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Abstract

In this paper we construct braidings characterizing different algebraic struc-
tures: a rack, an associative algebra, a Leibniz algebra and their representa-
tions. Some of these braidings seem original. This produces, via braided space
(co)homology coming from quantum (co)shuffle (co)multiplication, a family of
(co)chain complexes for each of these structures. One recovers Koszul, rack,
bar, Hochschild and Leibniz complexes in these families. All the constructions
are categorified, resulting in particular in their super- and co-versions. Loday’s
hyper-boundaries are efficiently treated using the ”shuffle” tools. A notion of
modules over braided spaces, encompassing algebra, Lie and rack modules, is
introduced.
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1 Introduction

The aim of this paper is to develop a unifying algebraic framework for
(co)homologies of algebraic structures. The central examples considered
here are those of racks (or, more generally, self-distributive systems) and of as-
sociative or Lie (more generally, Leibniz) algebras and coalgebras, as well as
of their representations. These examples are quite simple but eloquent in illus-
trating the advantages of our general constructions. More structures (bialgebras
and Hopf algebras, Hopf and Yetter-Drinfeld modules) are left for a subsequent
paper. The very pedestrian approach chosen here makes our theory adapted for
applications.

Let us first present the motivation behind using braidings and quantum
shuffles (the notion was introduced by Rosso, see [25] and [26]) for under-
standing (co)homologies. Given an algebraic structure (i.e. a set S or a
vector space V endowed with several operations, obeying a list of compatibil-
ity properties), there are various approaches to constructing a differential on
T (V ) (with V = kS in the case of a set), giving (co-)homologies containing use-
ful information about the original structure. One can think in terms of derived
functors, or structure deformations and obstructions, or topology (regarding the
notion of an algebra as a generalization of the algebra of functions on a space,
or trying to devise a state-sum knot invariant using the fundamental quandle of
a knot, cf. [3]). The formulas for the differentials obtained, when written down
explicitly, are often quite simple and have the same flavor. They are signed sums
of terms of the same nature, one for each component 1, 2, . . . , n of V ⊗n, with
the terms being local in some sense: for associative algebras, each term of the
bar or Hochschild differential involves only two neighboring components, while
for racks and Leibniz algebras the i-th term ”sees” only the components to the
left of the i-th one. Verifying that one has indeed a differential, i.e. d2 = 0,
consists of checking some local algebraic identities (which mysteriously coincide
with defining properties for our algebraic structure!) coupled with a sign ma-
nipulation, no less mysterious. This procedure makes one think of quantum
(co)shuffle (co)multiplication, with:
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⊛ the same routine applied at each position (for instance, when calculating
v0 � v1 ⊗ v2 ⊗ . . .⊗ vn, with vi ∈ V );

⊛ the sign depending on the position (if our braiding has a sign coefficient
(−1)deg v degw for example);

⊛ the overall (co)associativity which is a consequence of the local Yang-
Baxter identity involving three neighboring components of V ⊗n only.

Braided vector spaces and their homologies allow to formalize these parallels.
The (co)homology constructing machinery proposed here can be roughly

outlined as follows (all notions and constructions are detailed in the paper):

1. Given an algebraic structure on a vector space V, find a braiding en-
coding this structure. For racks, this turns out to be a well-known
braiding coming from the topological interpretation in knot theory (cf.
the foundational papers [10] and [21]). For associative and Lie algebras,
the braidings presented here seem to be original.

2. Add a sign to the braiding (think of the signs (−1)i in the formulas for
differentials!).

3. This gives a (co)associative quantum (co)shuffle (co)multiplication on T (V ).

4. Find a cut, i.e. a ”square zero” element v ∈ V or co-element ϕ ∈ V ∗ for
this signed (co)multiplication. In concrete situations cuts will turn out to
be familiar algebraic objects (units, characters, group-like elements etc.).

5. Quantum shuffle multiplication by this element on the right or on the left
is thus a differential on T (V ), and similarly in the co-case.

The surprising fact is that in the associative case our braiding is non-
invertible, which luckily never causes any problems in the constructions de-
scribed. Continuing Majid’s ”braided” philosophy (cf. [19] and references
therein), this means that, after going from permutation groups to braid groups
by relaxing the idempotence condition σ2

i = 1, we move further on to the
monoids of positive braids by forgetting the invertibility condition for σi’s.

The complexes easily obtained by our procedure include Koszul, rack, bar,
Leibniz, Hochschild and Cartier complexes, all of these in quite a general version.
For each of them one thus obtains an easy and conceptual way of proving d2 = 0,
as well as of ”guessing” the right boundary map.

The appearance of Leibniz homology is quite remarkable here. It was
defined by Loday (cf. [15],[16],[17]) as a non-commutative analogue of the
Chevalley-Eilenberg homology of Lie algebras, allowing to lift the correspond-
ing boundary map from the exterior to the tensor algebra. Our approach is an
alternative way to ”guess” the right lift.

Note that our construction produces two differentials – a left and a right one
– for each cut. They are moreover compatible, giving a bicomplex structure.
In addition, differentials for different cuts are often compatible, allowing one
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to combine them. Thus we get a family of differentials for each algebraic
structure, the familiar one being just one combination of them.

The interpretation of chain complexes for algebraic structures presented here
is similar in some sense to the language of simplicial modules, but has the
advantage of being more transparent, saying more on the nature of the di com-
ponents and on the reasons of their compatibility. A detailed comparison is
given in section 3.

Homologies of braided vector spaces are briefly mentioned in some sources,
but no detailed study of appearing complexes seem to exist, perhaps because of
their extreme generality. On the contrary, the step

”algebraic structure = braiding”,

which is at the heart of this paper, seems to have never been proposed before.
We allow ourselves the equality sign ”=” rather than the implication ”⇒” since
in all the examples considered here the Yang-Baxter equality characterizing
our braiding is equivalent to the defining properties of the original algebraic
structure.

One more nice feature of our differentials is that they can be easily general-
ized to give Loday’s hyper-boundaries (cf. [15], exercise E.2.2.7), producing
a convenient tool for manipulating them (see in particular theorem 2). Section
4 is dedicated to this point.

All constructions presented in the paper are raised to the categoric level in
section 6. No special technical difficulties are encountered during such a general-
ization. One gets in particular categoric versions of bar and Leibniz complexes
for associative or Leibniz algebras in an arbitrary (symmetric in the Leibniz
case) preadditive category, in the spirit of [2] and [1]. Three applications of
the categoric approach are presented: Leibniz superalgebra homology, chain
complexes for dual structures (e.g. Cartier differential for coalgebras) and
right-left duality for braidings and differentials. The dualities are also inter-
preted pictorially, with an operadic flavor. Note that the categorical translation
of our constructions is often ”doubly braided”: an ”external” braiding (the one
encoding an algebraic structure; it can be quite complicated) is built in a sym-
metric monoidal category (with a quite simple underlying ”internal” braiding –
a flip or a Koszul flip in the examples). Thus one gets representations of virtual
braid groups.

The last section presents two approaches to homologies with coefficients.
The first one is quite general and goes through the notion of modules over
braided vector spaces, generalizing simultaneously and quite surprisingly
modules over associative or Leibniz algebras (cf. [15]) and racks (cf. [5]), as
well as our cuts. A bicomplex is associated to a pair of such modules (a left and
a right one), giving familiar homologies with coefficients in all our particular
cases. Hochschild homology is obtained by introducing bimodules over braided
vector spaces. The second approach is a structure mixing technique: chain
complexes for a module V over an associative or Leibniz algebra A are built by
amalgamating all the structures into one algebra structure on V ⊕A.
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Graphical calculus (in the spirit of Baez ([2]), Majid ([20]) and other
authors) is extensively used throughout this paper, giving an illustrating tool,
a convenient method of presenting some proofs and also an important source of
inspiration.

