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ANALYTICAL MODEL OF A WALL ACOUSTIC IMPEDANCE AND EXPERIMENTAL DATA

Soundproofing schemes constituted of multilayer systems are used for acoustic insulation in many area. In the context of the prediction of noise levels in vibroacoustic systems, numerical models are developed for the low and medium frequency ranges. Concerning models, a threedimensional finite element model can be used or a classical approximation consisting in modeling the multilayer system by an acoustic impedance can be used. This paper deals with a multilayer system constituted of a porous medium inserted between two thin plates. An experimental data basis was carried out from a vibroacoustic experiment performed by ONERA. In this paper, we present the boundary value problem consisting of 12 coupled partial differential equations with boundary conditions. We present the analytical method allowing the local acoustic impedance equivalent to this multilayer system to be constructed. This method consists in introducing the unbounded medium in the plane directions x 1 and x 2 associated with the bounded system. A two-dimensional space Fourier transform introducing the wave vector coordinates k 1 and k 2 is used. The third space coordinate x 3 relative to the finite thickness is preserved. For a given frequency and for k 1 and k 2 fixed, the boundary value problem in x 3 , constituted of 12 differential equations in x 3 whose coefficients depend on , k 1 and k 2 , with boundary conditions, is solved. By inverse Fourier transform with respect to k 1 and k 2 , the local wall acoustic impedance is deduced. The method which is proposed is not usual. Finally, a comparison of the experimental results with theoretical calculations is presented. These experimental results have also been used to construct an algebraic model of this acoustic impedance.

INTRODUCTION

The noise reduction can be obtained by adding absorptive treatments such as multilayer systems constituted of one or several porous media. The presence of the added porous media introduces difficulties in the modeling of the multilayer system. Indeed, the porous media are composed of a fluid phase coupled with a solid phase. There are several publications which have increased the understanding of the behavior of porous media (for example, see [START_REF] Zwikker | Sound Absorbing Materials[END_REF][START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers[END_REF][START_REF] Delany | Acoustical properties of fibrous materials[END_REF][START_REF] Allard | Acoustical properties of partially reticulated foams with high and medium flow resistance[END_REF][START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Bourbié | Acoustics of porous media[END_REF][START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF]). The methods used to solve the boundary value problem for the vibroacoustics behavior of a multilayer system are often based either on the three dimensional finite element methods [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Panneton | An efficient finite element scheme for solving the threedimensional poroelasticity problem in acoustics[END_REF][START_REF] Sgard | A numerical model for the low-frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings[END_REF][START_REF] Kang | A finite element model for sound transmission through foam-lined double panel structures[END_REF][START_REF] Göransson | A 3-D, symmetric, finite element formulation of the Biot equations with applications to acoustic wave propagation through an elastic porous medium[END_REF] which are limited to the low frequencies or the analytical methods [START_REF] Allard | Modelization of layered sound absorbing materials with transfert matrices[END_REF][START_REF] Lauriks | The acoustic transmission through layered systems[END_REF][START_REF] Bolton | Sound transmission through multi-panel structures lined with elastic porous materials[END_REF] which are limited to medium-and highfrequency ranges and unfortunately limited to simple systems. In this paper, we present the construction of an equivalent acoustic impedance of such a multilayer system for the mediumand high-frequency ranges using an analytical approach. The multilayer considered is a threedimensional open porous medium inserted between two thin plates. By hypothesis, this multi-layer system is infinite in the (x 1 , x 2 ) plane direction and is finite in the x 3 direction. From the boundary value problem of this multilayer system [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF], a new boundary value problem in x 3 is constructed by using a Fourier transform in x 1 and x 2 . Then, the acoustic impedance matrix is obtained by inverse Fourier transform. An experiment [17][18] has been developed to validate the theory. Using this experiment, an algebraic model of the equivalent acoustic impedance was developed and presented in [18]. In this paper, we present the boundary value problem using an isotropic model for each medium and we compare the numerical results with the experimental results.

