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Probabilistic models for computational stochastic mechanics

and applications

C. Soize

University of Marne-la-Vallée, Paris, France
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ABSTRACT: This paper deals with the validation and industrial applications of a nonparametric probabilistic
approach of model uncertainties and data uncertainties in computational dynamics for linear and nonlinear
dynamical systems, for complex structures and vibroacoustic systems. First, data uncertainties and model
uncertainties in a predictive model of a real system are defined. Then, the concept of the nonparametric
probababilistic approach for random uncertainties due to model errors and data errors is introduced. A short
overview of the main theoretical results of this nonparametric approach based on the use of ensembles of random
matrices constructed with the maximum entropy principle is given. The methodology of this nonparametric
probabilistic approach is given. A numerical validation proving the capability of the nonparametric probabilistic
approach to take into account model uncertainties is presented. Then an experimental validation is given for the
dynamics of a composite sandwich panel. Finally, four industrial applications of the nonparametric probabilistic
modeling of random uncertainties in comptational stochastic mechanics for complex mechanical systems are
presented: (1) The linear dynamics of a bladed disk mistuned due to manufacturing tolerances uncertainties;
(2) The identification and quantification of the design margins in the nonlinear dynamics of a reactor coolant
system; (3) The robustness of the numerical simulation model with respect to model and data uncertainties in
dynamics of a spatial structure; (4) The robustness of the numerical vibroacoustic FRF of cars with respect to

model and data uncertainties.

1 INTRODUCTION

The treatment of data uncertainties in structural me-
chanics has received a considerable attention these
last decades. Data uncertainties affect the parame-
ters of the mathematical-mechanical model such as
the dimensions parameters, the parameters allowing
the boundary conditions to be described, the consti-
tutive equations, etc. Data uncertainties can clearly
be taken into account by the parametric probabilistic
approach. Such probabilistic analysis of data uncer-
tainties performed with random variables modeling
for relatively simple mechanical system can be found
in many papers such as Shinozuka & Astill (1972),
Chen & Soroka (1973), Prasthofer & Beadle (1975),
Haug et al. (1986), Ibrahim (1987), Kotulski ans
Sobcezyk (1987), Shinozuka (1987), Jensen & Iwan
(1992), Iwan & Jensen (1993), Lee & Singh (1994),
Papadimitriou et al. (1995), Lin & Cai (1995), Mi-
caletti et al. (1998), Schuéller (1997), Mignolet et
al. (1998). Such a parametric probabilistic approach
has also been developed with random field theory
for data uncertainties and random media modeling,

leading to the stochastic finite element method; see
for instance Vanmarcke & Grigoriu (1983), Liu et
al. (1986), Shinozuka & Deodatis (1988), Spanos &
Ghanem (1989), Ghanem & Spanos (1991), Kleiber
et al. (1992), Spanos and Zeldin (1994), Ditlevsen &
Tarp-Johansen (1998). More recently, the paramet-
ric probabilistic approach for data uncertainties and
for random media has been developed and applied to
the computational mechanics of large and complex
mechanical systems; see for instance Hien & Kleiber
(1997), Ghanem & Dham (1998), Ghanem (1999),
Sz¢kely & Schuéller (2001), Le Maitre et al (2001)
and (2002), Pradlwarter et al. (2002), Schuéller et al.
(2003), Schenk & Schuéller (2003).

This paper does not deal with the above paramet-
ric probabilistic approach for data uncertainties or
stochastic finite element method for random media,
but rather with a nonparametric probabilistic approach
of model uncertainties and data uncertainties for com-
putational stochastic dynamics. This approach has
been introduced by Soize (1999) and developed in
the last five years. The main objectif of this paper
is to present new validations of this approach and
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industrial applications in several fields for complex
mechanical systems in computational stochastic me-
chanics for linear and nonlinear dynamical systems,
for structural dynamics and vibroacoustic problems.

Notation. In this paper, M,(R), V3(R) and V;}(R)
are the set of all (nx n) real matrices, the set of
all symmetric (n x n) real matrices, and the set of
all positive-definite symmetric (nx n) real matrices,
respectively. We have M} (R) ¢ MJ(R) c M,(R). If
[A] belongs to M, (R), [|[A]||F = (tr{[A][A]"})"/? is the
Frobenius norm of matrix [4], where tr is the trace
of the matrices, det is the determinant of the ma-
trices and [A]7 is the transpose of matrix [A]. The
operator norm of a matrix [A] € V,(R) is defined as
Al = supjy<q [I[A]x] x € R" and is such that
[A]x| < [|A]l|Ix]|, vx € R™. The indicatrix function
15(b) of any set B is such that 15(b) is equal to 1 if
b € B and is equal to zero if b ¢ B. All random vari-
ables are defined on a probability space (A, 7,P) and
E is the mathematical expectation.

2 DATA UNCERTAINTIES AND MODEL UNCER-
TAINTIES IN A PREDICTIVE MODEL OF A
REAL SYSTEM

2.1 Designed system

In the context of engineering mechanics, the designed
system is the mechanical system conceived by the
designers and analysts. A designed system is defined
by geometrical parameters, by the choice of materials,
and by many other parameters. A designed system can
be a very simple mechanical system e.g. an elastic
bar or a very complex one such as an aircraft.

2.2 Real system

A real system is a manufactured version of a system
realized from the designed system. Consequently, a
real system is a man-made-physical system which is
never exactly known (for instance, the geometry does
not exactly coincide with the geometry ofthe designed
system). A real system has then to be considered as an
uncertain system with respect to the designed system.
Uncertainties do not only affect the geometry, but
also the boundary conditions, the materials, the mass
density distribution, etc.

2.3 Mean model as a predictive model: Errors and
uncertainties

The objective of a predictive model is to predict the
output v of a real system to a given input f**. For
instance, a predictive model can be developed for
the static displacement field of a system subjected
to a given external static load or, for the transient
displacement field of a dynamical system subjected
to an external impulsive load induced by a shock.
Such predictive models are constructed by develop-
ing mathematical-mechanical model of the designed
system for a given input (see Fig. 1). Consequently,
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the mean model has an input f modeling f***, an output
v modeling v* and exhibits a parameter s for which
data has to be given (it should be noted that the pa-
rameter can be a real number, a real vector, a real
function, a field, a vector-valued function, etc.).

Designed
system

Manufacturing

process modelling process

- Real system Mean model
f P% as the L= vy [ as the v

manufactured =
system

predictive model -
of the real system|

Uncertain system q\
S

Figure 1. Designed system, real system and mean model as the predic-
tive model of the real system.

(A) Errors: The errors are related to the construc-
tion of an approximation v* of the output v of the
mean model for given input f and parameter s. For in-
stance, if the mean model is a boundary value problem
(BVP) defined on a bounded domain, the use of the fi-
nite element method for constructing a n-dimensional
approximation space of the BVP solution introduces
an error ||v — v"|| related to the finite element mesh
size, where || - || is an appropriate norm. If a dynam-
ical problem is studied, the use of a time integration
scheme introduces an additional error related to the
time sampling and to the time step. These errors are
related to the construction of an approximate solution
of the BVP and consequently, have to be reduced and
controled using adapted methods developed in applied
mathematics and in numerical analysis. In general,
these errors must not be considered as uncertainties
(see below).

(B) Uncertainties: Below, the input f and the param-
eter s of the mean model will be hereafter referred to
as the data of the mean model. The mathematical-
mechanical modeling process of the designed system
introduces two fundamental types of uncertainties:
the data uncertainties and the model uncertainties.

(B.1) Data uncertainties: The input f of the mean
model does not exactly represent the input £ of the
real system and there are also uncertainties on the pa-
rameter s of the mean model. For instance, a static
load represented by a point force is an approximation
of the reality; the use of a given value of the Young
modulus for a given elastic material is not an exact
value (which is unknown), but corresponds to an un-
certain value; the elastic constants of a complex joint
between two substructures are uncertain, etc. Data
uncertainties have to be taken into account for im-
proving the predictability of the mean model. The
best approach to take into account data uncertainties
is the parametric probabilistic approach consisting in
modeling the data of the mean model by random quan-
tities (see Section 1).
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(B.2) Model uncertainties: The mathematical-mech-
anical modeling process used for constructing the
mean model induces model uncertainties with respect
to the designed system. This type of uncertainties is
mainly due to the introduction of simplifications in
order to decrease the complexity of the mean model
which is constructed. For instance, a slender cylindri-
cal elastic medium will be modeled by using the beam
theory (such as an Euler or a Timoshenko beam), a
thick rectangular plate elastic medium will be mod-
eled by a thick plate theory (such as the Midlin plate
theory), a complex joint constituted of an assemblage
of several plates attached together by lines of bolts
will be modeled by an equivalent homogeneous or-
thotropic plate, etc. It is clear that the introduction of
such simplified models yields a mean model whose
variations of parameter s do not allow the model un-
certainties to be reduced. Model uncertainties have to
be taken into account to improve the predictability of
the mean model. As explained above, the parametric
probabilistic approach cannot be used (this point will
be revisited in Section 5). This is the reason why a
nonparametric probabilistic approach is proposed.