Acknowledgements. I would like to thank Marc Rosso for sharing his
passion for quantum shuffles, for patiently encouraging me during the writing of
this paper, and for having a list of references ready for any issue this work has
touched. I am also grateful to Arnaud Mortier for comments on a preliminary
version of this paper.

Notations and conventions.
We work with vector spaces over a base field k (most statements still remain-

ing true over a commutative ring). All tensor products are over k if nothing is
explicitly mentioned. Notations

T (V ) :=
⊕

n≥0

V ⊗n,

T (V )+ :=
⊕

n≥1

V ⊗n

are used for the (reduced) tensor algebra of V, with V ⊗0 := k. A simplified
notation is used for its elements:

v = v1v2 . . . vn := v1 ⊗ v2 ⊗ . . .⊗ vn ∈ V ⊗n

leaving the tensor product sign for

v1v2 . . . vn ⊗ w1w2 . . . wm ∈ V ⊗n ⊗ V ⊗m.

Sometimes the notation V ⊗n will be reduced to V n.
We will often call the vector space T (V ) the tensor space of V , emphasizing

that we endow it with a multiplication different from the usual concatenation.
The dual of a vector space V is denoted by V ∗ := Homk(V, k).
The word complex will mean a differential (co)chain complex, and similarly

for bicomplexes.

The symmetric and braid groups on n elements are denoted by Sn and Bn

respectively. Inclusions Sn ⊂ Sm and Bn ⊂ Bm for n < m, implicit in the paper,
are obtained by letting an s ∈ Sn act on the first n elements of an m-tuple, or,
respectively, by adding m−n untangled strands on the right of an n-braid. We
use the usual action of Sn on V ⊗n :

σ(v1v2 . . . vn) := vσ−1(1)vσ−1(2) . . . vσ−1(n).
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2 Braided world: a short reminder

We recall here different facts about braided vector spaces necessary for subse-
quent sections. For a detailed treatment of braid groups, [12] is an excellent
reference. As for quantum shuffles, we send the reader to [26] and [25].

Definition 2.1. A braiding on a vector space V is a linear map σ : V ⊗ V −→
V ⊗ V satisfying the Yang-Baxter identity

σ1σ2σ1 = σ2σ1σ2 : V ⊗ V ⊗ V −→ V ⊗ V ⊗ V, (YB)

where σi is the braiding σ applied to components i and i+ 1 of V ⊗3.
A braiding is called symmetric if σ2 = IdV ⊗V .
A vector space endowed with a braiding is called braided.

Note that unlike most authors we do not demand that the braiding be
invertible, and later on we will present some interesting highly non-invertible
braidings.

A braiding on a set is defined similarly: tensor products ⊗ are simply re-
placed by Cartesian products ×. These two settings are particular cases of a
more abstract one: they both come from braided categories, studied in more
detail in section 6.

The basic examples of braidings are the flip

τ : v ⊗ w 7−→ w ⊗ v,

the signed flip
−τ : v ⊗ w 7−→ −w ⊗ v,

and their generalization for graded vector spaces, the Koszul flip

τKoszul : v ⊗ w 7−→ (−1)deg v degww ⊗ v

for homogeneous v and w. This last braiding explains the Koszul sign con-
vention in many settings.

Remark that in general for a braiding σ, its opposite −σ : v⊗w 7→ −σ(v⊗w)
is also a braiding.

A braiding gives an action of the braid monoid B+
n (i.e. the monoid of

positive braids, cf. [12]) on V ⊗n which is best depicted in the graphical form

σi(v) =

· · · · · ·
v1 v2 vi−1 vi vi+1 vi+2 vn

v1 v2 vi−1 vi+2 vnσ(vi⊗vi+1)

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

All diagrams in this paper are to be read from bottom to top. One could

have presented the crossing as . It is just a matter of convention, and the
one used here comes from the rack theory (section 5.2).
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For symmetric braidings the action above is in fact an action of the sym-
metric group Sn.

The graphical translation of the Yang-Baxter equation (YB) for braidings is
the third Reidemeister move:

=

Remark 2.2. A braiding σ on V is naturally extended to a braiding σ on its
tensor space T (V ) by

σ(v ⊗ w) = (σk · · ·σ1) · · · (σn+k−2 · · ·σn−1)(σn+k−1 · · ·σn)(vw) ∈ V ⊗k ⊗ V ⊗n

for v ∈ V ⊗n, w ∈ V ⊗k, or graphically:

⊗

v1v2 · vn⊗w1w2 ·wk

Now, the famous inclusion

Sn →֒ Bn

s = τi1τi2 · · · τik 7−→ Ts := σi1σi2 · · ·σik

where

⊛ τi ∈ Sn are transpositions of neighboring elements i and i+1, called simple
transpositions,

⊛ σi are the corresponding generators of Bn,

⊛ τi1τi2 · · · τik is one of the shortest words representing s,

is well defined and factorizes through

Sn →֒ B+
n →֒ Bn.

This is a set inclusion not preserving the monoid structure. A more precise
result will be necessary later:

Lemma 2.3. We have Ts1s2 = Ts1Ts2 if and only if for each pair of elements
(i, j) reversed by s2, their images (s2(i), s2(j)) are not reversed by s1.

The following subsets of symmetric groups will be extensively used after-
wards:
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Definition 2.4. The permutation sets

Shp,q :=

{
s ∈ Sp+q s.t.

s(1) < s(2) < . . . < s(p),
s(p+ 1) < s(p+ 2) < . . . < s(p+ q)

}

or, more generally,

Shp1,p2,...,pk
:=

{
s ∈ Sp1+p2+···+pk

s.t.

s(1) < s(2) < . . . < s(p1),
s(p1 + 1) < . . . < s(p1 + p2),
. . . ,
s(p+ 1) < s(p+ 2) < . . . < s(p+ pk)

}

where p = p1 + p2 + · · ·+ pk−1, are called shuffle sets.

The conditions from this definition mean that one permutes p1+p2+ · · ·+pk
elements preserving the order within k consecutive blocks of size p1, p2, . . . , pk,
just like when shuffling cards, which explains the name. The set Shp1,p2,...,pk

consists of
(
p1+p2+···+pk

p1,p2,...,pk

)
elements.

Lemma 2.5. Take p, q, r ∈ N and put n = p+ q+ r. Viewing Shp,q ⊆ Sp+q and
Shq,r ⊆ Sq+r as subsets of Sn by letting Shp,q permute the first p+ q elements
of an n-tuple, and, similarly, by letting Shq,r permute the last q+ r elements of
an n-tuple, one has the following decomposition:

Shp,q,r = Shp+q,rShp,q = Shp,q+rShq,r.

That is, an element of Shp,q,r can be seen, in a unique way, as an element of
Shp,q followed by one from Shp+q,r, and similarly for the second decomposition.

Everything is now ready for defining quantum shuffle algebras. This struc-
ture originated in the work of Rosso ([24],[25]).

Definition 2.6. The quantum shuffle multiplication on the tensor space T (V )
of a braided vector space (V, σ) is the k−linear extension of the map�

σ
= �

σ

p,q : V ⊗p ⊗ V ⊗q −→ V ⊗(p+q)

v ⊗ w 7−→ v �
σ
w :=

∑

s∈Shp,q

T σ
s (vw).

The expression vw in the brackets means just the concatenation of pure tensors
v and w. Notation T σ

s stands for Ts ∈ B+
n acting on V ⊗n via the braiding σ.

Endowed with this multiplication, T (V ) is called the quantum shuffle algebra
of (V, σ) and denoted by Shσ(V ).

