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ABSTRACT

It is known that the forced response of mistuned bladed disks

can strongly be amplified in comparison with the forced response

of the tuned system. The random character of mistuning thus re-

quires the construction of probabilistics models of random uncer-

tainties. This paper presents a nonparametric probabilistic model

of random uncertainties which is adapted to the problematics of

the blade mistuning. This nonparametric approach allows all the

uncertainties yielding mistuning (manufacturing tolerances, dis-

persion of materials) to be taken into account and includes also

the uncertainties due to the modeling errors. This new proba-

bilistic model takes into account both the mistuning of the blade

eigenfrequencies and the blade modal shapes. The first point

concerns the construction of this nonparametric approach in or-

der to perform a mistuning analysis. The second part is devoted

to the inverse problem associated with the manufacturing toler-

ances. A relationship between the manufacturing tolerances and

the level of mistuning is also constructed.

NOMENCLATURE
N Number of blades

na Number of DOFS of a blade

ni Number of internal DOFS of a blade

nΣ Number of DOFS on the coupling interface of a blade

Ng Number of generalized coordinates of a blade

Na Dimension of the random reduced matrix of a blade

N
 
a Rank of the random reduced matrix of a blade

ñ Dimension of the second basis of modal reduction!
A " T Transpose of matrix

!
A "

tr # ! A "$% Trace of matrix
!
A "

det # ! A "$% Determinant of square matrix
!
A "&'&

U
&'&

Hermitian norm of vectorU such that&(&
U

&(&)* # UTU % 1 + 2&'&'!
A " &(& F Frobenius norm of matrix

!
A " such that&(&'!

A " &(& F *
tr # ! A " ! A " T % 1 + 2!

In " n , n identity matrix-
Mathematical expectation. # X / x % Probability that random variable X is greater

than a given level x0
n 1 p #234% Set of all the n , p real matrices0
n #536% Set of all the n , n real matrices0  
n #536% Set of all the positive-definite symmetric n , n

real matrices0  
0

n #234% Set of all the positive (semi-positive definite)

symmetric n , n real matrices
δi j Kronecker symbol such that δi j

*
1 if i

*
j and

δi j
*
0 if i 7* j8

B # b % Indicatrix function on any set B such that8
B # b % * 1 if b 9 B and 8

B # b % * 0 if b : B

INTRODUCTION

In the context of turbomachinery rotors, it is fundamental

to distinguish the nominal bladed-disk, which can be analyzed

by using its cyclic symmetry
!
1 ";< !

4 " from the manufactured

bladed-disk. As a matter of fact, manufacturing tolerances and

dispersion of materials create many uncertainties on the geom-

etry, on the boundary conditions and on the material properties

of each blade. These uncertainties create small differences from
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one blade to another, which are referred as to mistuning. Un-

fortunately, the mistuning can induce strong vibrations for the

forced response of the bladed-disks so that spatial localizations

and large amplifications can be observed in the dynamic forced

response on one or a few blades (see the early works
 
5 ! "  

7 ! ).
The random character of the blade mistuning is a motivation to

construct probabilistic models of random uncertainties. Paramet-

ric models are widely used to model the random uncertainties in

structural dynamics. In the context of the blade mistuning, an ex-

act parametric approach would require to identify all the uncer-

tain parameters which cause mistuning. Furthermore, a complete

probabilistic parametric description should be required, includ-

ing the use of stochastic fields for modeling geometric uncertain-

ties. Then functions mapping the domain of uncertain parame-

ters into the mass, damping and stiffness finite element matrices

should be constructed. Such a probabilistic parametric method

is not very simple to introduce in the context of the mistuned

bladed-disks and above all requires a big experimental effort in

order to estimate all the probabilistic quantities allowing stochas-

tic fields to be decribed using mathematical statistics. The very

simple probabilisticmodel of random uncertaintieswhich consist

in modeling the mistuning by considering Youngmodulus uncer-

tainties of the blades seems to be very unsufficient. Blade eigen-

frequencies are mistuned through their stiffnesses parameters but

the corresponding eigenmodes remain unchanged with respect to

the tuned case (see for instance
 
8 ! "  

12 ! for lumped parameters
models,

 
13 ! "  

15 ! for reduced order models issued from finite

element models). Recently, probabilistic approaches concerning

the blade eigenmodes mistuning have been developed
 
16 ! "  

19 !
and showed that there exist differences with respect to the prob-

abilistic approach currently used. In this paper, the construction

of a new probabilistic model of random uncertainties referred as

to a nonparametric approach is presented. Such a nonparametric

approach differs from a parametric one because the knowledge of

the uncertain parameters is not required. The probability model

is directly constructed from the generalized matrices which re-

sult from a mean reduced matrix model. It consists of a probabil-

ity model for symmetric positive-definite real random matrices

which has been constructed using the maximum entropy princi-

ple and using the available information
 
20 ! "  

21 ! . The avail-

able information includes a mean reduced matrix model which

is constructed by dynamic substructuring of the bladed-disk with

cyclic symmetry. This nonparametric probabilistic model takes

into account all uncertainties yielding mistuning, that is to say,

it includes blade eigenfrequencies and blade modal shapes un-

certainties on a coherent way. The first point of this paper deals

with the construction of this nonparametric approach in order to

perform a mistuning analysis.