(C) Predictability of the mean model: The error be-
tween the prediction v* calculated with the mean
model and the response v of the real system can
be measured by [[v® — v*|. Clearly, the mean model
can be considered as a predictive model if this error is
sufficiently small. In general, due to data uncertainties
and model uncertainties, this error is not sufficiently
small and has to be reduced by taking into account
data uncertainties and model uncertainties.

3 NONPARAMETRIC PROBABILISTIC
APPROACH OF RANDOM UNCERTAINTIES

3.1 Nonparametric probabilistic approach of random
uncertainties

Poor predictions from predictive models of complex
systems are mainly due to model uncertainties. To re-
duce model uncertainties, a smaller spatial scale can
be added to the predictive model. This effort how-
ever increases data uncertainties. Today, it is well
understood that the parametric probabilistic approach
allows data uncertainties to be taken into account in
predictive models but not model uncertainties. This
is the reason why a nonparametric probabilistic ap-
proach is proposed here to take model uncertainties
into account.

3.2 Concept of the nonparametric probabilistic ap-
proach to take into account model uncertainties

The following example will be used to clarify the con-
cepts of the nonparametric approach that permits the
consideration of model uncertainty. Let s — A(s) be
a linear mapping from a space S into a space A of
linear operators. The space S represents the set of
all possible values of the vector-valued parameter s of

the boundary value problem (for instance, geometric
parameters, elastic properties, boundary conditions,
etc). For s fixed in S, operator A(s) represents one
operator of the boundary value problem (for instance,
the stiffness operator which is assumed to be symmet-
ric and positive, and in this case, any operator in A
will be symmetric and positive). Let Rpar C A be the
range of the mapping s — A(s), i.e. the subset of A
spanned by A(s) when s runs through S.

(A) The operator of the real system. It is assumed
that the operator corresponding to the real system is
A®® belonging to A.

(B) The mean model of the operator. 1f s = s is the
nominal value, then A = A(s) € Rpar is the operator of
the mean model.

(C) Parametric probabilistic model of the operator.
The parametric probabilistic approach for the opera-
tor consists in modeling the parameter s by a vector
valued random variable S whose probability distribu-
tion Ps(ds) has a support which is S. Then the operator
A of the mean model is replaced in the the BVP by
the random operator Apar such that Apar = A(S). The
probability distribution Py, of the random operator
Apar 18 Py, = A(Ps) and its support is the set Rpar C A
(see Fig. 2). Clearly, the probability P, on Rpar al-
lows data uncertainties to be taken into account, but
AP may not be in Rpar due to model uncertainties.

nonpar

Figure 2. Parametric and nonparametric probabilistic approaches of
random uncertainties.

(D) Nonparametric probabilistic model of the opera-
tor. The nonparametric probabilistic approach for the
operator consists in replacing the operator A of the
mean model by a random operator Anonpar Whose prob-
ability distribution P, has a support Rnonpar = A.
Since A®? belongs to A and since the support of Pa,onpar
is also A, model uncertainties can be taken into ac-
count by the proposed nonparametric approach (see
Fig. 2). Of course, Py, cannot be arbitrary chosen
with support Rnonpar, but has to be constructed using
the available information. Such a methodology has
been developed (Soize 1999, 2000, 2001a and 2005b)
by using the maximum entropy principle (Shannon
1948) and (Jaynes 1957).
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3.3 Evolution of the concepts: some history

The fundamentals of the nonparametric approach for
random uncertainties and the developments of the
first ensemble of random matrices adapted to model-
ing random uncertainties in linear dynamical systems
have been introduced by Soize (1999) and (2000).
The algebraic closure of this theory and its conver-
gence analysis as the dimension goes to infinity have
studied by Soize (2001a) and (2001b) in the context
of transient linear elastodynamics of stochastic sys-
tems. Others ensembles of random matrices adapted
to modeling random uncertainties for coupled systems
encountering vibroacoustics problems, have been in-
troduced by Soize (2005b).

The extension of the theory to non homogeneous un-
certainties in complex dynamical systems using sub-
structuring techniques can be found, with experimen-
tal validations, in Chebli & Soize (2004), Duchereau
& Soize (2005).

The identification of the parameters of the nonpara-
metric probabilistic model from experiments is devel-
oped in Soize (2005a) and (2005b) and an experimen-
tal validation is given in Chen et al. (2004).

The extension of the theory to linear dynamical sys-
tems in the medium frequency range was achieved
by Soize (2003b). The random eigenvalues for lin-
ear dynamical systems and the non adaptation of the
Gaussian Orthogonal Ensemble (GOE) for low- and
medium-frequency dynamics are analyzed in Soize
(2003a).

The application of this nonparametric probabilistic
approach for model uncertainties in nonlinear dy-
namical systems and transient nonlinear dynamics of
stochastic systems have been studied in Soize (2001c¢),
Desceliers et al. (2004).

Model uncertainties in dynamical systems with cyclic
symmetry and applications to mistuned bladed disks
have been developped in Capiez-Lernout & Soize
(2004) and Capiez-Lernout et al. (2005b).

Additional validations devoted to the capability of
the nonparametric probabilistic approach to take into
account model uncertainties is given in Soize (2005a)
and Capiez-Lernout et al. (2005b). The extension of
the theory to vibroacoustic problems is presented in
Durand et al. (2005).

4 METHODOLOGY OF THE NONPARAMETRIC
PROBABILISTIC APPROACH FOR RANDOM
UNCERTAINTIES

The methodology of the nonparametric probabilistic
approach of uncertainties in dynamical systems is as
follows.

(1) Developement of a mechanical-mathematical
model, generally a finite element model, of the de-
signed system. Such a model will be call the mean
model (or the nominal model).
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(2) Construction of a reduced mean model from the
mean model.

(3) Construction of a stochastic reduced model from
the reduced mean model using the nonparametric con-
cept and the maximum entropy principle. In this
fashion, the probability distribution of each random
generalized matrix is constructed.

(4) Construction and convergence analysis of the sto-
chastic solution.

4.1 Mean finite element model of the dynamical system

The following presentation is limited to the nonlinear
structural dynamics of a linear structure with local-
ized nonlinearities but it can be extented to other more
complex systems such as vibroacoustic systems (see
Section 7.4). We consider a nonlinear dynamic sys-
tem constituted of a three-dimensional, damped, fixed
structure vibrating around a static equilibrium con-
figuration considered as a natural state without pre-
stresses. The struvture is subjected to an external load
and does not display rigid body displacement. The
basic finite element model of this nonlinear dynamic
system is called the “mean finite element model” (the
underlined quantities refer to this “mean finite ele-
ment model”) and leads to the following nonlinear
differential equation,

(M]¥(8) + [D]y() + [K]y(t) + i (y(8), y(8) = £(£), (1)

in which y = (y,,...,y, ) is the unknown time re-
sponse vector of the m degrees of freedom (DOF)
(displacements and/or rotations); y and y are the ve-
locity and acceleration vectors respectively; f(t) =
(fa(t), ..., fm(t)) is the known external load vector of
the m inputs (forces and/or moments); [1], [D] and
[K] are the mass, damping and stiffness matrices of the
linear part of the model, which are positive-definite
symmetric (mxm) real matrices; (y,z) — fx.(y,z) is a
nonlinear mapping from R”x R™ into K™ modeling ad-
ditional nonlinear damping and restoring forces such
that fx;(0,0) = 0. The linear case can be derived from
Eq. (1) by taking fy = 0.

4.2 Reduced mean model
Let{¢,..., «, } be an algebraic basis of R”. The re-

duced mean model of the dynamic system with mean
finite element model given by Eq. (1) is obtained by
projection of Eq. (1) on the subspace V,, of R™ spanned
by {¢,,...,¢, } withn < m.

The construction of such an algebraic basis can be
performed as follows.

(1) By using elastic modes of the underlying linear
dynamical system. This choice is warranted for lin-
ear dynamical systems or for nonlinear dynamical
systems with localized nonlinearities, when their re-
sponses are in the low-frequency range.

(2) By using eigenvectors of the mechanical energy
operator. This solution is appropriate for a linear
dynamical system in the medium-frequency range

© 2005 Millpress, Rotterdam, ISBN 90 5966 040 4



(Soize 1998a,1998b,1999,2003b), (Soize & Mziou
2003), (Ghanem & Sarkar 2003).