The symbol � comes from a Cyrillic letter pronounced as ”sh” in English.
In the case of the trivial braiding (σ = flip) one speaks simply about the

shuffle algebra of V, and a simplified notation � is used.
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By a braided Hopf algebra (in the sense of Majid, cf. Definition 2.2 in
[19] for example) we will mean additional structure on a braided vector space
satisfying all the axioms of a Hopf algebra except for the compatibility between
the multiplication and the comultiplication, which is replaced by the braided
compatibility (this last notion will be recalled in the following proposition).
More generally, it is a Hopf algebra in a braided category (see section 6 for
categoric notions).

The quantum shuffle multiplication can be upgraded to give an interesting
example of a braided Hopf algebra structure (commutative if the initial braiding
is symmetric):

Proposition 2.7. Let (V, σ) be a braided vector space.

1. The multiplication �
σ

of Shσ(V ) is associative.

2. If σ2 = Id, then the multiplication �
σ

is σ−commutative, i.e.�
σ
(v ⊗ w) = �

σ
(σ(v ⊗ w))

(with the extension of σ to T (V ) from remark 2.2).

3. The element 1 ∈ k is a unit for Shσ(V ).

4. The deconcatenation map

∆ : v1v2 . . . vn 7−→

n∑

p=0

v1v2 . . . vp ⊗ vp+1 . . . vn,

1 7−→ 1⊗ 1,

(where an empty product means 1), and the augmentation map

ε : v1v2 . . . vn 7−→ 0,

1 7−→ 1,

define a coalgebra structure on T (V ).

5. These algebra and coalgebra structures are σ−compatible, in the sense
that

∆ ◦�
σ
= (�

σ
⊗�

σ
) ◦ σ2 ◦ (∆⊗∆).

6. An antipode can be given on Shσ(V ) by the formula

s : v 7−→ (−1)nT σ
ρn
(v), v ∈ V ⊗n, ρn =

(
1 2 ··· n
n n−1 ··· 1

)
∈ Sn,

1 7−→ 1.
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The braided vector space (Shσ(V ),σ) is thus endowed with a braided Hopf alge-
bra structure.

Proof. We will only give the proof of the most difficult statements.
1. Let v ∈ V p, w ∈ V q, u ∈ V r. We have

(v �
σ
w)�

σ
u =

∑

s∈Shp+q,r ,t∈Shp,q

T σ
s ◦ (T σ

t ⊗ Idr)(vwu)

Lemma 2.3
=

∑

s∈Shp+q,r,
t∈Shp,q⊆Sp+q⊆Sp+q+r

T σ
s◦t(vwu)

Lemma 2.5
=

∑

s∈Shp,q,r

T σ
s (vwu).

The same reasoning gives

v �
σ
(w�

σ
u) =

∑

s∈Shp,q,r

T σ
s (vwu),

so these two expressions are equal.
6. Take a v ∈ V ⊗n, n > 1. There are two types of signed summands in the

expression of �
σ
◦ (Id⊗ s) ◦∆(v): those where the last element in the quantum

shuffle product comes from the first component of ∆(v) ∈ T (V ) ⊗ T (V ), and
those where it comes from the second one. Each summand appears exactly once
in each type, and with different signs due the sign (−1)··· in the definition of
the antipode. The overall sum is therefore zero.

The above proposition is well-known for invertible braidings ([26]); we point
out that it still holds when the braiding admits no inverse.

Remark 2.8. If our vector space V is finite dimensional, then the graded dual of
T (V ) inherits a braided Hopf algebra structure from the one described above,
with the usual concatenation product and the quantum co-shuffle coproduct :�

σ
|V ⊗n :=

∑

p+q=n; p,q>0

�
σ

p,q,�
σ

p,q :=
∑

s∈Shp,q

T σ
s−1 : W⊗n −→ W⊗p ⊗W⊗q, W := V ∗.

The components �
σ

p,q are often called quantum unshuffles. Moreover, this for-

mula defines a coproduct on T (W ) for an arbitrary (even infinite-dimensional!)
vector spaceW, and this coproduct upgrades to a braided Hopf algebra structure
”dual” to that described in the previous proposition.

The comultiplication�
σ

red|V ⊗n :=
∑

p+q=n; p,q>0

�
σ

p,q

is also coassociative on T (V ), as well as on T (V )+. It is called the reduced
quantum co-shuffle coproduct.
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One should wait for section 6.3 for a detailed treatment of this duality.

3 (Co)homology of braided vector spaces

This section is devoted to a systematic way of constructing differentials on T (V )
for a braided vector space (V, σ). The compatibility of such differentials as well
as their behavior under some quotients and restrictions are also studied. We
create here a tool which will be applied in various familiar algebraic settings in
subsequent sections and in subsequent papers.

Fix a braided vector space (V, σ).
We start with distinguishing elements of V and V ∗ which behave with respect

to the braiding σ as if it were just a flip τ.

Definition 3.1. ⊛ Two elements v, w ∈ V are called σ-compatible if

σ(v ⊗ w) = w ⊗ v, and σ(w ⊗ v) = v ⊗ w.

⊛ A lower cut for a braided vector space (V, σ) is an element e ∈ V which
is σ-compatible with itself, i.e.

σ(e ⊗ e) = e⊗ e, (cut)

or, in the shuffle form,
e �
−σ

e = 0.

⊛ Two co-elements f, g ∈ V ∗ are called σ-compatible if

(f ⊗ g) ◦ σ = g ⊗ f, and (g ⊗ f) ◦ σ = f ⊗ g.

⊛ An upper cut for a braided vector space (V, σ) is an element ǫ ∈ V ∗ which
is σ-compatible with itself, i.e.

(ǫ ⊗ ǫ) ◦ σ = ǫ⊗ ǫ, (Cut)

or, in the shuffle form,

(ǫ⊗ ǫ)(v �
−σ

w) = 0 ∀v, w ∈ V.

Units and counits often turn out to be cuts, which explains the notation e, ǫ.
In general, cuts turn out to be quite familiar algebraic structures. The terms
come from the graphical depiction of the elements and their defining properties:

e e

=
e e

ǫ ǫ

= ǫ ǫ

11



The labels e, ǫ are often omitted when clear from the context.
Another type of compatibility with the braiding will also be used in what

follows:

Definition 3.2. Take a braided vector space (V, σ).

⊛ An element c ∈ V is called left-stable if

σ(V ⊗ c) ⊆ c⊗ V, (lstable)

and right-stable if
σ(c⊗ V ) ⊆ V ⊗ c. (rstable)

⊛ Dually, a co-element ϕ ∈ V ∗ is called left-stable if

σ(Kerϕ⊗ V ) ⊆ V ⊗Kerϕ, (Lstable)

and right-stable if
σ(V ⊗Kerϕ) ⊆ Kerϕ⊗ V. (Rstable)

As usual, a stable element means both right- and left-stable.

In the trivial case (when the braiding is merely the flip or the signed flip)
each element in V or in V ∗ is stable.

Among left-stable elements are in particular all strongly left σ-compatible
elements, i.e. such that σ◦(Id⊗c) = c⊗Id (or, respectively, (Id⊗ϕ)◦σ = ϕ⊗Id
on V ⊗ V ). In other words, these elements satisfy a half of the σ-compatibility
condition with any other element of V (resp. V ∗). An analogue for right stability
is straightforward.

Theorem 1. Let (V, σ) be a braided vector space.

1. For a lower cut e, the maps

ed : V ⊗n −→ V ⊗(n+1) and de : V ⊗n −→ V ⊗(n+1)

v 7−→ e �
−σ

v v 7−→ (−1)nv �
−σ

e

define differentials on T (V ).

2. For two lower cuts e1 and e2, one gets a differential bicomplex (T (V ), e1d, de2 ).
If the cuts are moreover σ-compatible, then one gets a differential bicom-
plex (T (V ), e1d, e2d).