Furthermore, one of the major cause concerning the blade

mistuning is mainly due to the tolerances encountered during the

manufacturing process of the blade (outline shapes, surfaces fin-

ishing...). The tolerances specified during the conception phase

define the acceptable margin of fluctuations of the blade charac-

teristics allowing the bladed-disk to work correctly. In a context

of mistuning, the good working of a turbomachinery is charac-

terized by the amplification factor between the mistuned and the

maximum tuned response over a frequency band. In the industry

of turbomachineries, a leading stake is to specify the tolerancing

rate for which the amplification of response does not exceed a

critical magnification factor
 
22 ! . Such an inverse problem us-

ing a probabilistic parametric approach would not be appropri-

ate due to the complexity of modeling tolerances. An original

methodology is proposed for solving this inverse problem using

the nonparametric approach. The robustness of such a proba-

bilistic model is justified by its simplicity since it requires the

only use of a reduced matrix model of a blade and since each

randommatrix (mass, stiffness and damping) is characterized by

one scalar allowing the dispersion of the model to be controlled.

In a first part, the mean reduced matrix model for a blade

is constructed; the following part is devoted to the construction

of the random reduced matrix model using the main results con-

cerning the nonparametric model of random uncertainties. The

third part presents the methodology of the mistuning analysis for

the complete structure. In a fourth part, the construction of an

a priori probabilistic model for manufacturing tolerances is for-

mulated. This probabilistic model is constructed in the goal to

identify the data parameters used by the probability model of the

nonparametric approach. The methodology for solving the in-

verse problem for specifying manufacturing tolerances is then

investigated. Finally, a numerical example is presented.

MEAN REDUCED MATRIX MODEL FOR A BLADE

We are interested in the linearized vibrations of a fixed struc-

ture with an N-order cyclic symmetry around a static equilibrium

configuration considered as a natural state without prestresses

and whose model will be called the mean model of the struc-

ture. The structure is submitted to external forces and the vi-

bration analysis is performed in the frequency band
 
. The

methodology and the results presented can be extended with-

out difficulty to the case of rotating structures. The structure

Ω is divided into N ! 1 substructures, that is to say one disk

Ωd fixed on a part of his boundary and N identical blades Ω j,

for j belonging to " 0 #$%&%$%&# N " 1 ' with free boundary. Each blade
j is coupled with the disk by the coupling interface Σ j such that(
j )*+ 0 # , , , # N - 1 . Σ j

$
Σ. Since the mistuning is assumed to be statis-

tically independent from blade to blade, the blades are treated as

individual components which are reduced by the Craig & Bamp-

ton method
 
23 ! while the disk remains a nonreduced substruc-

ture. In order to simplify the mathematical notations, we choose

to cancel the exponent j related to blade j when no confusion is

possible.

For all ω in band
 
, the mean finite element model for blade

j with free coupling interface is written as

%&" ω2
 
M !/! iω  

D!/!  
K ! ' u % ω ' $

f % ω '0# (1)

in which u % ω ' and f % ω ' are the 1 na-valued vectors of the mean
displacements and of the external forces respectively and where
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M !   D ! and  

K ! are the mean mass, damping and stiffness sym-
metric na " na real matrices. The mass matrix belongs to # $

na
%&'()

while damping and stiffness matrices belong to
# $ 0
na

%&'() since Ω j

has a free boundary. The block decomposition with respect to

the ni internal and nΣ
*
na + ni coupling interface DOFs is then

written as

u % ω ) *
 

ui % ω )
uΣ % ω )!"  f % ω ) *

 
fi % ω )
fΣ % ω )!" !

 
0

fΣ , c % ω )#"  (2)

 
E ! *

  
E ii !  

E iΣ ! 
E iΣ ! T  

EΣΣ ! "  E
* " M  D  K # $ (3)

The Craig & Bampton decomposition
 
23 ! with Ng fixed

coupling interface modes is written as 
ui % ω )
uΣ % ω )#" *  

H !
 

q % ω )
uΣ % ω ) "   

H ! *
  

Φ !  
S ! $ !  
InΣ !%"  (4)

where q % ω ) is the % Ng -valued vector of the mean generalized

coordinates of blade j,
 
Φ ! is the #

ni , Ng %-' ) -valued matrix whose
columns are the eigenvectors "&'

1
 ('

2
 &$'$&$  ('

Ng
# of the structure

with a fixed coupling interface,
 
S ! is the # ni , nΣ %-' ) -valued matrix

defined by
 
S ! * +  

Kii ! ( 1  KiΣ ! . Using Eqs (1),(4) we obtain

 
Ared % ω ) !

 
q % ω )
uΣ % ω ) " *   

Φ ! T fi % ω ) 
S ! T fi % ω ) ! fΣ % ω ) ! fΣ , c % ω )!"  (5)

where
 
Ared % ω ) ! defines the mean reduced dynamic stiffness

of the blade such that

 
Ared % ω )-! * + ω2

 
Mred !)! iω  

Dred !)!  
Kred !  (6)

and where
 
Mred !   Dred !   Kred ! are such that, definingNa as Na *

Ng ! nΣ

 
Mred ! *  

H ! T  M !  H !   Mred ! . # $
Na
%&'()  (7) 

Dred ! *  
H ! T  D !  H !   Dred ! . # $ 0

Na
%&'()  (8) 

Kred ! *  
H ! T  K !  H !   Kred ! . # $ 0

Na
%-'/) $ (9)

Introducing the block decomposition derived from Eq. (5),

we obtain

 
Ared % ω ) ! *

  ) % ω ) !  
Ac % ω ) ! 

Ac % ω ) ! T  
AΣ % ω )-!*" $ (10)

NONPARAMETRIC MODEL OF RANDOM UNCERTAIN-

TIES FOR BLADES MISTUNING

The nonparametric approach is based on the use of a prob-

abilistic model constructed from the generalized matrices result-

ing from a mean reduced matrix model. The probability model

is constructed on the set of all the positive-definite matrices us-

ing the available information and the maximum entropy princi-

ple. The available information concerns the knowledge of the

mean reduced matrices which are equal to the mean values of

the random reduced matrices and concerns the existence of the

second-order moment of their inverse. The last condition assure

the existence of the random response " U % ω )  ω . * # as a second-
order stochastic process indexed by

*
. The basis of this theory

is completely developed and validated for linear
 
20  21 ! and for

nonlinear
 
24 ! problems. In particular, the construction of the

probability model and the necessity of normalizing the random

matrices are justified. Furthermore, substructuring techniques al-

lowing nonhomogeneous uncertainties to be described and using

the nonparametric approach have been validated
 
25 ! .