(3) By using adapted "nonlinear modes" for nonlinear
dynamical systems with distributed nonlinearities.
Let [®,] be the (m x n) real matrix whose columns are
the vectors {¢,,...,¢ }. The generalized force F"(t)
is the R"-vector F"(t) = [®,]" f(t). The generalized
mass, damping and stiffness matrices [M,,], [ D,,] and
[K,] are the positive-definite symmetric (nx n) real
matrices [M,] = [®,]7[1][@,]. [D,] = [2,]7[D][®,],
and [K,] = [2,]7[K][®,] which, in general, are full
matrices. Consequently, the reduced mean model of
the nonlinear dynamic system, written as the projec-
tion y” of y on V,,, can be written as

Y =[2,]q" ) 2
in which the vector q"(t) € R" of the generalized coor-
dinates satisfies the mean nonlinear differential equa-
tion,
[ML,]4" () + [D,] 4" (1) + [K£,] 9" (2)
+Fa(@"(t).9" () =F"
where, for all q and p in R”,
Fi(a.p) = [2,)" f((2,]q.[2,]p) - (4)

(t),vt=0, (3

4.3 Stochastic response of the nonlinear dynamical
system with the nonparametric probabilistic model of
random uncertainties

The principle of construction of the nonparametric
model of random uncertainties for the dynamical sys-
tem whose mean finite element model is defined by
Eq. (1), consists in modeling the generalized mass,
damping and stiffness matrices of the reduced mean
model (see Eq. (3)) by random matrices [M,,], [D,,]
and [K,]. If the nonlinear forces are uncertain, a
usual parametric model can be used for these non-
linear forces. In this case, a mixed nonparametric-
parametric formulation can easily be constructed.
The stochastic transient response of the nonlinear
dynamic system with a nonparametric probabilistic
model of random uncertainties, with reduced mean
model defined by Egs. (2)-(4), is the stochastic pro-
cess Y"(t), indexed by R*, with values in R™, such
that

Y (t) = [2,]Q"(t) - (5)
In this equation, the stochastic process Q" (t), indexed
by R*, with values in R", is such that
M, Q7(t) + D] Q"(#) + [Ka] Q" (1)

+FRL(QM(1),Q (1) = F*(t) , vt >0, (6)
with the initial conditions, Q"(0) = 0 and Q"(0) = 0.

4.4 Construction of the probability model of the ran-
dom matrices [M,,], [D,,], K]

The construction of the probability model of ran-
dom matrices [M,], [D,] and [K,] consists in tak-
ing these random matrices in ensemble SE* (Soize,

1999,2000,2001a,2001¢) whose construction is re-
called below.

(1) The random matrices [M,,], [D,] and [K,] are de-
fined on the probability space (A4, 7,P), with values
in M} (R).

(2) The mean values of these random matrices are
B{M,]} = [M,], E{[D.]} = [D,] and BE{[K,]} = [K,].
(3) These random matrices verify the following in-
equalities ensuring that Eq. (6) has a second-order
stochastic  solution, E{||[M,]7'[%} < +oo,
E{[[Dn] 7Y%} < +oo and E{[[Ka]'IF} < +oc.

(4) The random matrices [M,,], [D,] and [K,] are in-
dependent (because no available information is given
concerning the correlation between these random ma-
trices).

(5) These random matrices can be normalized with
respect to their mean values as follows:

M, ] = [LZLL,]T (G, ] [LMn] ) (7)
D.] = [Lp,]" [Gp,][Lp,] - (8)
(Ko] = [Lg,]" Gk, [Lr,] 9)

inwhich [L,, ], [Lp ]and [Ly ]aretheupper triangular
real matrices in M,(R) such that [M, ] = [L,, 1" [Ly, ],
[D,] = [Lp, " [Lp,] and [K,] = [Ly, ]” [Ly,]. The ran-
dom matrices [Gyy, |, [Gp, ] and [G, | are in the ensem-
ble SG* which is defined in Section 4.5.

(6) The of ensemble SG* of random matrices is de-
fined as follows.

4.5 Ensemble SG™ of random matrices

(A) Definition of ensemble SG*. This ensemble is
defined and constructed (Soize 1999,2000,2001a) as
the set of random matrices [G,,], defined on the prob-
ability space (A, 7, P), with values in ¥}/ (R), whose
probability distribution is constructed by using the en-
tropy optimization principle (Shannon 1948), (Jaynes
1957), under the constraints (available information):

(1) Any matrix [G,,] is symmetric positive-definite real
random matrix, i.e.

[G.] € MI(R) as (10)

(2) Any matrix [G,,] is a second-order random variable,
E{||[G.]I?} < E{||[G.]||%} < +oo and its mean value
[G,,] is the (n x n) identity matrix [I,,],

E{[Gul} = [G,)] = [In] € M} (R) (11)
(3) Any random matrix [G,,] is such that
E{ln(det[G,))} =v with |v] < +o0 12)

The constraint defined by Eq. (12) implies the fol-
lowing fundamental property for random matrices in
ensemble SG™,

B{|I[G] M7} < +o0 (13)
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(B) Dispersion parameter of a random matrix in en-
semble SG™. Let ¢ be the real dispersion parameter
defined by

_[E{I[G.] ~ GBI
‘5‘{ AR }1/2

-{FEUG -} (1)

It controls the dispersion of the probability model of
random matrix [G,,] provided that § is independent of
n and such that

0<d<+/(n+1D(n+5-1 . (15)

(C) Probability distribution of a random matrix in
ensemble SG*. The probability distribution P,
of random matrix [G,] is defined by a probability
density function [G,,] — p(g,j([Gx]) from M} (R) into
R* = [0, +oo[, with respect to the measure (volume
element)

dG,, = 2"n=1/4 Ih<i<j<n d[Gnlij (16)

on the set M(R). We then have

Pi,) = e, ([Ga)) dG 17)

with the normalization condition

[, el 6, =1 . (1)
v (R)

The probability density function pig,j([G,]) is then
written as

(-s%)
252w

P16, ([Gnl) = Tyt (g ([Gal) X G, x (det [G]) T
exp{f(n;[;l) tr[Gn]} , (19)

in which 1,1 ([Gy]) is equal to 1 if [G,] € V() and
is equal to zero if [G,] ¢ IV} (R). Further, the positive
constant Cg, is such that

o - (2m)~nn=1)/4 (g})n("fl)(mﬂ !
' (I, T (5 + 454) )
where T'(z) is the gamma function defined for » > 0
by I'(z) = [, ¢*~'e*dt. Equation (19) shows that
{[Gnljr,1 < j < k < n} are dependent random vari-
ables.

(20)

(D) Algebraic representation of a random matrix in
ensemble SG*. The following algebraic representa-
tion of a random matrix [G,,] of SG™ allows the formu-
lation of a procedure for the Monte Carlo numerical
simulation of random matrix [G,]. With this proce-
dure, the numerical cost induced by the simulation is
a constant that depends on dimension » but that is in-
dependent of the dispersion parameter . Any random
matrix [G,,] can be written as

Gh =L [L.] (21)

in which [L,] is an upper triangular random matrix
with values in I,,(R) such that:

(1) The random variables {[L,];;,j < j'} are indepen-
dent.
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(2) For j < j/, real-valued random variable [L,];;» can
be written as [L,);;» = 0,U;; inwhich o, = §(n+1)~1/2
and U;;s is a real-valued Gaussian random variable
with zero mean and unit variance.
(3) For j = j', the positive-valued random variable
[L,];; can be written as [L,];; = 0,+/2V; in which o,, is
defined above and V; is a positive-valued gamma ran-
dom variable with probability density function py, (v)
with respect to dv

1

BT e (22)

pv;(v) = g+ (v)
(E) Convergence property of a random matrix in en-
semble SG* when dimension goes to infinity. Tt can
be shown that

E{|[Ga]'IP} < C5 < Ho0 (23)

in which Cj is a positive finite constant that is inde-
pendent of n but that depends on §. Equation (23)
implies that n — E{[|[G,] ||} is a bounded function
from {n > 2} into R*.

Vn>2 |

4.6 Other ensembles of random matrices

Five ensembles of random matrices have been devel-
opped which are useful for modeling data and model
uncertainties in computational mechanics . These en-
sembles differ from the known ensemble of random
matrices, e.g. found in Mehta (1991).

(1) The first ensemble, SG™, of random matrices has
been presented in Section 4.5 and is called the the
normalized positive-definite ensemble. Then, a ran-
dom matrix belonging to SG* is positive definite al-
most surely and its mean value is the identity matrix.
This ensemble constitutes the main ensemble used for
constructing the four other ensembles introduced be-
low. Ensemble SG* differs from the GOE and from
the other known ensembles of random matrix theory
(Soize 2003a).