EQUATIONS OF THE MULTILAYER SYSTEM IN FOURIER SPACE

The modeling of the open porous media is based on the Biot poroelasticity equations [START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers[END_REF][START_REF] Allard | Acoustical properties of partially reticulated foams with high and medium flow resistance[END_REF][START_REF] Coussy | Mécanique des milieux poreux[END_REF]. Concerning the two plates, denoted by P 1 and P 2 , the theory of Love-Kirchhoff with membrane motions is used. The multilayer system is considered as infinite in (x 1 , x 2 ) as presented in figure 1. The coordinates (x 1 , x 2 , x 3 ) of a point belonging to the porous medium are given in the cartesian system whose origin belongs to the reference-plane S of the multilayer system which is chosen as the coupling interface Σ 1 . The x 3 coordinate of the coupling interface Σ 1 (or Σ 2 ) is 0 (or H) (in which H is the thickness of the porous medium). The two-dimensional Fourier transform in x = (x 1 , x 2 ) is defined by

g(k, ω) = Ê 2 e i k.x g(x, ω) dx , g(x, ω) = 1 (2 π) 2 Ê 2 e -i k.x g(k, ω) dk , (1) 
in which the wave vector is k = (k 1 , k 2 ) and ω is the angular frequency. The two-dimensional spatial Fourier transform of the dynamical equations of the porous medium is written as

-ω 2 ρ 11 u s i -ω 2 ρ 12 u f i -i ω b (u f i -u s i ) -σ s ij,j = 0 , -ω 2 ρ 22 u f i -ω 2 ρ 12 u s i + i ω b (u f i -u s i ) -σ f ij,j = 0 . (2) 
The first equation is related to the motion of the solid phase in the porous medium and the second one to the motion of the fluid phase. Let u s , s and u f , f be the Fourier transform of the displacements and of the stress tensors corresponding to the solid and the fluid phases, respectively. Since the porous medium is considered as isotropic, the permeability tensor, corresponding to the viscous effects, is reduced to a scalar denoted by b. The mass densities ρ 11 , ρ 22 and ρ 12 correspond to the solid, to the fluid and to the coupling mass densities. The Fourier transform of the constitutive equation of the solid phase of the porous medium is given by

σ s 11 = A F (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F (-i k 1 ) u s 1 + C F (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 22 = A F (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F (-i k 2 ) u s 2 + C F (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 33 = A F (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F u s 3,3 + C F (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 12 = σ s 21 = -i B F 2 (k 2 u s 1 + k 1 u s 2 ) , σ s 13 = σ s 31 = B F 2 (u s 1,3 -i k 1 u s 3 ) , σ s 23 = σ s 32 = B F 2 (u s 2,3 -i k 2 u s 3 ) , (3) 
in which A F = (1+i ω a 1 ) ν E/((1+ν) (1-2 ν))+M (B -Φ) 2 , B F = (1+i ω a 1 ) E/(1+ν) and C F = Φ M (B -Φ).
The physical parameters of the solid phase are the Young modulus E, the Poisson ratio ν and the damping coefficient η such as η = ω a 1 . The porosity is denoted by Φ, and M and B are the Biot modulus and the coupling factor respectively. The Biot modulus is such that M (ω) = K e (ω)/Φ in which K e (ω) is the complex bulk modulus of air in the porous medium [START_REF] Allard | Acoustical properties of partially reticulated foams with high and medium flow resistance[END_REF]. The Fourier transform of the constitutive equation of the fluid phase of the porous medium is written as

σ f ii = E F (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) + C F (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) , i = 1 to 3 , (4) 
in which E F is defined by

E F = Φ 2 M .
For plates P 1 and P 2 , the two-dimensional spatial Fourier transform of the dynamical equations are written as

-ω 2 ρ P 1 h P 1 u P 1 + (1 + i ω a P 1 1 ) Ã 1 u P 1 = F 1 + f(ω) , -ω 2 ρ P 2 h P 2 u P 2 + (1 + i ω a P 2 1 ) Ã 2 u P 2 = F 2 , (5) 
in which u P r = (v P r 1 , v P r 2 , w P r ) is the displacement field of plate P r with r = 1, 2, ρ P r its mass density, h P r its thickness, a P r 1 its structural damping. The stiffness matrices à r with r = 1, 2 are given by