Random reduced matrix model for the blade

First of all, the bladed-disk is decomposed in substructures

in order to consider random uncertainties which are statistically

independent from blade to blade. Thus the following reason-

ing can be limited to one blade j. The main results concerning

the nonparametric model of random uncertainties in structural

dynamics are used (see
 
20 !   21 !   24 ! and  

25 ! ) and adapted to

the mistuning problematics of each blade. Such a probabilis-

tic model is not implemented from a mean finite element matrix

model of the blade but from a mean reduced matrix model of

the blade. Since the investigated structure is the whole bladed-

disk, the mean reduced matrix model of the blade has to allow a

reduced matrix model of the whole structure to be constructed.

This justifies the use of the Craig and Bampton dynamic sub-

structuring method, which keeps the degrees of freedom of the

coupling interface. Thus, the probabilistic nonparametric model

of the blade is implemented from the mean reducedmatrix model

described above. The random vibration equation derived from

Eq. (5) is then written as

 
Ared % ω ) !

 
Q % ω )
UΣ % ω ) " *   

Φ ! T fi % ω ) 
S ! T fi % ω ) ! fΣ % ω ) ! FΣ , c % ω ) "  (11)

where

 
Ared % ω ) ! * + ω2

 
Mred !)! iω  

Dred !)!  
Kred !  (12)

is the random dynamic stiffness of the free-interfaced blade

j in which
 
Mred !   Dred ! and  

Kred ! are respectively
# $
Na
%-'/) -,# $ 0

Na
%&'() - and # $ 0

Na
%-'/) -valued independent random variables cor-

responding to the random reduced mass, damping and stiffness

matrices and such that

0 "  Mred ! # *  
Mred !  (13)
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  !
Dred " ! # !

Dred " " (14)  !
Kred " ! # !

Kred " # (15)

The vectors FΣ $ c % ω & , UΣ % ω & and Q % ω & define the random
coupling forces, the randomdisplacements acting on coupling in-

terface Σ j and the random generalized coordinates, respectively.

The dispersion level of these three independent random matri-

ces are then controlled by the three scalar parameters δM,δD, δK
which are called the dispersion parameters.

Probability model of the randommatrices for one blade

In order to construct the probability model of the random

independent matrices
!
Mred " , !

Dred " and !
Kred " , a normalization

process has to be done before constructing the probabilitymodel.

Normalization of the random reduced matrices

The normalization of random reducedmatrices
!
Mred " , ! Dred " and!

Kred " requires the factorization of their mean matrices. Since

mean mass matrix
!
Mred " is positive-definite, the Cholesky fac-

torization yields

!
Mred " # !

LM " T ! LM " " (16)

in which
!
LM " is an upper triangular matrix in

'
Na %() & . Since

matrices
!
Kred " and !

Dred " are positive semi-definite with a rank
assumed to be equal to N

*
a , the factorization is carried out thanks

to the spectral decomposition of the matrices. It can easily be

proved that

!
Kred " # !

LK " T ! LK " " !
Dred " # !

LD " T ! LD " " (17)

where
!
LK " and !

LD " are belonging to '
N  a $ Na %+),& . Each random

matrix is then written as

!
Mred " # !

LM " T ! GM " ! LM " " (18)!
Dred " # !

LD " T ! GD " ! LD " " (19)!
Kred " # !

LK " T ! GK " ! LK " " (20)

in which
!
GM " " ! GD " and !

GK " are independent normalized ran-
dom matrices with values in

' *
Na

%() & , ' *
N  a %() & and ' *

N  a %() & .

Construction of the probability model of the

normalized random matrices

From Eqs. (13),(14),(15),(18),(19) and (20), it can be deduced

that the mean values of random matrices
!
GM " " ! GD " and !

GK "
are such that

  !
GM " ! # !

GM " # !
INa " " (21)  !

GD " ! # !
GD " # !

IN  a " " (22)  !
GK " ! # !

GK " # !
IN  a " # (23)

The dispersion of these random matrices are controlled by

the strictly positive real parameters δM " δD and δK defined by

δE
# !  "# -.- !

GE " / !
GE " -0- 2F $-.- !

GE " -0- 2F % 1
2

with E
#  M " D " K ! # (24)

Below,
!
G " denotes !

GM " " ! GD " and !
GK " , n denotes Na, N *

a and

N
*
a and δ denotes δM " δD and δK . From the theory

!
20 " 21 " , it is

proved that for fixed n & n0, where n0 is a fixed integer such that
n0 & 1, dispersion parameter δ has to be chosen such that

0 ' δ '() n0 $ 1

n0 $ 5
# (25)

It should be noted that, in practice, n0 is chosen equal to n. Since

in general, the rank of the random matrix is large enough, the

upper bound of parameter δ is close to 1. Then the probability

density function with respect to the volume element

d̃G
#
2n * n % 1 + 1 4 ∏

1 , i , j , nd !G " i j (26)

is written as

p -G . % !G "2& # 3/0  n *123+ % !G "2&45 CG
5 % det % !G " & & * 1 % δ2 +4* 2δ +56 1 * n * 1 + 5 e %7* n * 1 +8* 2δ +56 1tr * -G . + " (27)

whereCG is the positive constant of normalization such that

CG
# % 2π & % n * n % 1 + 1 4 9 n * 1

2δ2 : n * n * 1 +8* 2δ2 +;6 1
∏n
j < 1Γ % n * 1

2δ2
$ 1 % j

2
& " (28)

in which Γ % z & is the gamma function defined for all z 6 0 as

Γ % z & #=> ∞
0 t

z % 1e % tdt.
The covariance tensor defined by

CGjk $ j ? k ? #  # % ! G " jk / !
G " jk &7% ! G " j ? k ? / !