(2) The second ensemble, SE*, of random matrices,
herein called the positive-definite ensemble, has been
constructed simultaneously with SG* and is used in
Section 4.4. A random matrix belonging to SE* is
positive definite almost surely and its mean value is
a given positive-definite matrix. For instance, this
ensemble is used for constructing probability model
of positive operators such as the mass, damping or
stiffness operators of a dynamical system.

(3) The construction of the third ensemble, SE*’, has
been introduced in Soize (1999) and is similar to the
construction of ensemble SE*. A random matrix be-
longing to this ensemble is semipositive definite al-
most surely instead of being positive definite almost
surely. For instance, such an ensemble is useful for
modeling uncertainties of the stiffness operator of dy-
namical systems for which there are rigid body dis-
placement fields.

(4) The fourth ensemble of random matrices is the
subset SEj; of SE¥ introduced in Soize (2005b), con-

stituted of random matrices in SE* for which a linear

© 2005 Millpress, Rotterdam, ISBN 90 5966 040 4



form on SE* is given. A particular case is the en-
semble SE{. for which the trace of the random matrix
is given. For instance, such an ensemble is useful
for modeling uncertainties of the mass operator of a
dynamical system for which the spatial distibution of
the mass is uncertain but for which the total mass is
known.

(5) The fifth ensemble, SEiny , of random matrices,
herein called the the pseudo-inverse ensemble, is a
new ensemble introduced in Soize (2005b), consti-
tuted of rectangular random matrices having a mean-
square pseudo-inverse. For instance, such an ensem-
ble is useful for modeling uncertainties in the coupling
operator between an elastic solid and an acoustic fluid
(structural-acoustic system) and is used in the appli-
cation presented in Section 7.4.

4.7 Construction and convergence of the stochastic
solution

(A) Stochastic solution as a second-order stochas-
tic process. For any T > 0, it is proved in Soize
(2001a,2001¢) that, for all ¢ in [0,7], we have
E{Y" ()]} € €1 < +00 and E{|[Y*(1)||2} < Cs < +oo
under reasonable assumptions concerning the nonlin-
ear damping and restoring forces and if fOT I£(2)]2dt <
+o0. Further, C; and C, are positive constants that are
independent of » and ¢.

(B) Construction of the stochastic solution. The
stochastic solution of Eq. (6) is constructed using the
Monte Carlo numerical simulation with n, realiza-
tions. For each realization, an implicit step-by-step
integration method (Newmark method) is used for
solving Eq. (6). The realizations of the random ma-
trix [A,], in which [A,] represents [M,,], [D,,] or [K,], are
constructed using Section 4.5(D). It should be noted
that the numerical cost is low with such a method
because Eq. (6) corresponds to a stochastic reduced
model with n < m.

(C) Convergence analysis. Using the usual estimation
of the mathematical expectation operator E, the con-
vergence with respect to dimension » of the stochastic
reduced model and to the number n, of realizations
used in the Monte Carlo numerical method, is stud-
ied by constructing the function (ns,n) — Conv(ns,n)
defined by

n 1/2
Conv(ng,n) = {500, i IQU(t.60)IPdt} . (24)
in which Q"(¢,6;),...,Q"(¢,0,.) are n realizations of

Q" (1)

5 NUMERICAL VALIDATION: CAPABILITY OF
THE NONPARAMETRIC PROBABILISTIC AP-
PROACH TO TAKE INTO ACCOUNT MODEL
UNCERTAINTIES

5.1 Designed system

The designed system is a slender cylindrical elastic
medium Q defined in a cartesian co-ordinate system
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(Ozyz) (see Fig. 3). The cylinder has a rectangular
section and dimensions h; = 10m, h, = 1m and h; =
1.5m. The elastic medium is made of a composite
material. This structure is simply supported as shown
in Fig. 3. The other parts of the boundary 0Q of
domain Q are free.

B
S

Figure 3. Designed system: linear elastodynamics of a slender three-
dimensional elastic medium.

5.2 Real system

Figure 4 shows the real system corresponding to the
designed system defined in Fig. 3. There are uncer-
tainties on the geometry due to manufacturing toler-
ances. The domain of the real system is Qps which
differs from Q. The simply supported conditions are
not exactly realized and the composite material does
not exactly correspond to the given specifications of
the designed system. This real system is excited by
a frequency-dependent pressure field p*P(w) which is
constant in space on the part T'rs of the boundary 0Qgs.

¥y

o
Pressure field )
applied on surface I} s

P Uncertain geometry due to
‘manufacturing tolerances

A

Manufactured composite material
differing from the designed composite material
Uncertain boundary conditions
with respect to the designed system

Figure 4. Manufactured system from the designed system defined in
Fig. 3.

We are interested in the dynamics of the real system
in the frequency band B =)0, 1000] Hz subjected to
a pressure field excitation which is constant in space
over I'gs and constant in frequency band B. The details
of data can be found in (Soize, 2005a).
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5.3 Mean model

The mean model, as a predictive model of the real
system defined in Fig. 4, is constructed from the de-
signed system defined in Fig. 3. This mean model
is constituted of a damped homogeneous Euler elas-
tic beam with length h,, simply supported at z = 0
and » = h, (see Fig. 5). The mean model input is
the point force located at z, = 4.25m with an in-
tensity g(w) = —1p(w). The composite material of
the designed system is modeled by a homogeneous
isotropic elastic material whose nominal parameters
are £ = 10'° N/m? (Young’s modulus), p = 1700 K g/m?
(mass density) and £ = 0.01 (damping rates). The com-
puted eigenfrequencies of the mean system are v, =
11, vy = 44, v3 =99, v, = 176, v5 = 275,v5 = 396, v, =
539, v = 704,19 = 891, 1y = 1100, ..., 14 = 70385 Hz.
For w in B, this external force induces flexural vibra-
tions in the plag;e (Omy).

£@) (x,0)

X, x

&

z

Figure 5. Mean model as the predictive model of the real system
resulting from the designed system defined in Fig. 3.

5.4 Numerical experiment of the real system

A “numerical experimental” response of the real sys-
tem is obtained by (1) constructing a 3D elastic model
of the real system, (2) discretizing the real system
by the finite element method, and (3) solving the
equation by modal analysis. The material is taken
as homogeneous and isotropic with a Young modu-
lus of 10'° N/m?, a Poisson coefficient of 0.15, a mass
density equal to 1700 K g/m?. The modal damping ra-
tios are the realizations of a uniform random variable
on [0.009,0.011] of mean value 0.01. The finite ele-
ment mesh is constituted of 80 x 8 x 12 = 7680 three-
dimensional 8-nodes solid elements. There are 9477
nodes and a total of 28275 degrees of freedom (due to
the boundary conditions, the displacement is zero for
2 x 26 nodes). A point force (0, —15(w),0) is applied
to the node of co-ordinates (4.25,0.5,0.75). The fi-
nite element approximation of the displacement field
(u®, v eP) is computed on frequency band B by
using modal analysis with the first 150 elastic modes.
There are 101 eigenfrequencies in band B and 49 eigen-
frequencies in frequency band [1000,1197] Hz. The
fundamental eigenfrequency is v{** = 16 Hz. There
are 14 eigenfrequencies in frequency band [0, 230] H ».
The eigenfrequencies of the first 5 flexural modes cor-
responding to the first 5 elastic modes of the mean
model (Euler beam) and having respectively 2 to 6
nodes (zero Oy-displacement) on the neutral fiber are
v =16, vi? =40, v =91, vi? =153, v\ =220, Hz
with Jj1=1,j2 =3,j3 =7,j1 = 10, j5 = 14.
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5.5 Estimation of the dispersion parameters for ran-
dom uncertainties modeling

Using the "numerical experiment" of the real system,
an estimation of the dispersion parameters &y, dp
and §y of the random generalized mass, damping and
stiffness matrices is performed by using the method
presented in Soize (2003a). Such an estimation yields
oy = 0.29, 6p = 0.30 and o = 0.68.

5.6 Prediction with random uncertainties and "exper-
imental" comparisons

In this section, we present (1) prediction with the
nonparametric probabilistic model of random uncer-
tainties and (2) comparisons with the mean model pre-
diction and with the “experimental” response of the
real system. The convergence with respect to n and n,
(dimension of the stochastic reduced model and num-
ber of realizations used in the Monte Carlo numerical
simulation method) is first studied in Section 4.7. Fig-
ure 6 displays the graph of function n, + Conv(ng,n)
defined by Eq. (24) for different values of n. This fig-
ure shows that a reasonable convergence is reached
for n > 80 and n, > 1500.