à r =          D m P r 2 [(1+ν P r )k 2 1 +(1-ν P r )(k 2 1 +k 2 2 )] D m P r 2 (1+ν P r )k 1 k 2 0 D m P r 2 (1+ν P r )k 1 k 2 D m P r 2 [(1+ν P r )k 2 2 +(1-ν P r )(k 2 1 +k 2 2 )] 0 0 0 D f P r (k 2 1 +k 2 2 ) 2          , (6) 
in which

D m P r = E P r h P r /(1 -(ν P r ) 2 ), D f P r = E P r h 3 P r /(12 (1 -(ν P r ) 2 )
) and E P r , ν P r are the Young modulus and the Poisson ratio of plate P r . Vectors F 1 and F 2 , correspond to the forces induced by the porous medium to plates P 1 and P 2 respectively, and are such that

F 1 =    σ s 13 (0) σ s 23 (0) σ s 33 (0) + σ f 33 (0) -i h P 1 2 (k 1 σ s 13 (0) + k 2 σ s 23 (0))    , F 2 =    -σ s 13 (H) -σ s 23 (H) -σ s 33 (H) -σ f 33 (H) -i h P 2 2 (k 1 σ s 13 (H) + k 2 σ s 23 (H))    . (7) 
The experiment described in [17,18] gives measurements of the acoustic impedance of the multilayer system. In the experiment, the multilayer system is finite in plane directions, whereas, for the medium-and high frequencies, the analytical model uses an infinite multilayer system in plane directions which is associated with the finite multilayer system of the experiment. Normal point forces are successively applied to the 25 points in plate P 1 defined in figure 2.

The measured responses are the normal accelerations at the 25 points in plate P 1 and at the corresponding 25 points in plate P 2 . The 25 points on plate P 2 are directly above the 25 points on plate P 1 . The 25 × 25 impedance matrix is deduced for which each term is equal to the ratio of the normal point force with the difference between the normal velocities to plates P 1 and P 2 . In order to validate the analytical model, normal point forces are used as input instead of a pressure field. Each medium is homogeneous and isotropic in (x 1 , x 2 ) plane. Then, the impedance matrix is constructed by using an analytical approach for which point forces are successively applied to 25 points of the mesh defined in figure 2, similarly to the experiment.

We then have f(ω) = (0, 0, f (ω)) in equation Eq. ( 5) in which the modulus f (ω) is such that p(x, ω) = f (ω) δ 0 (x) with δ 0 the Dirac function. 

u s α = v P 1 α + i h P 1 2 k α w P 1 , u s 3 = w P 1 , u f 3 = w P 1 , on Σ 1 , α = 1, 2 , u s α = v P 2 α -i h P 2 2 k α w P 2 , u s 3 = w P 2 , u f 3 = w P 2 , on Σ 2 . ( 8 
)
Equations Eqs. ( 2) to ( 8) define the boundary value problem of the multilayer system formulated in variables k 1 , k 2 and x 3 .

EXPRESSION OF THE EQUIVALENT ACOUSTIC IMPEDANCE

The boundary value problem constructed in Section 2 is constituted of 12 coupled differential equations in x 3 with boundary conditions, whose coefficients depend on ω and k. The impedance density function z

(x -x ′ , ω) is such that [18] p(x, ω) = x ′ ∈S z(x -x ′ , ω) ∆v(x ′ , ω) dS x ′ , (9) 
in which x and x ′ are the position of the normal point force and the measurement point in the reference-plane S and where dS x ′ is the area measure. The difference ∆v(x ′ , ω) of the normal velocities at point x ′ is given by ∆v(x ′ , ω)

= v P 1 (x ′ , ω) -v P 2 (x ′ , ω)
where, for r = 1, 2 , v P r (x ′ , ω) is the normal velocity to plate P r . The space Fourier transform of Eq. ( 9) is written as

p(k, ω) = i ω z(k, ω) ∆w(k, ω) , (10) 
in which ∆w(k, ω) = w P 1 (k, ω) -w P 2 (k, ω) is the Fourier transform of the difference ∆w(x, ω) = w P 1 (x, ω) -w P 2 (x, ω) of the normal displacements at point x. Solving the boundary value problem in x 3 allows an equation relating f (ω) and ∆w(k, ω) to be constructed. Substituting the Fourier transform of the constitutive equations into the Fourier transform of the dynamical equations of the plates yields an equation between the plate displacements, the porous-medium displacements and the normal point force. Substituting the Fourier transform of the constitutive equations of the porous medium into the Fourier transform of its dynamical equations and using the Fourier transform of the boundary conditions, allows the displacements of the porous medium to be eliminated in x 3 = 0 and x 3 = H [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF]. Such a method is not self evident due to the conditioning problems, and special developments have been carried out [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF].