G" j ? k ? & $
is such that

CGjk $ j ? k ? # δ2

n $ 1

#
δ j ? kδ jk ? $ δ j j ? δkk ? $ # (29)

Algebraic representation of normalized matrices

The following algebraic representation of random positive-defi-

nite symmetric real matrix
!
G" allows a procedure for the Monte
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Carlo numerical simulation of random matrix
 
G ! to be defined.

Random matrix
 
G ! is written as

 
G ! "  

LG ! T  
LG !  (30)

in which
 
LG ! is an upper triangular random matrix with values

in
#
n $%& ' such that
(1) random variables !  

LG ! j j   j  j ! " are independent;
(2) for j ! j ! , real-valued random variable

 
LG ! j j  can be

written as
 
LG ! j j  "

σnU j j  in which σn
"

δ $ n # 1 ' $ 1 ( 2 and where
U j j  is a real-valued Gaussian random variable with zero mean

and variance equal to 1;

(3) for j
"
j ! , positive-valued random variable

 
LG ! j j can

be written as
 
LG ! j j "

σn " 2V j in which σn is defined above

and whereV j is a positive-valued gamma random variable whose

probability density function pV j $ v ' with respect to dv is written
as

pV j $ v ' " ) " # $ v ' 1

Γ $ n * 1
2δ2

# 1 $ j
2

' v
n # 1

2δ2
$ 1 # j

2 e $ v % (31)

METHODOLOGY FOR MISTUNING ANALYSIS

The mean reducedmatrix model for one blade is constructed

and is assembled with the mean finite element model of the disk

sector. Then, cyclic symmetry is used to compute the mean

eigenvectors related to the mean generalized eigenvalue problem

of the mean reduced matrix model for the bladed disk. The mean

eigenvectors associated with the ñ first mean eigenvalues con-

stitute the mean projection basis which will be used to reduce

the cost of the numerical simulations. The mistuning analysis

is performed using a Monte Carlo numerical simulation. Each

realization of the random mass, damping and stiffness matrices

related to the random reduced matrix model of each blade is con-

structed using the algebraic representation described above. The

assemblage of these random matrices related to the blades with

the mean finite element model of the disk is carried out and the

random reduced matrix model of the complete structure is re-

duced on the mean projection basis. A realization of the random

observation is then computed. Such a random observation is the

random dynamical magnification factor ! B $ ω '& ω + ' " , which is
the positive real-valued stochastic process indexed by

'
such that

B $ ω ' "
sup

j ()* 0 , + + + , N $ 1 ,
-.-
U j $ ω ' -/--.-

u j
-.-

∞

 -/-
u j

-/-
∞

"
sup
ω (#$

-/-
u j $ ω ' -/-  (32)

where U j $ ω ' is the displacement of the mistuned blade j and

where u j $ ω ' is the displacement of the tuned blade j. More-

over, the random dynamical magnification factor over narrow

frequency band
'
is defined by

B∞
"
sup
ω (%$ B $ ω '&% (33)

The ns realizations B∞ $ θ1 '& -%.%.%  B∞ $ θns ' of random observation

B∞ are then calculated and mathematical statistics are used for

estimating probabilistic quantities related to random variable

B∞.

PROBABILISTIC MODEL FOR MANUFACTURING TOL-

ERANCES

In order to estimate the dispersion parameters δM and δK
of the nonparametric model related to the blades, a parametric

model of random geometrical uncertainties of the blades is intro-

duced. The construction of this a priorimodel is done in the goal

to establish a relationship between the tolerance specification and

the dispersion parameters δM and δK of the nonparametric ap-

proach. In other terms, if the parametric probabilistic model was

used in the way to model the geometrical uncertainties, the re-

sulting mistuning analysis would be wrong due to the relation-

ship between the uncertain parameters and the displacement field

which is nonlinear. It should be noted that the nonparametric

probabilistic model uses a probability distribution which is com-

pletely coherent with the available information. Then, the para-

metric probabilistic model presented in this Section is not used

for constructing the probability density function of the nonpara-

metric model but is only used for estimating the value of the dis-

persion parameters δM and δK which are the free parameters of

the nonparametric model. From now on, it is assumed that all

the random parametric uncertainties inducing the mistuning of

the blade are mainly due to the geometrical perturbations of the

blades. Since we are interested in the mistuning induced by the

manufacturing process of the blades, then the analysis can be

carried out for one blade.

Construction of an a priori parametric probabilistic

model

Inaccuracies are created during the manufacturing process.

Consequently, all the manufactured blades are different from

each other and from the nominal blade. This nominal blade is

used to specify the tolerances, which are the authorized margin

of the blade-characteristics fluctuations. The dimensional toler-

ances are defined as the upper bound that the dimensions can

reach with respect to the nominal dimension (chord or length of

the blade...). The geometrical tolerances are related to the varia-

tions of the global form with respect to the nominal blade form

(authorized spherical envelop centered on the nominal blade pro-

file...). The principle of independency precises that each dimen-

sional or geometrical requirement should occur independently.

Surface tolerances of higher order like waves or roughness can

be defined too. Let s +&'() and let t + & s be the vector of the
nominal parameters from which the tolerances can be defined.