-10.5

15 500 1000 1500

Figure 6. Statistical convergence: graphs of the function ns +—
logqg{Conv(ng,n)} for n =20, n = 30 and 60 (three lower thin
solid lines, for n = 80, n = 120 and n = 160 (three upper lines: n =
80 (thin solid line), 7 = 120 (mid solid line) and 7 = 160 (thick solid
line). Horizontal axis 7.

Let O; and O, be the observation points on the line
(#,0,0),x €]0,h,[ (neutral fiber) and located at z; =
5.000m and z» = 6.375m respectively. The confidence
region of the modulus of the frequency response func-
tion at each observation point O; or O, is calculated
by using the method presented in Section 4. The
confidence region for frequency response at a given
observation point is carried out with a probability level
P. = 0.98 and for n = 80 and n, = 3000. For observa-
tion points O, and O, Figs. 7-a and 7-b, respectively,
display the comparisons between the mean model re-
sponse predictions, the “experimental” responses of
the real system and the confidence region predictions
of the stochastic system resulting from the use of the
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nonparametric probabilistic approach for random un-
certainties.
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Figure 7-a. Confidence region prediction of the stochastic system with
nonparametric approach at observation point O, (grey region). Mean
model response (thin solid line). "Numerical experiment" of the real
system (thick solid line).
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Figure 7-b. Confidence region prediction of the stochastic system with
nonparametric approach at observation point O, (grey region). Mean
model response (thin solid line). "Numerical experiment" of the real
system (thick solid line).

5.7 Lack of capability of the parametric probabilistic
approach to take into account model uncertainties

In this section, we presents the results obtained from
the usual parametric probabilistic approach (data un-
certainties). For such an approach, the random vari-
ables are the mass density p, the geometric parameters
h1, he and hs, the Young modulus £ and the damping
ratio ¢. These 6 random variables are assumed to be
mutually independent. Positive-valued random vari-
ables hi, ho and hy are uniformely distributed with
known mean values h,, h, and h; and coefficients of
variation dy,, 05, and &, to be identified (see below)
(the coefficient of variation is the standard deviation
divided by the mean value). In addition, it is assumed
that 6, = 6, = d,,,. Positive-valued random variables
p, £ and ¢ are Gamma random variables with known
mean values p, £ and ¢ and for coefficients of variation
d,, 0c and &, to be identified (see below).

Let AT and A}*™ be the lowest random eigenfre-
quencies of the stochastic systems constructed with
the parametric and nonparametric approach respec-
tively. Let 0 ypar and 4 nonpar be the coefficients of vari-

nonpar

1
ation of random variables A" and A]°™. In order to
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compare comparable things, the coefficients of vari-
ation 6, = 6p, = dn,, 6, and d¢ of random variables
hi, ha, hs, p and £ for the parametric probabilistic ap-
proach, were calculated to yield min{ (8 ypar — 0 nonpar) 7}
in which ¢ yponpar = 0.076918 is known. A solution is
Shy = Ohy = Opy = 0.024, 5, = 0.03, d¢ = 0.1 correspond-
ing to dypar = 0.076492. The coefficient of variation
J¢ 1s calculated by the equation J; = §p which yields
5 =0.3.

For observation points O; and O,, Figs. 8-a and 8-
b display respectively the comparisons between the
mean model response predictions, the “experimental”
responses of the real system and the confidence region
predictions of the stochastic system resulting from
the use of the parametric probabilistic approach of
random uncertainties.
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Figure 8-a. Confidence region prediction of the stochastic system with
parametric approach at observation point O; (grey region). Mean model
response (thin solid line). "Numerical experiment" of the real system
(thick solid line).

0 200 400 600 800 1000

Figure 8-b. Confidence region prediction of the stochastic system with
parametric approach at observation point O, (grey region). Mean model
response (thin solid line). "Numerical experiment” of the real system
(thick solid line).

5.8 Conclusion

The comparaisons of Fig. 7-a with 8-a and 7-b with
8-b show that the two approaches yield similar results
in the low-frequency range [0,100] Hz (this band is
relatively robust with respect to model uncertainties)
are very different in the frequency band [100, 1000] Hz.
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The parametric probabilistic approach allows data un-
certainties to be taken into account but cannot address
model uncertainties which become more significant
for frequency increases. On the contrary, the non-
parametric probabilistic approach allows model un-
certainties to be taken into account.

6 EXPERIMENTAL VALIDATION:
NONPARAMETRIC PROBABILISTIC MODEL
FOR UNCERTAINTIES IN THE DYNAMICS OF
A COMPOSITE SANDWICH PANEL

Two experimental validations of the proposed theory
have been published by Chebli & Soize (2004) and
Duchereau & Soize (2005) in the context of heteroge-
neous model uncertainties in vibration and transient
dynamics of structures. In this section, we present an
experimental validation in another context, i.e. the
vibration of multilayer composites. In addition the
experimental identification of the dispersion parame-
ters controlling model uncertainties is presented. The
details of the results summarized in this section can
be found in Chen et al. (2004).

6.1 Designed panel

The designed panel is a sandwich panel constituted
of five layers four of which are thin carbon-resin uni-
directional plies and one is a high stiffness closed-
cell foam core (see Fig. 9). This panel is defined
with respect to a Cartesian coordinate system Ozyz
and is 0.40m long(Ox axis), 0.30m wide (Oy axis)
and 0.01068 m thick (Oz axis). The middle plane of
the sandwich panel is Ozy and the origine O is lo-
cated in one corner. Each carbon layer is made of
a thin carbon-resin ply with a thickness of 0.00017 m,
a mass density p = 1600 Kg/m® and whose elasticity
constants are: E, = 101 GPa, E, = 6.2GPa, v,, = 0.32,
Guy = Gy = Gy = 24GPa. The first two layers
are two carbon-resin unidirectional plies in a [-60/60]
layup. The third layer is the closed-cell foam core
with a thickness of 0.01 m, a mass density of 80 K g/m?
and elasticity constants: E, = E, = 60 M Pa, v, = 0,
Guy = Gz = Gy. = 30 MPa. The fourth and fifth
layers are two carbon-resin unidirectional plies in a
[60/-60] layup.

[—60/60]

Output,

1Disp]acemenlJT

Input
\L( Force)

[ 60/—60]

0.40 m

Figure 9. Composite sandwich panel.
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6.2 Experiments

(A) Manufactured panels. Eight sandwich panels
were manufactured from the designed panel using the
same process and the same materials. All sandwich
panels were baked in the same batch to suppress the
influence of variations in the baking conditions, e.g.
time and temperature.

(B) Experimental frequency response functions. The
dynamical testing of the eight sandwich panels was
realized in the free-free condition. The middle plane
of the sandwich panel was vertical and the panel
was suspended with a very low eigenfrequency. The
measurements were performed on the frequency band
B = [10,4500] Hz. The input 2-force was a point load
applied to point N0 of coordinates (0.187,0.103,0) m.
An electrodynamic shaker delivered a broad band sig-
nal. The output z-accelerations were measured at 25
points by accelerometers. For the sake of brevity, the
presentation is limited to the point with coordinates
(0.337,0.216,0) m. The experimental cross-frequency
response functions were identified on frequency band
B using the usual spectral analysis methods and signal
processing.

(C) Experimental modal analysis. An experimen-
tal modal analysis was performed in the frequency
band [10,1550] Hz using the identified experimental
frequency response functions. For each sandwich
panelr = 1,...,8, eleven elastic modes were identified
in this frequency band. For sandwich panel r, the fol-
lowing usual modal parameters of each experimental
elastic mode o were identified: (1) the eigenfrequency
wa(0,), (2) the damping ratio £5°(6,), (3) the elastic
mode shape ¢a*(6,) and the corresponding general-
ized mass pS*(0,). Let wo® = (1/8)Y°_, w™(4,) be
the average experimental eigenfrequency a. Intro-
ducing fo = wi?/(2), the results are [ = 191.0 Hz,
fO0 = 3205 Hz, O = 532.0Hz and f°° = 635.1 Hz.
For a = 1,...,11, let £ = (1/8) Y0, €3°(6,) be the
average experimental damping ratio « and let £ =
(1/11) Yo, €% be the global average experimental
damping ratio. The result is £ = 0.01.

6.3 Mean model and its updating

The designed panel is modeled as a laminated com-
posite thin plate for which each layer is an orthotropic
elastic material in plane stress. Since we are only in-
terested in the 2-displacement of the middle plane of
the sandwich panel in the bending mode and since
the panel is a free structure, there are 3 rigid body
modes. We are interested in the construction of the
responses in the frequency domain over the frequency
band of analysis B. The designed panel is modeled
by using a regular finite element mesh constituted of
128 x 64 four-nodes finite elements for laminated plate
bending. The number of DOF is 25 155. The damping
of the structure is introduced by an arbitrary usual
model controlled by the modal damping ratios de-
duced from the measurements. The mean model has
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been updated in average using the first 4 experimental
eigenfrequencies for each panel (8 panels).