The matrix of the porous medium has eight eigenvalues and the conditioning problems are due to four eigenvalues whose real part are positive. Finally, the Fourier transform of the dynamical equations of the two plates can be rewritten as

P u P = F + F e , (11) 
in which P , F and F e are defined below. The matrix P is defined by P = P 2 0 0 P 1 in which P 1 and P 2 are given by

P 1 = -ω 2 ρ P 1 h P 1 u P 1 + (1 + i ω a P 1 1 ) Ã 1 u P 1 , P 2 = -ω 2 ρ P 2 h P 2 u P 2 + (1 + i ω a P 2 1 ) Ã 2 u P 2 . ( 12 
)
8th Int. Conf. on Recent Advances in Structural Dynamics, Southampton, [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF] The external normal point force is denoted by F e such that F e = (0, f). From the eliminating process described above, the force F = (F 2 , F 1 ) induced by the porous medium to the two plates is written as

F = AE(k, ω) u P , (13) 
in which AE(k, ω) is a complicated expression detailed in reference [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF]. Substituting Eq. ( 13) into Eq. ( 11), yields

u P (k, ω) = Å -1 (k, ω) F e (ω) with Å(k, ω) = P (k, ω) -AE(k, ω) , (14) 
which can be rewritten as

∆w(k, ω) = h(k, ω) f (ω) with h(k, ω) = [Å -1 (k, ω)] 66 -[Å -1 (k, ω)] 36 . (15) 
From Eq. ( 15), we deduce that

∆w(x, ω) = Ê 2 h(x -x ′ , ω) p(x ′ , ω) dx ′ . ( 16 
)
Since p(x, ω) = f (ω) δ 0 (x) and f (ω) = 1 (experimental value), we obtain

∆w(x, ω) = h(x, ω) with h(x, ω) = 1 (2 π) 2 Ê 2 e -i k.x h(k, ω) dk . (17) 
Since the media are isotropic in (x 1 , x 2 ) plane, we have

h(k, ω) = h(k, ω) , ∆w(k, ω) = ∆w(k, ω) , in which k = ||k|| , h(x, ω) = h(r, ω) , ∆w(x, ω) = ∆w(r, ω) , in which r = ||x|| , (18) 
and consequently,

∆w(r, ω) = 1 2 π +∞ 0 k J 0 (kr) h(k, ω) dk , (19) 
in which J 0 (kr) is the zero-order Bessel function. This equation gives a continuous expression of the normal displacement due to a normal point excitation located at origin 0. Since the experimental impedance matrix is constructed for 25 point forces, in order to validate the analytical model, we use a similar construction. Let [∆W (ω)] be the complex matrix whose elements are such that [∆W (ω)] jk = ∆w(r jk , ω) in which r jk = ||M j M k || is the distance between the driving point M k and the receiving point M j located at the nodes of the mesh defined in figure 2, and where ∆w(r, ω) is calculated with Eq. ( 19). The associated impedance matrix is then written as

[Z mod (ω)] = 1 i ω [∆W (ω)] -1 . ( 20 
)
In Eq. ( 19), the integral is calculated numerically using adapted approximation.
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NUMERICAL RESULTS AND EXPERIMENTAL COMPARISONS

Physical parameters of the materials. The multilayer system is constituted of two isotropic aluminium plates P 1 and P 2 , whose thickness are h P 1 = 1 mm and h P 2 = 3 mm, and of a polyurethan foam which is modeled by an isotropic viscoelastic open porous medium saturated in air. Physical parameters of both plates are given in table 1.

Parameter Value

Young modulus E P (Pa) 7.4 10 10

Poisson ratio ν P 0.33

Damping factor η P 10 -4

Mass density ρ P (kg.m -3 ) 2800

Table 1. Physical parameters for plates P 1 and P 2 .

Since the fluid phase of the porous medium is air, we use the usual parametric values for air.