A probabilistic model of the fluctuations around these parame-

ters has to be defined. Let T
" $*+ 1  .%-%.%  ,+ s ' be a second-order

random variable with values in Bs + & s characterizing the fluc-
tuation of all the parameters involved by tolerancing. Let Bs be
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such that:

Bs
 s

∏
r  1

! " τr  τr #  τr $ % &   ! r $ ! 1 "#"$" s %  (34)

where τr or " τr define the upper or lower allowable fluctuation
of parameterTr. Using the independency principle, random vari-

ables  1  $"#"#"  ! s are independent. Consequently, probability den-
sity function pT ' t ( with respect to measure dt  dt1 "$"#" dts of % s
is written as

pT ' t (  pT1 ) & & & ) Ts ' t1  #"#"$"$ ts (  
s

∏
r  1

pTr ' tr ('" (35)

Using Eq. (35) and using the maximum entropy principle, the

probability density function of random variable T is written as

pT ' t (  s

∏
r  1

1

2τr
" (36)

Consequently, ! r $ ! 1  #"$"#"$ s %  ! r is a centered uniform random

variable whose standard deviation is such that σr
 

τr "#$ 3.

Finite element discretization

Let Ω be the domain of the nominal blade and let Ω̃ ' T ( be
the random domain of the manufactured blade. These domains

are such that there exists a one-to-one mapping g defined by

Ω "%& Ω̃ ' T (
x '& g ' x;T (' (37)

such that ! x $ Ω  x̃  g ' x;T ( with det ∂g ! x;T "
∂x

* 0 almost surely.

Mass density ρ̃ and elasticity tensor ˜
(
are defined on Ω̃ ' T ( by

ρ̃ ' x̃ (  
ρ ' x (' (38)

˜
( ' x̃ (  ( ' x (  x̃

 
g ' x;T (  )! x $ Ω  (39)

where ρ and
(
are the mass density and the elasticity tensor of the

nominal blade. Letm j  j $ ! 1  $"#"$"# Nn % andM j  j $ ! 1  #"$"#"# Nn % be
the nodes of the mesh of Ω and Ω̃ ' T ( , where Nn denote the num-
ber of nodes of the mesh. The nodes m1  #"#"$"$ mp andM1  #"#"$"$ Mp,
p # Nn are the nodes belonging to ∂Ω and ∂Ω̃ ' T ( respectively.
M j is explicitly defined by

M j

 
f j ' m1  #"$"#"  mNn ;T (  *! j $ ! 1  $"#"#"# p %  

M j

 
m j  *! j $ ! p ( 1  #"#"$"  Nn % " (40)

The mappings f1  #"#"$"$ fp can easily be constructed from the pa-

rameterized surface. Let ! !M ' T ( #  !K ' T (+# % be the random mass

and stiffness matrices with values in ! , &
na
'-%.( / , &

0
na

'+%0('% result-
ing from the finite element discretization of Ω̃ ' T ( .

METHODOLOGY FOR THE INVERSE PROBLEM USING

THE NONPARAMETRIC APPROACH

In the previous section, a probabilistic parametric model of

random uncertainties has been constructed to model the manu-

factured blade using the parameters which characterize the man-

ufacturing tolerances. Nevertheless, its construction remains ar-

bitrary so that it does not constitute an exact modeling of the

problem. Indeed, an exact parametric approach would require to

identify all the uncertain parameters and to construct the proba-

bility distribution of stochastic fields. However, this model pro-

vides a global information which allow a relationship between

the upper bounds τ1  $"#"#"  τs and the dispersion parameters δM  δK
related to the nonparametric probabilistic model of random un-

certainties to be constructed. Once the dispersion parameters are

determined, a mistuning analysis is performed using the nonpara-

metric approach. Such an approach is theoretically exact because

all the uncertain parameters are taken into account, because alge-

braic andmathematical properties are conserved (existence of the

second-order moments of the random response, ...), and because

only the mean reduced model of the blade is required. It should

be noted that the nonparametric model of random uncertainties

includes the errors due to the choice of the model since the un-

certainties of the continuous structure which cannot be seen by

the model are considered through this approach.

Identifying dispersion parameters δM and δK with re-
spect to the upper bounds of the tolerances

In order to calculate dispersion parameters δM and δK , a cri-
terion has to be constructed in order to establish a global rela-

tionship between the two probabilistic models. The purpose of

such a criterion is to characterize the dispersion parameters δM
and δK of the nonparametric model, which correspond to a given
value of the upper bound vector +  ' τ1  $"#"$"$ τs ( . Since the non-
parametric probabilistic model of a blade is constructed from a

mean reduced matrix model related to the nominal blade, this

criterion has necessarily to be defined in the mean basis of the

reduced coordinates related to the nominal blade corresponding

to the mean reduced matrix model. Furthermore, the manufac-

tured blade characteristics have to be compared with their nom-

inal characteristics. Thus, the fluctuations of the random matri-

ces around their nominal value are studied in the common basis

of projection related to the nominal blade for each probabilistic

model. Below, B $ ! M  K % . The random matrix
!
B ' T (+# is first

projected using the mean basis,

!
Bred ' T ( #  !

H # T !
B ' T ( # !H #  (41)

where
!
Bred ' T ( # is the , &

Na
'+%0( (or , &

0
Na

'+% ( ( -valued random re-

ducedmass or stiffness matrix. LetW tol
B ',+ ( be the scalar parame-

ter characterizing the dispersion of matrix
!
Bred ' T (+# with respect

to
!
Bred # , which is defined by

W tol
B ',+ (  1 ! 232 ! Bred ' T (+# " !

