The random uncertainties of the nonlinear part is modeled by the use of a parametric approach.

From the analysis of the normalized response spectra, it can be seen that a DOF not close to a stop (for instance DOF j A ) can be sensitive to the both data and model uncertainties. This result underlines that a local data uncertaintie can be propagated in all the structure. However, the model uncertainties have not to be neglected even if the DOF under consideration is close to a stop with data uncertainties. For instance, DOF j B is close to a stop with data uncertainties but the model uncertainties are clearly not negligible because the confidence regions of DOF j B seem to be controlled by the nonparametric level of uncertainties. Consequently, it is necessary to model the uncertainties for such a nonlinear dynamical system in order to allow an efficient seismic capacity assessment of such a structure to be performed. For such a dynamical system, the nonparametric-parametric approach allows the level of uncertainties to be extended and is well adapted to this kind of problem.

  Since [M], [D] and [K] are positive-definite matrices, then [Å], [ ] and [Ã] are also positive-definite symmetric (m× m) real matrices. Consequently, the inverse matrix [Ã] -1 exists and the (m
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 1 Fig. 1. Finite element mesh of a steam generator (figure on the left), of one loop (figure on the middle) and of the four loops reactor coolant system (figure on the right).

  on the left) and for DOF number j B (Fig. 2 on the right). The dispersions of random matrices [M n ], [D n ] or [K n ] are controlled by parameters δ M , δ D and δ K . The stochastic convergence analysis is performed for n ≥ 5 which yields n 0 = 5. Consequently, parameters δ M , δ D and δ K are such that

Fig. 2 .

 2 Fig. 2. Normalized response spectrum of the mean reduced matrix model of the nonlinear dynamical system for DOF number j A (figure on the right) and for DOF number j B (figure on the left). The horizontal axis in log scale correspond to the frequency (in Hz).

Fig. 3 .

 3 Fig. 3. Graph of function n s → log 10 {Conv jA (n s , n)} for n = 5 (lower dotted line), n = 50 (upper thin solid line) and n = 150 (upper thick solid line).
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 7 Figure 7. Confidence regions of DOF number j A (figure on the right) and of DOF j B (figure on the left)

Figure 9 .

 9 Figure 9. Confidence region of DOF number j A (figure on the right) j B and of DOF (figure on the left) with a nonparametric equal to 0.00002 and a parametric level of uncertainties equal to 0.2 The upper line corresponds to the upper envelope dB + j (ξ,ν) and the lower line corresponds to the lower envelope dB - j (ξ,ν). The frequency ν is represented on the horizontal axis in log scale (in Hz).
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 9 Figure 9. Confidence region of DOF number j A (figure on the right) j B and of DOF (figure on the left) with a nonparametric equal to 0.2 and a parametric level of uncertainties equal to 0. The upper line corresponds to the upper envelope dB + j (ξ,ν) and the lower line corresponds to the lower envelope dB - j (ξ,ν). The frequency ν
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