6.4 Reduced mean model

The reduced mean model was constructed by using the
first n = 200 elastic modes of the updated mean model
including the 3 rigid body modes. Convergence was
found to be reached for this number of modes.

6.5 FRF calculation with the reduced mean model
and experimental comparisons

The cross-frequency response function correspond-
ing to the observation point is calcultated with the re-
duced mean model. Figure 10 displays, in log scale,
the graphs of the modulus of the experimental and nu-
merical cross-frequency response functions for which
the input is the driven point and the output is the z-
acceleration at the observation point. Note that there
are 9 curves in the figure: 8 curves correspond to
the experimental cross-frequency response functions
of the 8 sandwich panels and 1 curve corresponds
to the numerical cross-frequency response function
computed with the reduced mean model. The com-
parison of the experimental cross-frequency response
functions with the one constructed with the reduced
mean model is reasonably good in the frequency band
[0, 1500] Hz and relatively poor in [1500,4500] Hz. In
the frequency band [1500, 4500] Hz, the lack of pre-
dictability is increasing with the frequency and is
mainly due to model uncertainties (modeling the sand-
wich panel by using the laminated composite thin
plate theory) and to a lesser degree to data uncertain-
ties (mechanical parameters).
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Figure 10. Graphs of the cross-FRF between driven point and observa-
tion point. Horizontal axis: frequency in Hertz. Vertical axis: log;,
of the modulus of the acceleration in 1/ s2. Experimental cross-FRF
corresponding to the 8 panels (8 thin solid lines). Numerical cross-FRF
calulated with the reduced mean model (thick solid line)

6.6 Experimental identification of the dispersion pa-
rameters of the nonparametric model

Let 65, 6p and 65 be the dispersion parameters of
the random generalized mass, damping and stiffness
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matrices. They were estimated by using the exper-
imental generalized matrices corresponding to the 8
experimental sandwich panels, and for a dimension
v < n. The dispersion parameters 6,;, 6p and dx were
estimated by (Chen et al. 2004) using the method
presented in Soize (2003a and 2005b) and yields
Sar = 0.23, 6p = 0.43 and 6k = 0.25 for random matri-
ces [M,,], [D,] and [K,] (these values are independent
of dimension » of the stochastic reduced model).

6.7 Confidence region prediction for the FRF and
experimental comparisons

Figure 11 displays the confidence region prediction
for the random cross-frequency response functions
between the driven point and the observation point,
computed with ny = 2000 realizations for the Monte
Carlo numerical simulation and n = 200 (mean-square
convergence is reached for these values).

500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 11. Confidence region prediction for the random cross-FRF. Hor-
izontal axis: frequency in Hertz. Vertical axis: logy of the modulus of
the acceleration in m/ s2. Experimental cross-FRF corresponding to
the 8 panels (8 thin solid lines). Numerical cross-FRF calculated with
the reduced mean model (thick solid line). Mean value of the random
cross-FRF calculated with the nonparametric probabilistic model (thin
dashed line). Confidence region of the random cross-FRF calculated
with the nonparametric probabilistic model (grey region).

6.8 Conclusions

Experimental results obtained for a set of 8 light sand-
wich panels show the sensitivity of the dynamical re-
sponse of the panels in the medium-frequency range.
The use of the classical laminated composite thin plate
theory to construct the predictive mean model intro-
duces significant model uncertainties in the medium-
frequency range. Since such dynamical systems are
very sensitive to uncertainties, the introduction of a
probabilistic model of both data and model uncertain-
ties is necessary to improve the predictability of the
mean model. The prediction from the nonparametric
model compared with the experiments is good.
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7 INDUSTRIAL APPLICATIONS

7.1 Industrial application 1: Linear dynamics of a
bladed disk mistuned by manufacturing uncertainties

The description of a bladed disk using its cyclic sym-
metry properties (Thomas, 1979 ; Ohayon & Soize,
1998) is not sufficient to predict accurately its dy-
namic forced response. In such a mechanical system,
there are random uncertainties due to the manufactur-
ing process of the blades. Blade mistuning then refers
to the fact that the blades of a bladed disk are slightly
different from one to another one. Such a mistun-
ing has significant effects when analyzing the forced
response of the bladed disk. It is observed that the vi-
bratory energy of the mistuned bladed disk is localized
inducing large dynamic amplification factor (White-
head (1966), Ewins (1969), Dye & Henry (1969)).
Various studies have been carried out to understand
and control this phenomenon (see for instance Grif-
fin & Hoosac (1984), Sinha & Chen (1989), Lin &
Mignolet (1997), Castanier et al. (1997), Mignolet &
Hu (1998), Bladhetal. (2001), Mignoletetal. (2001),
Young & Griffin (2001), Petrov et al. (2002), Sein-
turier et al. (2002)). An exact parametric probabilis-
tic approach would require setting up experimental
means to construct a complete probabilistic model of
all the parameters related to the random geometry and
properties of the blades. Then, functions mapping the
domain of uncertain parameters into the mass, damp-
ing and stiffness finite element matrices should be
constructed. Finally, efficient reduced order models
(Bladh et al. (2001), Seinturier et al. (2002)) should
be used to analyze the forced response statistics of
the bladed disk. It should be noted that such a para-
metric probabilistic approach would require a large
number of uncertain parameters to be experimentally
identified in particular for modeling the stochastic
fields representing the geometrical and material ran-
dom uncertainties. An alternative approach based on
the use of the nonparametric probabilistic model is
proposed and has been used (1) to analyze the direct
problem (Capiez-Lernout & Soize, 2004) and (2) to
solve the inverse problem consisting in estimating the
manufacturing tolerances required so that the random
amplification factor of the mistuned disk has a proba-
bility level lower than a given value (Capiez-Lernout
et al. 2005a). Below, it is shown how the nonpara-
metric probabilistic approach of uncertainties can be
used for constructing the probability density function
of the amplification factor due to the mistuning. The
details concerning this application can be found in
Capiez-Lernout et al. (2005a).

(A) Mean model. The structure under consideration
is a wide chord supersonic fan geometry. The fan
has 22 blades. The finite element model of the bladed
disk shown in Fig. 12 is constituted of 31 812 solid ele-
ments and the mean model has m = 504 174 degrees of
freedom. Each sector contains 8133 nodes which cor-
responds to 22947 degrees of freedom. The structure
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is in rotation around its revolution axis with a constant
velocity Q = 4500 pm. The frequency band of analysis
for which mistuning effects occur is B = [515,535] Hz.

(B) Reduced mean model. The mean model of the
structure is reduced by the substructuring method in-
troduced by Benfield & Hruda (1971). The efficiency
of'this method has been proved for mistuned industrial
bladed disks with each blade constituting a branch
component of the disk substructure. Each blade is re-
duced by using the Craig & Bampton method (Craig
& Bampton 1968). A reduced mean model of the
disk with loaded coupling interfaces is constructed by
modal analysis. In order to connect the substructures,
the displacement of each blade on the coupling inter-
face is projected on the disk modes by using the conti-
nuity of displacements at the coupling interface. The
reduced mean model is constructed with 660 modes
constituted of 10 blade modes per each of the 22 blades
(Craig & Bampton) and 440 modes for the loaded disk
(Benfield & Hruda).

Figure 12. Finite element mesh for the 22 blades fan stage

(C) Nonparametric probabilistic modeling of uncer-
tainties: probability density function of the random
amplification factor due to the mistuning induced by
manufacturing tolerances. Blades uncertainties are
due to the blade manufacturing tolerances. The dis-
persion parameter of the stiffness matrix for each
blade is 6x = 0.05 and has been estimated from the
tolerances values (Capiez-Lernout et al., 2005). The
stochastic equations are solved with the Monte Carlo
numerical simulation method with 1500 realizations
and using a heterodyne strategy for computing the
random variables in order to accelerate the stochastic
convergence. Here, the amplification factor of a blade
is relative to its elastic energy. For a given frequency
in B, the dynamical amplification factor is defined as
the maximum over the 22 blades of the elastic energy
of the forced response of each blade for the mistuned
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system, normalized with respect to the tuned system.
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Figure 13. (1) Dynamical amplification factor for the tuned system
(dashed line), (2) realization of the random dynamical amplification
factor for the mistuned system and for the 22 blades (thin solid lines)
and (3) realization of the maximum over the 22 blades of the random
dynamical amplification factor for the mistuned system (thick solid line)

Figure 13 displays, versus the frequency in B, the
dynamical amplification factor for the tuned system,
a realization of the random dynamical amplification
factor for each of the 22 blades (for the mistuned sys-
tem) and the realization corresponding to the maxi-
mum over the 22 blades. Figure 14, which is associ-
ated with Fig. 13, shows the corresponding spatial lo-
calization of the vibrations induced by the mistuning.
Figure 15 displays the probability density function of
the maximum over band B of the random dynamic
amplification factor for the mistuned system.