Bred # 232 2F %  (42)
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and which depends only on the upper bound vector  . For the
nonparametric model, the similar parameterWB is defined by

WB
 !  "#"$%

Bred & ' %
Bred & "#" 2F ! " (43)

The tolerances are described through the nonparametric ap-

proach by identifying scalar parametersW tol
B (  ) andWB such that

W tol
B (  )  

WB " (44)

Using Eqs. (18) to (20),(29), (42) to (44) and the symmetry prop-

erties of the random matrices yields

δK (! )  
 

W tol
K ( !  !" N #

a  1  
tr " $Kred %  2  tr " $Kred % 2  ! (45)

δM " !  &
 

W tol
M " !  " Na  1  

tr " $Mred %' 2  tr " $Mred % 2  " (46)

δ
K

δ
M

δ
Dθi)T(

θi)T( θi)T((M )[ ] [K( )]

θi)T( θi)T((M )[ ] [K( )]
red red

B (θ
k
)

b>B( )P

([M ([D

red
([K

θ
redk

)]
red

θk)]

θk)]

A priori probabilistic
model

Nonparametric
probabilistic model

W
tol

M
W
K

tol(τ (τ) )

Figure 1. Procedure for solving the inverse problem

Solving the inverse problem

The inverse approach is solved by using two Monte Carlo

numerical simulations, as described in Fig. 1. The procedure

is constructed as follows: a first Monte Carlo numerical sim-

ulation is performed on one blade. For each realization, the

finite-element mass and stiffnesses matrices of the blade are con-

structed by using the probabilistic model on the mesh derived

from the parametric probabilistic model related to the tolerances

characteristics. Once these matrices are reduced on the mean ba-

sis, the relationship between tolerances upper bound vector ! and

dispersion parameters δM and δK of the nonparametric model is

estimated. Then, dispersion parameter δD is introduced indepen-
dently. A secondMonte Carlo numerical simulation is performed

using the mistuning analysis procedure described above. In the

context of manufacturing tolerances,
( " B∞ ) b∞  is the quantity

which has to be estimated, in which b∞ is the critical dynam-

ical magnification factor. Performing a parametric study with

respect to the upper bound vector ! allows the inverse problem

to be solved. For a given critical dynamical magnification factor

b∞ and for a given probability level
( " B∞ ) b∞  , the required

manufacturing tolerances can be specified. It should be noted

that the numerical simulations related to the nonparametric ap-

proach are directly performed from the reduced matrix model of

each blade. With this approach the first Monte Carlo procedure

is applied to the finite element model of one blade. The sec-

ond Monte Carlo procedure is applied to N mean reduced matrix

models of a blade. It should be noted that the case of a para-

metric approach would require only one Monte Carlo numerical

procedure but would need N finite elements models of a blade

per sample. Consequently, with the nonparametric approach, the

computational savings with regard to an exact parametric proba-

bilistic model of manufacturing tolerances are as much important

as the number N of blades grows.

NUMERICAL EXAMPLE

The bladed disk considered is constituted of a disk and 24

blades which are modeled by using the linear thin plane the-

ory in bending mode. The membrane and the bending motions

are fully decoupled. We are only interested in the outplane dis-

placements. The bladed disk is located in the plane " Ox ! Oy  
of a cartesian coordinate system. It should be noted that in

the case of such a rotating structure, the outplane vibration re-

sponse would not be affected by gyroscopic terms. The disk

is made of a homogeneous and isotropic material with constant

thickness 5 * 10 # 3 m, inner radius 3 " 5 * 10 # 2 m, outer radius

0 " 1 m, mass density 7860 kg " m3, Poisson ratio 0 " 25 and Young
modulus 1 " 89 * 1011 N " m2. The inner radius of the disk is as-

sumed to be fixed. Each blade is made of a homogeneous and

isotropic material with length 7 * 10 # 2 m, width 8 " 5 * 10 # 3 m,

linear decreasing thickness from 5 * 10 # 3 m to 1 * 10 # 3 m,

mass density 7860 kg " m3, Poisson ratio 0 " 25 and Young mod-
ulus 2 * 1011 N " m2. A damping model is added for the bladed

disk, corresponding to a hysteretic model with a mean loss factor

η
&
0 " 003.
Themean finite element model shown in Fig. 2 is constituted

of 312 (with 4 nodes) bending plate elements and has 1296 DOFs

such that the DOF number of one blade is na
&
36, the DOF num-

ber of the disk is nd
&
576 and the DOF number of a blade-disk

coupling interface is nΣ
&
6. Figure 3 displays the eigenfrequen-

cies of the generalized eigenproblem associated with the tuned

mechanical system in function of the circumferential wave num-
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Figure 2. Finite element mesh of the bladed disk. Input force localization
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Figure 3. Graph of the eigenfrequencies values (in Hz) of the tuned

bladed disk versus the circumferential wave number m

ber m. A frequency ”veering”
 
26 ! can clearly be seen and leads

us to choose the frequency band of analysis
 "  

7080 ! 7160 ! Hz
corresponding to a circumferential wave number m

"
4. A 4 en-

gine order excitation is then applied to excite the modes of the

veering zone. Each blade j is submitted to a unit transverse load

vector f j # ω $ such that f j # ω $ k " %  # ω $ δk &  2d ' 1 ! exp # 2iπmj  N $ in
whichm

"
4 and where d is the node number of the applied force.

Direct problem

The mistuning is introduced by fixing the values δ
j
K

"
δK ,

δ
j
M

"
δM

"
0, δ

j
D

"
δD

"
0 " 05. In order to perform the mis-

tuning analysis, we are interested in density probability function

pB∞ # b∞ $ and in probability ( # B∞ ) b∞ $ . The convergence anal-
ysis is then limited to the second-order convergence of the ran-

dom variable B∞ for Ng
"
8, ñ

"
120. The norm

*+*,*
B∞

*,*+*
such

that
*,*+*
B∞

*+*+*-" ! . # B2∞ $ is then estimated by

*+*,*
B∞

*,*+* 2 ! 1

ns

ns

∑
i " 1

B∞ # θi $ 2 ! (47)

in which θi is the realization number i. It can be shown that a
good convergence is obtained for ns

"
600. In the following,

the sensitivity of the presence of uncertainties at coupling inter-

face blade-disk are investigated. Two cases are also considered.