3. Similarly, for an upper cut ǫ, the maps

V ⊗n −→ V ⊗(n−1)

ǫd : v 7−→ (ǫ ⊗ Idn−1) �
−σ

1,n−1 (v)

dǫ : v 7−→ (−1)n−1(Idn−1 ⊗ǫ) �
−σ

n−1,1 (v)

define differentials on T (V ).
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4. For two upper cuts ǫ1, ǫ2, one gets a differential bicomplex (T (V ), ǫ1d, dǫ2).
If the cuts are moreover σ-compatible, then one gets a differential bicom-
plex (T (V ), ǫ1d, ǫ2d).

5. If an element c ∈ V is left-stable (or right-stable), then, for any lower cut
e, ed (respectively de) preserves the two-sided ideal Ic of the tensor algebra
T (V ) generated by c and thus descends to T (V )/Ic ≃ T (V/kc).

6. If an element ϕ ∈ V ∗ is left-stable (or right-stable), then, for any upper
cut ǫ, the subspace T (Kerϕ) ⊆ T (V ) is preserved by ǫd (resp. dǫ).

Proof. Easy verifications using the associativity of �
−σ

, the coassociativity of �
−σ

and the defining property of cuts. For example,

ed
2(v) = e �

−σ
(e �

−σ
v) = (e �

−σ
e) �

−σ
v = 0 �

−σ
v = 0.

Graphically, ed and de are presented as alternating sums of

e
v1 . . .vi−1 vi . . . vn

and

e
v1 . . .vi−1 vi . . . vn

respectively, and similarly for ǫd and dǫ.
Observe that ed and de increase by 1 the degree given by deg(v1 . . . vn) = n

thus defining cohomologies, while ǫd and dǫ decrease the degree and therefore
define homologies.

For readers used to reasoning in terms of simplicial modules (see for
example [15]), the maps

di(v) := (ǫ⊗ Idn−1)T
σ
si,n(v),

where si,n ∈ Sn is the permutation moving the i’th element to the leftmost
position, give face maps. Our shuffle differential thus coincides with the overall
canonical differential d :=

∑n
i=1(−1)i−1di for the above face maps. The shuffle

interpretation has two advantages over the simplicial one:

1. the positions i are controlled by the shuffle structure; it is thus sufficient to
work on the local level with braidings, forgetting subscript manipulations;

2. the signs (−1)i are hidden by letting the negative braiding −σ enter into
play; the sign manipulations can thus be avoided as well.
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Similarly, the maps
δi(v) := T σ

s−1
i+1,n+1

(ev),

give face maps, forming a part of a cosimplicial structure.
An analogous treatment can be given to right differentials.
As for degeneracy maps, they seem unfortunately to have no nice shuffle

interpretations.

Summarizing this section, we state that a braiding on V with a compatible
lower or upper cut (i.e. a square zero element for the negative quantum shuffle
product / coproduct) give a differential bicomplex structure on T (V ):

braiding + cut =⇒ differential bicomplex

4 Loday’s hyper-boundaries

Our braided setting provides an elegant interpretation for Loday’s hyper-boundaries
(see [15], exercise E.2.2.7), which we redefine as generalizations of the differen-
tials introduced above. The relations from Loday’s exercise are easily proved
and generalized thanks to our interpretation.

Definition 4.1. Let (V, σ) be a braided vector space with an upper cut ǫ. The
maps

V ⊗n −→ V ⊗(n−k)

ǫ,(k)d : v 7−→ (ǫ⊗ · · · ⊗ ǫ⊗ Idn−k) �
−σ

k,n−k (v)

dǫ,(k) : v 7−→ (−1)kn−
k(k+1)

2 (Idn−k ⊗ǫ · · · ⊗ ǫ) �
−σ

n−k,k (v)

are called hyper-boundaries on T (V ).

The last sign should be understood as (−1)n−1(−1)n−2 · · · (−1)n−k.
For k = 1 one recovers the differentials ǫd and dǫ.
For a left- or right-stable ϕ, left or right hyper-boundaries can be restricted,

as usual, to maps from (Kerϕ)⊗n to (Kerϕ)⊗(n−k).
The next step is to understand compositions of hyper-boundaries, gener-

alizing d(1) ◦ d(1) = 0 = (1)d ◦ (1)d. We start with a kind of a special case, a
well-known

Lemma 4.2. Consider a vector space W and an element w ∈ W. One has

w⊗m�
−τ

w⊗k =
(
m+k
k

)
−1

w⊗(m+k),

where (
m+ k

k

)

−1

=

{
0, if mk is odd,([(m+k)/2]

[k/2]

)
, otherwise,

and the brackets [ · ] stand for the lower integral part of a number.
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Proof. By definition,

w⊗m�
−τ

w⊗k =
∑

s∈Shm,k

T−τ
s w⊗(m+k) =

∑

s∈Shm,k

sign(s)w⊗(m+k),

where sign(s) is the sign of a permutation s. Now for each negative permutation
in Shm,k we will associate a positive one in an injective way, counting the
remaining positive permutations in Shm,k.

Given a negative permutation s ∈ Shm,k, choose, if it exists, the least i such
that one of the preimages s−1(2i − 1), s−1(2i) lies in the set {1, . . . ,m}, while
the other one lies in {m+1, . . . ,m+k}. Such i’s will be called split. To such an
s one associates s := (s(1), . . . , s(2i−2), s(2i), s(2i−1), s(2i+1), . . . , s(m+k)),
i.e. it is our s with the values at 2i− 1 and 2i interchanged. This constructs a
bijection between negative and positive permutations for which a split i exists.
It remains to count permutations without split i’s (we call such permutations
unsplit) and to check that they are all positive.

⊛ If m+ k is even, an unsplit permutation divides the elements 1, . . . ,m+ k
into consecutive pairs with preimages by s lying in the same set {1, . . . ,m}
or {m + 1, . . . ,m + k}. It is possible only when both m and k are even,

giving
((m+k)/2

k/2

)
possibilities for the values of s−1 on (m+ k)/2 pairs.

⊛ If m+ k is odd – say, m is even and k is odd – then, similarly, an unsplit
permutation divides the elements 1, . . . ,m+ k − 1 into consecutive pairs
with preimages by s lying in the same set, and s−1(m+ k) lies automati-

cally in {m+ 1, . . . ,m+ k}. This gives
((m+k−1)/2

(k−1)/2

)
possibilities.

To conclude, notice that all the unsplit permutations obtained are positive,since
the sign coming from the element 2i− 1 is ”killed” by he sign coming from the
element 2i.

This lemma is crucial in the calculations giving

Theorem 2. Let (V, σ) be a braided vector space with an upper cut ǫ. One has

ǫ,(m)d ◦ ǫ,(k)d =
(
m+k
k

)
−1

ǫ,(m+k)d,

dǫ,(m) ◦ dǫ,(k) =
(
m+k
k

)
−1

dǫ,(m+k).

Proof. We will prove the first formula only. By definition,

ǫ,(m)d◦ ǫ,(k)d(v) = (ǫ⊗· · ·⊗ǫ⊗ Idn−k−m)◦(ǫ⊗· · ·⊗ǫ⊗�
−σ

m,n−k−m)◦�
−σ

k,n−k(v).

By the coassociativity of the co-shuffle coproduct, it equals

(ǫ ⊗ · · · ⊗ ǫ⊗ Idn−k−m) ◦ (�
−σ

k,m ⊗ Idn−k−m) ◦ �
−σ

m+k,n−m−k(v).