(D) Conclusion. The proposed approach allows the
estimation probability density function of the maxi-
mum of the random amplification factor due to mis-
tuning, i.e. induced by manufacturing tolerances.
The inverse problem which consists in finding the
tolerances in order that the maximum of the random
dynamical amplification factor be large than a given
value with a given probability level is analyzed in
(Capiez-Lernout et al. 2005).
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Figure 14. Localized vibrations of the mistuned system. Horizontal

axis: blade number. Vertical axis: realization of the random dynamic

amplification factor for each blade for the mistuned system and for the
frequency for which the maximum is reached.
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Figure 15. Probability density function of the maximum of the random
dynamic amplification factor for the mistuned system.

7.2 Industrial application 2 : Identification and quan-
tification of the design margins in nonlinear dynamics
of a reactor coolant system

This application deals with model uncertainties for a
predictive model in transient nonlinear dynamics of a
reactor coolant system (PWR) to identify and quan-
tify the design margins. The nonlinear dynamical
system is composed of a linear damped elastic struc-
ture representing the reactor cooling system. The
nonlinearities are due to restoring forces induced by
elastic stops modeling supports of the reactor cooling
system. For given gaps, these elastic stops limit the
vibration amplitudes of the steam generator system.
The displacement field of this structure is constrained
by several time-dependent Dirichlet conditions corre-
sponding to seismic loads operating on the anchors
of the reactor cooling system and elastic stops. The
details of this application can be found in Desceliers
et al. (2004).

(A) Real system. The real system is a multisupported
reactor coolant system inside a building (see Fig. 16)
subjected to seismic loads. The structure under con-
sideration (see Fig. 17) is a four-loop reactor coolant
system (Duval et al. 1999). Each loop is constituted
of'areactor, a reactor coolant pump and a steam gener-
ator (see Fig. 18). These three elements are connected
to each other by three primary coolant pipes: a hot
leg which links the reactor with the steam generator, a
cold leg which links the reactor with a reactor coolant
pump and an intermediate leg which links the reactor
coolant and the steam generator. Its supports consist
in anchors located under the reactor coolant pumps,
the steam generators and the cold legs. Due to seis-
mic loads, the displacements of all 36 supports are
constrained by time-dependent Dirichlet conditions.
The vibrations of each steam generator are limited by
three elastic stops located at their connection point
with the intermediate leg and the hot leg and located
at the middle of each steam generator. These elastic
stops induce nonlinear restoring forces. In addition,
the seven elastic stops are subjected to seismic load
and consequently, at each stop, the displacements are
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constrained by time-dependent Dirichlet conditions.
Excitation is the ground motion due to earthquake
which induces accelerations at the supports of the
structure constituted of the reactor coolant system.

T

ey

—

P

Figure 16. Three-dimensional model of the building containing the
reactor coolant system, with soil structure interaction.

Figure 17. Four loops reactor coolant system.

.

e opmr o

Figure 18. One loop constituted of the reactor, a reactor coolant pump
and a steam generator.

(B) Mean model. The mean finite element model of
the four-loop reactor coolant system is constituted of
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a curvilinear finite element mesh of a steam genera-
tor, of one loop and of the four-loop reactor coolant
system as shown in Fig. 19. The structure is multi-
supported with 36 supports. The first eigenfrequency
of the linear system (without stops) is 1.4 Hz and the
eigenfrequency of rank 200 is 164 Hz.

Figure 19. Mean finite element model of the four loops reactor coolant
system, constituted of a curvilinear finite element meshes.

The model uncertainties are induced by the introduc-
tion of reduced kinetic in the construction of the mean
finite element model. For instance, the steam gener-
ator (see Fig. 20) is modeled by the curvilinear finite
element model shown in the figure.

Figure 20. Example of model uncertainties induced by the introduction
of a reduced kinematic.

(C) Reduced mean model. The structure with fixed
supports has no rigid body modes. The transient non-
linear dynamical equation is usually reduced by using
the first n structural modes of the associated linear dy-
namical system with fixed supports and without stops.

(D) Nonparametric probabilistic modeling of uncer-
tainties: quantification of the design margins of the
reactor coolant system. Model uncertainties and data
uncertainties for the linear part of the dynamical sys-
tem are taken into account with the nonparametric
approach for which the dispersions of random gen-
eralized mass, damping and stiffness matrices are
oy = 0p = 0x = 0.2. Data uncertainties for the
nonlinear part (elastic stops) are taken into account
with the parametric approach consisting in model-
ing the stiffness of each stop by a Gamma random
variable whose mean value is the value of the mean
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system and for which the dispersion is § = 0.2 (all 28
elastic stops have the same dispersion). The Monte
Carlo numerical simulation is used for obtaining the
response of the nonlinear stochastic dynamical sys-
tem. Since the structure is multisupported and the
number of nonlinear elastic stops is large, the solu-
tion is very sensitive to the value of the integration
time-step size. For the present computations, the
time-step At was chosen as a constant independent
of the dimension n of the stochastic reduced model.
For each realizations ;. of the Monte Carlo numerical
simulation , the nonlinear dynamic equations were
solved using the Euler explicit step-by-step integra-
tion scheme with At = 1/25000s and for a total time
T = 15s. A mean-square stochastic convergence anal-
ysis has been perfomed with respect to the dimension
n of the stochastic reduced model and to the number
ns of realizations used in the Monte Carlo numerical
method. Mean-square convergence with respect to
n and n, is obtained for n = 100 and n, = 280. The
results shown in Fig. 21 correspond to n = 200 and
ns = 700. This figure displays the confidence region
of the Shock Response Spectrum (SRS) at the middle
point of one hot leg in the x5 direction.

Figure 21. Horizontal axis is the frequency in Hertz. The vertical
axis is the pseudo-acceleration spectrum normalized with respect to the
gravity acceleration (g=9.91m/s?). The thick solid line is the SRS of
the mean model and the two thin solid lines are the upper and lower
envelopes defining the confidence region for a given probability level
equal to 0.98.

(E) Conclusion. The construction of the confidence
region of the random SRS permits the analysis of
the design margins with model uncertainties and data
uncertainties. For instance, Fig. 21 shows that the
mean model is very robust for the maximum of the
response in the frequency band [17 — 21] Hz and less
robust in the other part of the frequency band.

7.3 Industrial application 3: Robustness of the nu-
merical simulation model of a spatial structure with
respect to model and data uncertainties in dynamics

In this section, the robustness of the numerical simula-
tion model of the dynamics of an aerospace structure
of Fig. 22 with respect to model and data uncertainties
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is presented. Data uncertainties are introduced using
the parametric probabilistic approach. Model and
data uncertainties are also analyzed with the nonpara-
metric probabilistic approach proposed in this paper.
A summary of the results is presented below, detail
can be found in Capiez-Lernout et al. (2005b) and in
Pellissetti (2005).

(A) Mean model. The mean finite element model is
constructed by subdomains with 5 subdomains: the
satellite having 120 000 DOF, the 2 solid propellant
boosters 12 000 DOF each, the main stage 8 800 DOF
and finally, the upper composite 16 000 DOF. The
total finite element model of the aerospace structure
has thus 168 800 DOF. The external excitation of the
mechanical system is a harmonic driven force applied
in the transversal direction (z-axis) to the launcher
axis. The frequency band of analysisis]0,60[ Hz. The
observation is the displacement at the end section of
the beam connected to the solar panel and is denoted
by "obs" in Fig. 23.

(B) Reduced mean model. The dynamic substructur-
ing technique (Craig & Bampton, 1968) is used to
construct the reduced mean model, each subdomain
being a substructure (5 substructures).

(C) Parametric probabilistic modeling of data un-
certainties. In this application, only the satellite is
concerned by data uncertainties. There are 1318 un-
certain parameters which are modeled by mutually
independent real-valued random variables. The mean
value of each random variable is equal to the value
of the corresponding parameter of the mean model.
The coefficient of variation of each random variable
belongs to the range [0.04,0.40]. Each probability dis-
tribution is log-normal or normal depending on the
nature of the random parameter which is modeled.