The random reduced matrix of dynamic stiffness derived from

Eq.(10) is either written as

 
A
j

red # ω $ ! "   "
j # ω $ !  

A j
c # ω $/! 

A j
c # ω $ ! T  

A
j
Σ # ω $/! ! (48)

 
A
j

red # ω $ ! "#$  "
j # ω $ !  

A
j
c # ω $ ! 

A
j
c # ω $ ! T  

A
j
Σ # ω $ !%& (49)

Figure 4 to 5 show the corresponding mappings b∞ !" ( # B∞ )
b∞ $ for several values of δK

"
0 " 01, δK

"
0 " 08. The thick lines

are related to the nonparametric approach used with both random

generalized coordinates terms and random interface whereas the

thick dashed lines do only take into account the uncertainties re-

lated to random generalized coordinates. The error generated

by the approximation of neglecting random uncertainties on the

blade coupling interface is in general acceptable. It is also con-

cluded that the main contribution of the response amplification

comes from the generalized coordinates.

b
>

B(
)

P

b
1 1.5 2 2.5 3

10
−4

10
−3

10
−2

10
−1

10
0

Figure 4. Influence on the blade-interface coupling for a mistuning rate

δK
"
0 " 01: graph of b∞ !" ( # B∞ ) b∞ $ in the case of random uncer-

tainties on the whole reduced blade (thick line) and in the case of uncer-

tainties on the generalized coordinates (thick dashed line)
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Figure 5. Influence on the blade-interface coupling for a mistuning rate

δK
 
0  08: graph of b∞  ! ! " B∞ # b∞ $ in the case of random uncer-

tainties on the whole reduced blade (thick line) and in the case of uncer-

tainties on the generalized coordinates (thick dashed line)

Inverse problem

The nominal blade is modeled by a plane rectangular plate.

Let " A ! x ! y $ be a cartesian system related to the blade. In this ex-

ample, only manufacturing tolerances of first order are taken into

account. It is supposed that the base of the blade is not affected

by manufacturing tolerances. Let T
 " ∆α1 ! ∆α2 ! ∆L1 ! ∆L2 ! ∆e $

be the centered random variable, where each component is inde-

pendent from another and is a real centered uniform random vari-

able. Random variable ∆α1 ( or ∆α2) characterizes the geometri-

cal tolerances controlling the deviation angle between the upper

(or lower) side of the manufactured blade and the corresponding

side of the nominal blade. Random variable ∆L1 (or ∆L2) char-
acterizes the dimensional tolerances allowing the length of the

upper (or lower) side of the blade to fluctuate. ∆e corresponds to
the thickness authorized fluctuation at the tip of the blade. It is

also supposed that the thickness fluctuation over the blade length

is considered linear between the base and the tip of the blade and

is constant over its width. The finite element method yields 12

nodes which are all on the boundary of the blade (see Fig. 6)

A probabilistic model derived from the tolerances parameters is

then constructed for the nodes of the mesh and is written at first

order in term of coordinates in " A ! x ! y $ :

AM j

 
Am j " j % 1

5
" ∆x1 ! ∆y1 $ ! ∆z j

 j % 1

5
∆e ! j & # 1 !$ % $ %! 6 &

AM j

 
Am j " j % 7

5
" ∆x2 ! ∆y2 $ ! ∆z j

 j % 7

5
∆e ! j & # 7 !$ % $ %! 12 &

where M j and m j denote the nodes of the mesh related to the

random blade and the nominal blade respectively and where

∆x1
 

∆L1, ∆x2
 

∆L2, ∆y1
 
L∆α1, ∆y2

 
L∆α2 and ∆e are

the centered uniform random variables such that the correspond-

ing standard deviations verify

σ∆x1

 
σ∆x2

 
σ∆y1

 
σ∆y2

 
σ∆e

 τ

" 3
 

L+∆L2

∆α
1

∆α
2

A x

y

A x

y

L

L+∆ 1

m
1

m m m m m

m m m m m m

M
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12
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6

6
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3
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54
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l
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M M M M M M
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Figure 6. Nominal blade (thick line) and manufactured blade (thin line)

The parameter τ characterizes the upper bound of the fluc-

tuations. A parametric study is then carried out with τ & !  
'
0  1 ! 100 ( ) 10 ' 6m. Concerning the first Monte Carlo numer-

ical simulation allowing the dispersion levels δM and δK to be

known, a convergence analysis is performed with respect to nt
realizations denoted by θ1 !% $ % ! θnt . For a fixed τ &"! and for

each θ j, the quantity
*+*+'
Bred " T " θ j $ $ ( % '

Bred ( *+* 2F ! B & # M ! K &
is calculated. Parameter δB is then estimated by δ̂B " nt $ such that

δ̂B " nt $   
" N ,
a " 1 $ 1

nt
∑
nt
j  1

*+*+'
Bred " T " θ j $ $ ( % '

Bred ( *+* 2F
tr " 'Bred (-$ 2 " tr " ' Bred ( 2 $  (50)