Now ǫ is a cut, so
(ǫ⊗ ǫ) ◦ σ = ǫ⊗ ǫ = (ǫ ⊗ ǫ) ◦ τ,
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thus

ǫ,(m)d◦ ǫ,(k)d(v) = (ǫ⊗· · ·⊗ǫ⊗ Idn−k−m)◦(�
−τ

k,m⊗ Idn−k−m)◦�
−σ

m+k,n−m−k(v).

The dual version of the previous lemma calculates

(ǫ⊗ · · · ⊗ ǫ) ◦ �
−τ

k,m =
(
m+k
k

)
−1

ǫ ⊗ · · · ⊗ ǫ,

and one recognizes in the previous expression
(
m+k
k

)
−1

ǫ,(m+k)d.

5 Basic examples: familiar complexes recovered

Now we consider vector spaces V with some algebraic structure and we look
for braidings encoding the properties of this structure. Invertibility
conditions for such braidings will be discussed. Upper and lower cuts as well as
stable elements will be determined, always up to scalar multiples. The answers
to these auxiliary questions will always be familiar algebraic notions. Theorem 1
then gives numerous bicomplex structures on T (V ).We calculate explicitly some
of the differentials obtained this way, recovering many familiar (co-)homologies.

5.1 Koszul complex

Following a nice mathematical tradition, the first example we consider is the
trivial one: that of an ”empty” structure. Take any vector space V and the flip
τ : v ⊗ w 7−→ w ⊗ v as its braiding. Each e ∈ V is automatically a lower cut,
and each ǫ ∈ V ∗ is an upper cut. In particular,

ǫd : v1 . . . vn 7−→

n∑

i=1

(−1)i−1ǫ(vi)v1 . . . v̂i . . . vn

gives the well-known Koszul differential, in its simplest form.

5.2 Rack complex

ba

b a⊳ b
The simplest non-trivial example of a braiding nat-
urally coming from an algebraic structure is the fol-
lowing. Take a set S with a binary operation ⊳ :
S × S −→ S. Define an application

σ = σ⊳ : S × S −→ S × S

(a, b) 7−→ (b, a⊳ b). (RackBraid)

It is very familiar to topologists, since it can be interpreted in terms of the
fundamental group of the complement of a knot. See for instance the seminal
paper [10], or [11] for a very readable introduction.
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Lemma 5.1. The map σ⊳ is a braiding if and only if ⊳ is self-distributive, i.e.

(a⊳ b)⊳ c = (a⊳ c)⊳ (b⊳ c) ∀a, b, c ∈ S. (SelfDistr)

Proof. Here and in subsequent lemmas we content ourselves with graphical
proofs.

Let us see what the Yang-Baxter equation (YB) means for σ⊳:

a b c

c b⊳ c (a⊳ b)⊳ c

b a⊳ b

c (a⊳ b)⊳ c

=

a b c

c b⊳ c (a⊳ c)⊳ (b⊳ c)

c a⊳ c

c b⊳ c

One easily recognizes (SelfDistr).

A pair (S,⊳) satisfying (SelfDistr) is called a shelf, or an self-distributive
system.

The ”if and only if” formulation of the lemma shows that the braiding σ⊳

encodes the defining property of a shelf, just as we wanted.
Fix a shelf (S,⊳) until the end of this section.

The braiding σ⊳ is invertible if and only if the application a 7→ a ⊳ b is a
bijection on S for every b ∈ S, that is if there exists an application ⊳̃ : S×S −→
S such that

(a⊳ b)⊳̃b = (a⊳̃b)⊳ b = a ∀a, b ∈ S. (Rack)

A triple (S,⊳, ⊳̃) satisfying (SelfDistr) and (Rack) is called a rack.

Now linearize a shelf (S,⊳): put V = kS and extend the braiding σ⊳ to V
linearly. Lower cuts e =

∑
i∈I αiai ∈ V, where {ai}i∈I is a finite collection of

pairwise distinct elements of S, and αi ∈ k∗, are then characterized by e⊳ai = e
∀i ∈ I. All a ∈ S are cuts if and only if S is a quandle, i.e. all its elements are
idempotents. Upper cuts ǫ ∈ V ∗ are characterized by ǫ(a⊳ b) = ǫ(a), ∀a, b ∈ S
such that ǫ(b) 6= 0. In particular,

ǫ0 : a 7→ 1, ∀a ∈ S

is an upper cut.
Each element of S is left-stable. For an arbitrary element v =

∑
i∈I αiai ∈ V

as above, the left stability condition is a ⊳ ai = a ⊳ aj ∀i, j ∈ I, a ∈ S. The
right stability condition for v ∈ V is

v ⊳ b = v, ∀b ∈ S.
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Similarly, for a ϕ ∈ V ∗ the left stability condition is

(Kerϕ)⊳ b ⊆ Kerϕ, ∀b ∈ S.

The right stability condition for a co-element has no simple formulations. We
just note here that the ”Dirac elements”

ϕa(b) =

{
1, if b = a,

0, for other b ∈ S

are right-stable.

Let us conclude by calculating the most interesting differentials:

Proposition 5.2. Take a shelf (A,⊳). The braiding σ⊳ defined by (RackBraid)
and the upper cut ǫ0 : a 7→ 1, ∀a ∈ S define, via theorem 1, a chain bicomplex
structure on T (kA) by

ǫ0d(a1 . . . an) =
n∑

i=1

(−1)i−1(a1 ⊳ ai) . . . (ai−1 ⊳ ai)ai+1 . . . an,

dǫ0(a1 . . . an) =

n∑

i=1

(−1)i−1a1 . . . âi . . . an.

The differential ǫ0d − dǫ0 on T (QS) gives the rack homology. It was first
defined by Fenn, Rourke and Sanderson in [8], and its cycles can be used to
produce knot invariants.

5.3 Bar complex

Take a vector space V with a bilinear operation µ : V ⊗ V −→ V and a distin-
guished element 1 ∈ V, sometimes regarded as a linear map

ν : k → V, ν(α) := α1.

Morally one should think about modeling unital associative algebras. We
will construct quite an exotic braiding on V, encoding the associativity of µ.

Consider the application

σ = σµ : V ⊗ V −→ V ⊗ V

v ⊗ w 7−→ 1⊗ µ(v ⊗ w). (AssBraid)

µν

wv

1 µ(v ⊗ w)
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Lemma 5.3. Suppose that 1 is a right unit for µ, i.e. µ(v ⊗ 1) = v ∀v ∈ V.
Then the map σµ is a braiding if and only if µ is associative on V.

Proof. Graphically, the equation (YB) means

v w u

1 1µ(µ(v⊗w)⊗u)

1 µ(v⊗w)

1

=

v w u

1 1µ(v⊗µ(w⊗u))

1 v

1 µ(w⊗u)

This is equivalent to the associativity condition

µ(µ(v ⊗ w) ⊗ u) = µ(v ⊗ µ(w ⊗ u)) ∀v, w, u ∈ V. (Ass)

The associativity condition is graphically depicted as follows:

=

We thus get, like in the case of shelves, a braiding subtly encoding the
algebraic structure ”associative algebra”.

Fix an associative algebra (V, µ) with a right unit 1 until the end of this
section.

The braiding σµ is highly non-invertible. More precisely, σ2
µ = σµ if 1 is

moreover a left unit.
The right unit 1 satisfies

σµ(v ⊗ 1) = 1⊗ v ∀v ∈ V

and is therefore strongly left σµ-compatible; it is the only left-stable element.
For a right-stable v, there exists a lv ∈ V ∗ such that µ(v⊗w) = lv(w)v ∀w ∈ V ;
such a v is called an integral in V.