Concerning the solid phase, its physical parameters and the coupling parameters between the two phases are given in table 2.

Parameter Value

Mass density ρ 1 (kg.m -3 ) 34.2

Young modulus E (Pa) 110000

Shear modulus G (Pa) Local acoustic impedance. The local acoustic impedance corresponds to the impedance from one point on P 1 to another point on P 2 , directly over the point in P 1 and is given by the diagonal terms multiplied by an adapted elementary surface of the impedance matrix defined by Eq. ( 20) [18]. For two points 8 and 16, figures 3 and 4 display the analytical model of the local impedance (solid line) as a function of the frequency and compared with the experimental results (dash line). For these two points, the analytical model is very close to the experimental results. For the other points, the quality of the comparisons is similar. In addition, since the diagonal terms are similar, an averaging over the diagonal terms is performed. Figure 5 shows this averaging for the analytical local impedance and for the experiment local impedance. There is again a good agreement between analytical and experimental results. Cross acoustic impedance. The acoustic impedance of the multilayer system is local for frequencies larger than 300 Hz [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF]18]. The cross acoustic impedance corresponds to the transfert impedance from one point on P 1 to another point on P 2 , not directly over the point in P 1 . The aspect of these transfert impedances, given by the off-diagonal terms of the impedance matrix, as a function of the distance r is an exponential decreasing function with r, as it can been seen in figures 6 to 9. Figures 6 and7 correspond to frequency 500 Hz and figures 8 and 9 to frequency 1400 Hz. Figures 6 and8 display all the off-diagonal terms of the real part and imaginary part of the impedance matrix (circles correspond to the analytical model and crosses to the experimental data), as functions of the distance r. It should be noted that, for the imaginary part, there is an additional phase for r = 0 depending on the frequency [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système 8th[END_REF]18]. Figures 7 and9 display the average values of these off-diagonal terms at the same distance r. 

CONCLUSIONS

This paper presents the construction of an equivalent acoustic impedance for a multilayer system constituted of a porous medium inserted between two thin plates. The boundary value problem is solved by using a spectral approach. Validation is obtained by comparing theoretical predictions with experimental results in the medium-and high-frequency ranges. The experimental comparisons are satisfactory for both the local acoustic impedance and the cross acoustic impedance. 

Figure 1 .

 1 Figure 1. Multilayer system infinite in the (x 1 , x 2 ) plane direction. The x 3 direction is finite.

Figure 2 .

 2 Figure 2. Position of the 25 measure points in plate P 1 and in the corresponding 25 points in plate P 2 .Finally, the two-dimensional spatial Fourier transform of the boundary conditions on the interfaces between the two plates and the porous layer are written as

Figure 3 .

 3 Figure 3. Local acoustic impedance at point 8. Real part on the left, imaginary part on the right. Analytical model (solid line), experimental results (dash line).

Figure 4 .

 4 Figure 4. Local acoustic impedance at point 16. Real part on the left, imaginary part on the right. Analytical model (solid line), experimental results (dash line).

Figure 5 .

 5 Figure 5. Average local acoustic impedance. Real part on the left, imaginary part on the right. Analytical model (solid line), experimental results (dash line).

Figure 6 .-

 6 Figure 6. Off-diagonal terms of the acoustic impedance matrix as a function of distance r at 500 Hz. Analytical model (circle), experimental results (cross). Real part on the left, imaginary part on the right.

Figure 7 .

 7 Figure 7. Average of all the off-diagonal terms of the acoustic impedance matrix at the same distance r, function of distance r, at 500 Hz. Analytical model (circle), experimental results (cross). Real part on the left, imaginary part on the right.

Figure 8 .

 8 Figure 8. Off-diagonal terms of the acoustic impedance matrix as a function of distance r at 1400 Hz. Analytical model (circle), experimental results (cross). Real part on the left, imaginary part on the right.

Figure 9 .

 9 Figure 9. Average of all the off-diagonal terms of the acoustic impedance matrix at the same distance r, function of distance r, at 1400 Hz. Analytical model (circle), experimental results (cross). Real part on the left, imaginary part on the right.

Table 2 .

 2 Solid phase parameters and fluid-solid coupling parameters for the porous medium.

	E
	2(1+ν)
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