Figure 7 shows the graph nt  ! δ̂M " nt $ (thick line) and

nt  ! δ̂K " nt $ (thick dashed line) for τ
 
100 ) 10 ' 6m. A good

convergence is then obtained for nt
 
600. In the following,

parameters δM and δK denote δ̂M " nt  
600 $ and δ̂K " nt  

600 $ .
Figure 8 shows the graphs of τ  ! δK and τ  ! δM which allow the

dispersion of the random reduced matrices issued for the a priori

probabilistic model to be estimated with respect to parameter τ
characterizing the tolerance rate. It is clearly seen that δK and
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Figure 7. Convergence analysis : graph of nt  ! δ̂M  nt ! (thick line)

and nt  ! δ̂K  nt ! (thick dashed line) for the tolerancing rate τ
"
100 #

10  6m

δM are not independent and that there are proportional to param-

eter τ. The dispersion parameter related to the mass is lower than
the dispersion parameter related to the stiffness. In the present

context, when considering the mistuning problem of the whole

bladed-disk, δM and δK constitute the data of the nonparametric

probabilistic model. It is assumed that the uncertainties related to

each blade are homogeneous from one blade to another one such

that δ
j
M

"
δM and δ

j
K

"
δK for j $ ! 0 "#$%$#$%" N % 1 & . Although the

geometrical uncertainties of a blade create many uncertainty on

the blade mass matrix, we are interested by studying the mistun-

ing effects of the assembled bladed-disk. From a technological

point of view the bladed-disk is dynamically balanced by adding

or removing material on the disk during the process of assem-

blage. Consequently, we assume that the uncertainty on the mass

has been sufficiently reduced by the balancing process in order

to neglect it such that δM
"
0. Furthermore, we assume that the

modifications of the disk have a small impact on the random dy-

namical magnification factor and are neglected.

A mistuning analysis is then performed for the complete

structure using the direct problem described above. An uncer-

tainty on the damping is fixed by δD
"

δ
j
D

"
0 $ 05. We are inter-

ested in studying
&  B∞ ' b∞ !  p where b∞ denotes the magni-

fication level over the frequency band of analysis
'
and where p

denotes a probability level. The criterion which assesses the cor-

rect work of the bladed-disk is defined by parameters  b∞ " p ! .
Figure 9 shows the graph δK  ! &  B∞ ' b∞ ! for several val-

ues b∞
"
1 $ 2 (thin dashed-dotted line), b∞

"
1 $ 3, (thin dashed

line) b∞
"
1 $ 4 (thin line), b∞

"
1 $ 5 (thick dashed-dotted line),

b∞
"
1 $ 6 (thick dashed line) and b∞

"
1 $ 7 (thick line). For a given

p, the domain of values of the appropriate dispersion parameter

δK characterizing the amount of mistuning can be deduced from
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Figure 8. Tolerancing analysis: Graph of τ  ! δM and τ  ! δKallowing
the dispersion of random matrices issued from the a priori probabilistic

model to be characterized.
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Figure 9. Mistuning analysis: Graph of δK  ! &  B∞ ' b∞ ! for dis-

persion parameters δM
"
0 " δD

"
0 $ 05 and for several values of b∞:

b∞
"
1 $ 2 (thin dash-dotted line), b∞

"
1 $ 3 (thin dashed line), b∞

"
1 $ 4

(thin line), b∞
"
1 $ 5 (thick dash-dotted line), b∞

"
1 $ 6 (thick dashed

line), b∞
"
1 $ 7 (thick line).

Fig. 9. The corresponding upper bound of tolerances are directly

read from Fig 8. For example, if the quality of a bladed disk

is defined by  b∞
"
1 $ 5 " p "

0 $ 6 ! , it can be seen on Fig.9 that

the confidence region defined by
&  B∞ ' 1 $ 5 !  0 $ 6 corresponds

to the following value of dispersion parameters δK  0 $ 0041
or δK  0 $ 0862. From Fig. 8, it can then be deduced that the

tolerance should be such that τ  4 $ 1µm or τ  86µm. The

global maximum of function δK  ! &  B∞ ' b∞ ! is of importance
10 Copyright  2003 by ASME



because it shows that there exists a forbidden band of values 
τmin  τmax ! for the upper bound of tolerances τ. From τ  τmin,
it is deduced that the blade has to be manufactured with a high

precision to assess the requirement. If τ " τmax, the requirement
is verified too. There are also two ways for specifying tolerances,

one which requires a higher precision during the manufacturing

process, another one which is related to intentional mistuning.

It is also shown that a manufactured blade, which is intention-

ally mistuned by specifying an upper bound such that τ " τmax
or which is manufactured with accurate specifications of toler-

ances such that τ  τmin, can present the same characteristics

concerning the random dynamical magnification factor related to

the forced response of the bladed disk.

CONCLUSION

In this paper, a nonparametric model of random uncertain-

ties has been proposed to analyze the mistuned bladed-disks.

This new approach is based on the use of a probability model

which has the largest entropy among all probability models sat-

isfying the constraints due to the available information. In par-

ticular, contrary to the gaussian models used in the literature, the

proposed probabilistic model guarantees the random matrices to

be positive-definite, which is absolutely necessary for such a dy-

namical problem. Furthermore, this new approach differs from

the usual parametric model in the sense that it is able to repre-

sent not only the blade eigenfrequencies uncertainties but also

the eigenmodes uncertainties. It should be noted that any proba-

bility model of random uncertainties has to be consistent with re-

spect to the perturbation of the eigenvalues and the eigenvectors.

Consequently, there is no meaning to treat separately the pertur-

bations of the eigenfrequencies and the perturbation of the eigen-

modes. The nonparametric approach is a global approach and

both eigenmodes and eigenfrequencies uncertainties are quanti-

fied by only three scalar parameters related to mass, damping

and stiffness matrices. Moreover, an inverse methodology using

this nonparametric approach has been proposed in order to spec-

ify the manufacturing tolerances with respect to the confidence

region of the random dynamical magnification factor over a nar-

row frequency band of analysis. The efficiency of the method

has been shown through a numerical example. It has been out-

lined that the presence of random uncertainties on the coupling

interface do not play a significant role with respect to the mistun-

ing analysis. Thanks to a parametric analysis with respect to the

dispersion parameter, the characteristics of tolerancing are easily

specified from a criterion concerning the dynamical magnifica-

tion factor.
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