Left stability for ϕ ∈ V ∗ is equivalent to Kerϕ being stable by the right
multiplication by V, which is automatic when for example ϕ respects the mul-
tiplication µ. Right stability reads 1 ∈ Kerϕ, i.e. ϕ(1) = 0. If 1 is moreover a
left unit, then µ(1⊗ V ) = V, so a stable upper cut would have the whole V in
its kernel, being thus trivial.
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µ

wv

ǫ

=

ǫ ǫ
Working, as usual, up to scalar multiples, the only

lower cut in V is 1, while upper cuts turn out to be char-
acters, i.e. maps ǫ ∈ V ∗ respecting the multiplication:

ǫ(µ(v ⊗ w)) = ǫ(v)ǫ(w) ∀v, w ∈ V. (Char)

Note that ǫ(1) = 1 for a non-zero character ǫ.
Cohomologies obtained this way are not interesting, while homologies are:

Proposition 5.4. A character ǫ on a unital associative algebra (V, µ,1) defines
a chain bicomplex structure on T (V ) by

ǫd(v1 . . . vn) = ǫ(v1)v2 . . . vn + ǫ(1)

n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn,

dǫ(v1 . . . vn) = (−1)n−1ǫ(vn)v1 . . . vn−1+

n−2∑

i=0

(−1)iǫ(vi+1) · · · ǫ(vn)v1 . . . vi11 . . .1.

The left differential ǫd restricts moreover to T (Ker ǫ) and, in general, to any
T (Kerϕ) for a character ϕ.

In the non-unital case, i.e. when V is endowed with a bilinear operation
µ only, one enriches V with a formal unit: Ṽ := V ⊕ k1, extending µ by

µ(1⊗ v) = µ(v ⊗ 1) = v ∀v ∈ Ṽ .

Due to the equivalence of the associativity of µ on V and on Ṽ , lemma 5.3
affirms that σµ is a braiding on Ṽ if and only if µ is associative on V . Taking

the character ǫ0(V ) ≡ 0, ǫ0(1) = 1 on Ṽ and restricting ǫ0d to T (Ker ǫ0) ≃ T (V ),
one recovers the well-known bar (or standard) differential :

ǫ0d(v1 . . . vn) =

n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn.

Another interesting differential is obtained by feeding two different charac-
ters in our machinery.

Proposition 5.5. Two characters ǫ1, ǫ2 on an associative algebra (V, µ), ex-

tended to Ṽ = V ⊕ k1 by ǫ1(1) = 1 = ǫ2(1), define a chain complex structure

on T (Ṽ ) by

(ǫ1d− dǫ2)(v1 . . . vn) =

ǫ1(v1)v2 . . . vn

+

n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn

+ (−1)nǫ2(vn)v1 . . . vn−1

−

n−2∑

i=0

(−1)iǫ2(vi+1) · · · ǫ2(vn)v1 . . . vi11 . . .1.
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The same formula, without the last sum, induces a differential on T (V ).

This differential will be denoted by ǫ1dǫ2 .

Proof. The only statement which does not follow directly from our general the-
ory is the one about the induced differential on T (V ).

First restrict ǫ1dǫ2 to T (V )⊗T (k1) ⊂ T (Ṽ ). Let us then check the legitimacy
of quotienting out T (V )⊗T (k1)+. It is clear that

ǫ1dǫ2(v1 . . . vi11 . . .1) ∈ T (V )⊗
T (k1)+ if there are at least two copies of 1; for elements of the form v1 . . . vi1,
one notices that

v1 . . . vi−1µ(vi ⊗ 1) = v1 . . . vi−1vi = ǫ2(1)v1 . . . vi−1vi;

thus T (V ) ⊗ T (k1)+ is indeed a subcomplex. The differential obtained on
T (V ) ≃ (T (V )⊗T (k1))/(T (V )⊗T (k1)+) is

ǫ1dǫ2 without the terms containing
the 1’s.

This trick of adding formal elements will often be handy in what follows.

5.4 Leibniz complex

Leibniz algebras are ”non-commutative” versions of Lie algebras. They were
discovered by A.Bloh in 1965, but it was Loday who woke the general inter-
est in this structure in 1989 by, firstly, lifting the classical Chevalley-Eilenberg
boundary map from the exterior to the tensor algebra, which yields a new in-
teresting chain complex, and, secondly, by observing that the antisymmetry
condition could be omitted (cf. [15],[16],[17],[6]). Here we recover Loday’s com-
plex guided by our ”braided” considerations. Our interpretation explains the
somewhat mysterious element ordering and signs in the formula given by Loday.

Like in the previous section, let V be a vector space with a bilinear operation,
denoted by [, ] : V ⊗ V −→ V this time, and a distinguished element 1 ∈ V.
Morally, think about modeling Lie algebras. The braiding we construct in
this setting is also quite exotic. It is inspired by the braiding for associative
algebras.

Consider the application

σ = σ[,] : V ⊗ V −→ V ⊗ V

v ⊗ w 7−→ w ⊗ v + 1⊗ [v, w]. (LeiBraid)

Lemma 5.6. Suppose that 1 is central in V, i.e.

[1, v] = [v,1] = 0 ∀v ∈ V. (LieUnit)

Then the map σ[,] is a braiding if and only if

[v, [w, u]] = [[v, w], u]− [[v, u], w] ∀v, w, u ∈ V. (Lei)
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Proof. We omit the details of the calculations here; they are quite easy with our
graphical calculus. One gets:

σ1σ2σ1(v ⊗ w ⊗ u) = u⊗ w ⊗ v + 1⊗ w ⊗ [v, u] + 1⊗ [w, u]⊗ v+

+ u⊗ 1⊗ [v, w] + 1⊗ 1⊗ [[v, w], u],

σ2σ1σ2(v ⊗ w ⊗ u) = u⊗ w ⊗ v + 1⊗ w ⊗ [v, u] + 1⊗ [w, u]⊗ v+

+ u⊗ 1⊗ [v, w] + 1⊗ 1⊗ ([v, [w, u]] + [[v, u], w]).

So (YB) for σ[,] is equivalent to (Lei) for [, ].

The condition (Lei) is graphically depicted as follows:

= −

Definition 5.7. A pair (V, [, ]) satisfying (Lei) is called a Leibniz algebra. A
central element 1 ∈ V (i.e. satisfying (LieUnit)) will often be called a Lie unit.

Remark that one gets the notion of a Lie algebra when adding the antisym-
metry condition.

Lemma 5.6 means that once again we get a braiding encoding an algebraic
structure – it is the Leibniz algebra structure this time.

Fix a Leibniz algebra (V, [, ]) with a Lie unit 1 until the end of this section.

The braiding σ[,] is invertible, the inverse given by

σ−1
[,] : v ⊗ w 7−→ w ⊗ v − [w, v] ⊗ 1.

Remark 5.8. The invertibility of σ[,] means that this braiding allows to construct
braid invariants out of any unital Leibniz algebra. It would be interesting to
explore the nature of these invariants.

One has

σ[,](1⊗ v) = v ⊗ 1, σ[,](v ⊗ 1) = 1⊗ v ∀v ∈ V,

hence 1 is strongly left and right σ-compatible and thus stable. In general,
stable elements with respect to our braiding are central in some sense: the left
stability condition for c reads [V, c] = 0, coinciding with that for strong left σ[,]-
compatibility, and the right-stability condition is [c, V ] ⊆ kc. Left stability for
ϕ ∈ V ∗ is equivalent to Kerϕ being stable by the right “bracket-multiplication”
by V, which is automatic when for example ϕ respects the bracket [, ]. Right
stability means either ϕ(1) = 0 or [V,Kerϕ] = 0.