(D) Nonparametric probabilistic modeling of model
and data uncertainties. The nonparametric approach
presented in Section 4 is applied to the reduced mean
model of the satellite which is considered as a sub-
structure. Model uncertainties are taken into ac-
count for the mass, damping and stiffness operators.
The dispersion parameters of the random generalized
mass, damping and stiffness matrices related to the
satellite substructure are identified using the disper-
sion of the parametric probabilistic model as follows.
Let AT and A" be the lowest random eigenfre-
quencies of the stochastic system (the satellite in the
free-free condition) constructed with the parametric
approach and the nonparametric one respectively. The
dispersion parameters &;; P and o5 P of the gener-
alized mass and stiffness random matrices are identi-
fied for minimizing the distance between the probabil-
ity density function of A} and the probability density
function of A7*"™. The identification of the dispersion
parameter 05, "P*" for the random generalized damp-
ing matrix is performed by minimizing the distance
between this random matrix and the corresponding
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random matrix constructed with the parametric prob-
abilistic approach. The results of this identification
are 8y, P = 0.14, 67 P = 0.42 and 57" = 0.13
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Figure 22. Mean finite element model of the aerospace structure con-
stituted of the statellite coupled with the launcher.

Figure 23. Finite element model of the satellite.

(E) Robustness of the numerical simulation model
with respect to model and data uncertainties. Fig-
ure 24 displays the confidence region of the random
displacement for the observation computed with the
nonparametric probabilistic approach of model uncer-
tainties and data uncertainties. It can be concluded
that the numerical model is robust with respect to
model uncertainties and data uncertainties in the low-
frequency band [0, 25] Hertz. The sensitivity of the
model to uncertainties increases with the frequency.

10 20 30 40 50

Figure 24. Random displacement for the observation (in dB) calculated
with the nonparametric probabilistic approach of model uncertainties
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and data uncertainties. Response of the mean model (thick solid line).
Mean value of the random response(thin solid line). Confidence region
for probability level 0.98 (gray region).

The robustness of the numerical model with respect
to data uncertainties and model uncertainties can be
analyzed from Figs. 25 and 26. Figure 25 displays
the displacement for the observation (in dB) which is
calculated with the parametric probabilistic approach.
It can be seen that the robustness with respect to data
uncertainties is not constant in the frequency band
[30, 60] Hertz (see Fig. 25), is small in the frequency
bands [30, 33] and [45 , 60] Hertz and is larger in the
frequency band [33 , 45] Hertz. Figure 26 (which is
a zoom of Fig. 24 in the frequency band [30 , 60 ]
Hertz) shows the robustness of the numerical model
with respect to model uncertainties and data uncer-
tainties. It can be seen that this robustness decreases
with the frequency in the band [30, 60] Hertz. Com-
paring Figs. 25 and 26, it can be concluded that the
numerical model is less robust with respect to model
uncertainties than with respect to data uncertainties in
the frequency band [30, 60]. Hertz.
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Figure 25. Random displacement for the observed dof (in dB) calcu-
lated with the parametric probabilistic approach of data uncertainties.
Response of the mean model (thick solid line). Mean value of the ran-
dom response(thin solid line). Confidence region for probability level
0.98 (gray region).
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Figure 26. Random displacement for the observed dof (in dB) cal-
culated with the nonparametric probabilistic approach of model uncer-
tainties and data uncertainties. Response of the mean model (thick solid
line). Mean value of the random response(thin solid line). Confidence
region for probability level 0.98 (gray region).
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7.4 Industrial application 4: Robustness of numerical
vibroacoustic FRF of cars with respect to model and
data uncertainties

The objective of this application is to analyze robust-
ness of numerical vibroacoustic frequency response
functions (FRF) ofa car with respect to model and data
uncertainties. The details concerning the methodol-
ogy of this application can be found in Durand et al.
(2004).

(A) Mean model of the vibroacoustic system. The
mean finite element model is constructed with 2 sub-
domains. The first subdomain is the structure (car
body) and its finite element model (see Fig. 27) has
1132356 degrees of freedon discretizing the displace-
ment field (displacements and rotations). The second
subdomain is the internal acoustic cavity and its finite
element model (see Fig. 28) has 6236 degrees of free-
dom (pressure). The two meshes are not compatible
on the vibroacoustic coupling interface. The excita-
tion is constituted of forces applied to engine supports
(booming noise excitation). The frequency band of
analysis is [1000, 6000] rpm (rotation per minute).

Figure 27. Mean finite element of the structure (car body).

Figure 28. Mean finite element model of the internal acoustic cavity
with incompatible mesh on the acoustic-structure coupling interface.
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(B) Reduced mean model. The vibroacoustic equa-
tions (mean model) are reduced using the structural
modes of the structure (car body) in vaccuo and the
acoustics modes of the internal acoustic cavity with
fixed vibroacoustic coupling interface.

(C) Nonparametric probabilistic modeling of model
and data uncertainties. The nonparametric proba-
bilistic approach presented in Section 4 is extended to
the reduced mean model of the vibroacoustic system.
For the structural uncertainties, it is assumed that the
levels of uncertainties for the mass, damping and stiff-
ness are the same, which means that 65, = 63 = 63
For the acoustic cavity uncertainties, it is also assumed
that the levels of uncertainties for the fluid "mass",
"damping" and "stiffness" are the same, which means
that ¢4 = 67 = o7. Finally, for the vibroacoustic
coupling uncertainties, the generalized coupling ran-
dom matrix is modeled using the ensemble of random
matrices defined in Section 4.6(5) and for which the
uncertainty level is controlled by the parameter é¢.

(D) Robustness of the numerical simulation model
with respect to model and data uncertainties. Be-
low, the levels are in dB. In each figure, 1 graduation
corresponds to 5dB on plots. For the structure, the
observation is a displacement U with dB = 201og;,(U)
and for the internal noise, it is a pressure P with
dB(B) = 20log,((P/Py) + B in which B is a constant
and Py = 2 x 107° Pa. For the frequency band of anal-
ysis considered, stochastic convergence is reached for
700 structural modes, 50 acoustical modes, and 700
realizations in the Monte Carlo numerical simulation.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Figure 29. Robustness with respect to structure uncertainties. Normal
displacement at the center of a flexible structural element (car roof) in
dB. Mean model (thick solid line). Mean value of the random response
(thin solid line). Confidence region with probability level 0.95 (gray
region). One graduation on the vertical axis corresponds to 5 dB.

Figures 29 and 30 are related to the robustness of
the structural vibrations of the vibroacoustic system
with structural uncertainties (model uncertainties and
data uncertainties), without vibroacoustic coupling
uncertainties and without acoustic cavity uncertain-
ties. Figure 29 displays the normal displacement at
the center of a flexible structural element (car roof)
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in dB. The robustness with respect to structure un-
certainties is small. Figure 30 displays the normal
displacement at the center of a stiff structural element
located between the acoustic cavity and the engine.
For this structural element, the robustness with respect
to structure uncertainties is higher.

L L L L L L L L L
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Figure 30. Robustness of the structure response with respect to structure

uncertainties. Normal displacement at the center of a stiff structural
element in dB. Mean model (thick solid line). Mean value of the
random response (thin solid line). Confidence region with probability
level 0.95 (gray region). One graduation on the vertical axis corresponds
to5dB.

Figures 31 and 32 are related to robustness of inter-
nal noise for the vibroacoustic system with respect to
uncertainties (model uncertainties and data uncertain-
ties). Figure 31 and 32 display the acoustic pressure
at the driver ears in dB(B). Figure 31 is related to
structure, vibroacoustic coupling and acoustic cavity
uncertainties while Fig. 32 is only related to structure
uncertainties.
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Figure 31. Robustness of the internal noise with respect to structure,
vibroacoustic coupling and acoustic cavity uncertainties. Acoustic pres-
sure in dB(B) at the driver ears. Mean model (thick solid line). Mean
value of the random response (thin solid line). Confidence region with
probability level 0.95 (gray region). One graduation on the vertical axis
corresponds to 5 dB.
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Figure 32. Robustness of the internal noise with respect to structure
uncertainties. Acoustic pressure in dB(B) at the driver ears. Mean
model (thick solid line). Mean value of the random response (thin solid
line). Confidence region with probability level 0.95 (gray region). One
graduation on the vertical axis corresponds to 5 dB.

8 CONCLUSIONS

In this paper, a nonparametric probabilistic approach
has been proposed to take into account model uncer-
tainties and data uncertainties in computational me-
chanics. It is shown with a simple example that the
usual parametric probabilistic approach allows data
uncertainties to be analyzed but does not allow model
uncertainties to be taken into account. An addi-
tional experimental validation of the approach pro-
posed is given. Four industrial applications in com-
putational mechanics have been presented in different
fields showing the interest of such an approach: linear
dynamics of a mistuned bladed disk due to manufac-
turing tolerances, identification and quantification of
the design margins in nonlinear dynamics of a reactor
coolant system, robustness analysis of the numeri-
cal simulation model with respect to model and data
uncertainties in dynamics of a spatial structure and fi-
nally, robustness analysis of numerical vibroacoustic
FRF of cars with respect to model and data uncertain-
ties.
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