An e ∈ V is a lower cut if and only if [e, e] = 0. Upper cuts ǫ ∈ V ∗ are
characterized by:

⊛ either ǫ(1) = 0,

22



⊛ or ǫ is a Lie character, i.e. respects the bracket:

ǫ([v, w]) = 0 ∀v, w ∈ V. (LieChar)

The differentials obtained are the most interesting in the last case:

Proposition 5.9. A Lie character ǫ on a Leibniz algebra (V, [, ]) with a Lie
unit 1 defines a chain complex structure on T (V ) by

ǫd(v1 . . . vn) = ǫ(1)
∑

16i<j6n

(−1)j−1v1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn+

+
∑

16j6n

(−1)j−1ǫ(vj)v1 . . . v̂j . . . vn.

This differential restricts to T (Ker ǫ) and, in general, to any T (Kerϕ) for a Lie
character ϕ.

In the non-unital case, i.e. when V is endowed with a bilinear operation
only, one adds a formal Lie unit, Ṽ := V ⊕ k1, extending [, ] by

[1, v] = [v,1] = 0 ∀v ∈ Ṽ .

Due to the equivalence of the Leibniz condition (Lei) for [, ] on V and on

Ṽ , lemma 5.6 affirms that σ[,] is a braiding on Ṽ if and only if [, ] is Leibniz

on V . Taking the character ǫ0(V ) ≡ 0, ǫ0(1) = 1 on Ṽ and restricting ǫ0d to
T (Ker ǫ0) ≃ T (V ), one recovers the Leibniz complex :

ǫ0d(v1 . . . vn) =
∑

16i<j6n

(−1)j−1v1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn.

Taking a Lie algebra and descending to the exterior algebra Λ(V ), one recognizes
the Chevalley-Eilenberg complex for Lie algebras.

Let us summarize the last two subsections before proceeding to their cate-
goric and then dual versions:

Theorem 3. 1. A unital associative (or Leibniz) algebra V can be endowed
with a braiding σµ (resp. σ[,]) defined by the formula (AssBraid) (resp.
(LeiBraid)).

2. Any (Lie) character ϕ is a left-stable cut for this braiding.

Together with theorem 1, this gives

Corollary 5.10. Any (Lie) character on a unital associative (or Leibniz) alge-
bra V produces a degree −1 differential on T (V ) and on its subspace T (Kerϕ).
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6 An upper world: categories

In this section we show how to raise the most important constructions from pre-
vious sections to the categoric level, illustrating the advantages of this approach
with three examples:

1. Leibniz superalgebra homology;

2. homologies of dual structures: (Leibniz) coalgebras etc.;

3. right-left duality.

Only basic tools of category theory will be used here; Mac Lane’s and Turaev’s
famous books [18] and [27] are excellent references for general and, respectively,
braided aspects of category theory. We also recommend Westrich’s preprint
[29] where most of the categoric notions used here are nicely presented and
illustrated.

6.1 Categorifying everything

We start with recalling some classical definitions from category theory.

Definition 6.1. ⊛ A strict monoidal (or tensor) category is a category C
endowed with

– a bifunctor ⊗ : C × C → C satisfying the associativity condition;

– an object I which is a left and right identity for ⊗.

⊛ A strict monoidal category C is called braided if it is endowed with a braid-
ing (or a commutativity constraint), i.e. a natural family of isomorphisms,

c = {cV,W : V ⊗W ≃ W ⊗ V }, ∀V,W ∈ Ob(C),

satisfying
cV,W⊗U = (IdW ⊗cV,U ) ◦ (cV,W ⊗ IdU ),

cV ⊗W,U = (cV,U ⊗ IdW ) ◦ (IdV ⊗cW,U )

for any triple of objects V,W,U. ”Natural” means here

cV ′,W ′ ◦ (f ⊗ g) = (g ⊗ f) ◦ cV,W

for all V,W, V ′,W ′ ∈ Ob(C), f ∈ HomC(V, V
′), g ∈ HomC(W,W ′).

⊛ A braided category C is called symmetric if its braiding is symmetric:

cV,W ◦ cW,V = IdW⊗V , ∀V,W ∈ Ob(C).

We will omit the part ”monoidal” of the usual terms ”braided monoidal”
and ”symmetric monoidal” in what follows.
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⊛ A category C is called preadditive if all its morphism sets HomC(V,W )
are abelian groups, the composition of morphisms being Z-bilinear. For a
preadditive and monoidal category to be called preadditive monoidal, its
tensor product should be bilinear on morphisms. The same condition is
imposed on braided (and in particular symmetric) preadditive categories.

⊛ A unital associative algebra (abbreviated as UAA) in a strict monoidal
category C is an object V together with morphisms µ : V ⊗ V → V and
ν : I → V, satisfying associativity condition

µ ◦ (IdV ⊗µ) = µ ◦ (µ⊗ IdV )

and unit condition.

⊛ A unital Leibniz algebra (abbreviated as ULA) in a symmetric preadditive
category C is an object V together with morphisms [, ] : V ⊗ V → V and
ν : I → V, satisfying generalized Leibniz condition

[, ]◦ (IdV ⊗[, ]) = [, ]◦ ([, ]⊗ IdV )− [, ]◦ ([, ]⊗ IdV )◦ (IdV ⊗cV,V ) : V
⊗3 → V

and Lie unit condition.

See for instance [2] and [19] for the definition of algebras in a monoidal cat-
egory, and [9] for a survey on Lie algebras in a symmetric preadditive category.

We work only with strict monoidal categories here for the sake of simplicity;
according to a theorem of Mac Lane ([18]), each monoidal category is monoidally
equivalent to a strict one. This justifies in particular notations V ⊗W ⊗U and
V ⊗n. The word ”strict” will be omitted but always implied in what follows.

Note that to define a unital Leibniz algebra, one needs more structure on
the underlying category than for associative algebras.

Here are some basic examples sufficient for this paper:

1. The category of sets Set is monoidal, with the Cartesian product × as
its tensor product, and a one-element set I as its identity object. An
identification of (A×B)×C with A× (B×C) and of I×A with A×I and
with A for any sets A,B,C, which will be implicitly done in what follows,
gives a strict monoidal category. This category is symmetric, with the
braiding given by the usual flip isomorphism.

2. The category of k-vector spaces Vectk is symmetric preadditive, with the
usual tensor product, the one-dimensional space k as its identity object
and the flip or the signed flip as its braiding. It is denoted by Vect−

k
if the

signed flip is chosen. Identifications similar to those for sets are implicit
here to assure the strictness. The linearization map Lin : A 7→ kA gives
a functor of symmetric monoidal categories Lin : Set → Vectk.

3. The category of graded k-vector spaces VectGradk is symmetric pread-
ditive, with the usual graded tensor product, the one-dimensional zero-
graded space k as its identity object and the Koszul flip as its braiding.
Necessary identifications are effectuated to assure the strictness.
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4. Any braided category C has two interesting subcategories:

(a) The subcategory Alg(C) of UAAs and unital algebra morphisms (i.e.
morphisms respecting µ and ν) in C is a monoidal subcategory. In
particular, it is stable by tensor products since

µV⊗W := (µV ⊗ µW ) ◦ (IdV ⊗cW,V ⊗ IdW )

gives a multiplication on V ⊗W for UAAs V and W, and it includes I
with identities as algebra structures, which will be the default UAA
structure on I in what follows. Alg(C) is moreover a braided subcat-
egory if C is symmetric, since the symmetry of the braiding guaratees
its compatibility witn algebra structures.

For a preadditive C, Alg(C) is not a preadditive subcategory in gen-
eral, since f + g is not necessarily an algebra morphism even if f and
g are.

(b) If C is moreover symmetric preadditive, one also has the subcategory
Lei(C) of ULAs and unital Leibniz algebra morphisms (i.e. mor-
phisms respecting [, ] and ν) in C. It is neither preadditive not even
monoidal in general. It includes I with a zero bracket and ν = IdI,
which will be the default ULA structure on I in what follows.

In particular, Alg(Vectk) and Lei(Vectk) are the familiar categories of
k-linear unital associative and Leibniz algebras respectively.

Now we introduce several new categoric notions, necessary for categorifying
our constructions.

Definition 6.2. ⊛ An object V in a monoidal category C is called weakly
braided if it is endowed with a weak braiding, i.e. a morphism

σ = σV : V ⊗ V → V ⊗ V,

satisfying a categorified version of (YB):

(σV ⊗IdV )◦(IdV ⊗σV )◦(σV ⊗IdV ) = (IdV ⊗σV )◦(σV ⊗IdV )◦(IdV ⊗σV ).

⊛ In a monoidal category, a morphism ǫ : V → I is called an upper cut for a
weakly braided object V if

ǫ⊗ ǫ = (ǫ ⊗ ǫ) ◦ σV : V ⊗ V → I⊗ I = I.

⊛ A degree −1 tensor differential for an object V of a preadditive monoidal
category C is a family of morphisms {dn : V ⊗n → V ⊗(n−1)}n>0, where
V ⊗0 := I, satisfying dn−1 ◦ dn = 0 ∀n > 1.

⊛ A character for an object V of Alg(C) is an algebra morphism ǫ ∈
HomAlg(C)(V, I). A Lie character for an object V of Lei(C) is a Leib-
niz algebra morphism ǫ ∈ HomLei(C)(V, I), i.e. it satisfies ǫ ◦ [, ] = 0 and
ǫ ◦ ν = IdI .
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Every object in a braided category C is weakly braided with σV = cV,V , since
the Yang-Baxter equality is automatic in C. The idea of working with ”local”
braidings on V instead of demanding the whole category C to be ”globally”
braided is similar to what is done in [9], where self-invertible YB operators are
considered in order to define YB-Lie algebras in an additive monoidal C. Note
however that, contrary to their operator, our weak braiding is not necessarily
invertible.

Observe that any monoidal (and braided and/or preadditive when necessary)
functor preserves all the structures from the previous two definitions.

We are now sufficiently armed to attack a categorification of theorem 1.
Any weakly braided object (V, σ) in a monoidal category comes with an

evident action of the monoid B+
n on V ⊗n for each n > 1. If the category is

moreover preadditive, one can mimic the construction of quantum (co)shuffle
(co)product to get morphisms �

σ

p,q : V ⊗n = V ⊗p ⊗ V ⊗q → V ⊗n and �
σ

p,q :

V ⊗n → V ⊗p⊗V ⊗q = V ⊗n. Here n = p+ q. Still in the preadditive context, −σ
is well defined and gives a new weak braiding for V. Theorem 1 (with its proof!)
is then generalized as follows:

Theorem 1cat. Let (C,⊗, I) be a preadditive monoidal category. For any
weakly braided object (V, σ) with an upper cut ǫ, the family of morphisms

(ǫd)n := (ǫ ⊗ Idn−1) ◦ �
−σ

1,n−1

defines a degree −1 tensor differential for V.

One can also categorify the notions of bicomplexes, σ-compatible cuts, stable
cuts, and tensor differentials for V which can be ”restricted” to tensor differen-
tials for ”Ker(ǫ)” (quotation marks are used to emphasize that the corresponding
notions are to be interpreted (in a non-trivial way!) in the categoric language),
getting a categorification of the remaining points of theorem 1. This is quite
technical but presents no conceptual difficulties.

The versions of the theorem for lower cuts and for ”right” differentials dǫ

will be obtained later via different types of categoric dualities.

Start with the example of shelves. Lemma 5.1 tells that every shelf A ∈
Ob(Set) is endowed with a weak braiding (a, b) 7→ (b, a ⊳ b). Since the one-
element set I is a final object in Set, the unique morphism A → I is necessarily
an upper cut. The monoidal functor Lin provides then the linearization kA of
our shelf with a weak braiding and an upper cut, and thus, according to theorem
1cat, with a degree −1 tensor differential.

Next we take more complicated ”algebraic” braidings from theorem 3.

Theorem 3cat.

1. Take a unital associative algebra (V, µ, ν) in a monoidal category (C,⊗, I).

(a) V can be endowed with a weak braiding

σV := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V. (σUAA)
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(b) Any character ǫ ∈ HomAlg(C)(V, I) is an upper cut for (V, σV ).

2. Take a unital Leibniz algebra (V, [, ], ν) in a symmetric preadditive category
(C,⊗, I, c).

(a) V can be endowed with a weak braiding

σV := cV,V + ν ⊗ [, ]. (σULA)

(b) Any Lie character ǫ ∈ HomLei(C)(V, I) is an upper cut for (V, σV ).

Observe that in the Leibniz algebra setting, the naturality (with respect
to morphisms ν and [, ] in particular) and the symmetry of the braiding c are
essential in proving that σV is indeed a weak braiding, while the naturality of c
with respect to ǫ shows that ǫ is an upper cut for (V, cV,V ) (which implies that
it is an upper cut for (V, σV ) if it preserves the Leibniz structure).

Remark 6.3. According to the theorem, a ULA V provides an example of a
”doubly braided” object (cf. a remark in the introduction): σV and cV,V are
indeed two distinct weak braidings for V. One can say more: the two braidings
endow tensor powers of V with an action of the virtual braid group (cf. the
foundational paper of the virtual knot theory [13], and [28], where the virtual
braid group was introduced and studied). The close connections between weak
braidings and virtual braid groups will be studied in detail in a separate paper.

Working in Vectk in section 5, we have noticed that the braidings obtained
for (Leibniz) algebras encode underlying algebraic structures (cf. lemmas 5.3
and 5.6). It is still true in the categoric setting:

Lemma 6.4. 1. Take an object V in a monoidal category (C,⊗, I) endowed
with two morphisms µ : V ⊗ V → V and ν : I → V, with ν being a two-
sided unit for µ. The morphism σV defined by (σUAA) is a weak braiding
if and only if µ is associative.

2. Take an object V in a symmetric preadditive category (C,⊗, I, c) endowed
with two morphisms [, ] : V ⊗ V → V and ν : I → V, with ν being a Lie
unit for [, ]. Additionally suppose the existence of a morphism γ : V → I
such that γ ◦ ν = IdI . The morphism σV defined by (σULA) is a weak
braiding if and only if [, ] satisfies the Leibniz condition.

Proof. One follows the proofs of lemmas 5.3 and 5.6. The only non-trivial step is
to show that f = g : V ⊗3 → V is equivalent to ν⊗ν⊗f = ν⊗ν⊗g : V ⊗3 → V ⊗3.
When ν is a unit for µ, this is done by applying µ ◦ (IdV ⊗µ) to both sides of
the second identity. In the Leibniz case one applies γ ⊗ γ ⊗ IdV .

The weak braidings constructed in the previous theorem enjoy a naturality
property, providing moreover a characterization of (Leibniz) algebra morphisms:

Proposition 6.5. 1. In the settings of theorem 3cat, one has

(f ⊗ f) ◦ σV = σW ◦ (f ⊗ f) : V ⊗ V → W ⊗W (Nat)

for any morphism f : V → W in Alg(C) (resp. Lei(C)).
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2. Suppose additionally, for the Leibniz case, the existence of a morphism
γ : V → I in C such that γ ◦ ν = IdI .

Then any normalized morphism f : V → W (i.e. respecting the units:
f ◦ νV = νW ) in C, compatible with σ’s in the sense of (Nat), necessarily
respects the multiplications. In other words, such an f is a morphism in
Alg(C) (resp. Lei(C)).

Proof. The first point is easy. For the second one, since f is normalized, (Nat)
means

νW ⊗ (f ◦ µV ) = νW ⊗ (µW ◦ (f ⊗ f)),

and similarly - with µ replaced by [, ] - in the Leibniz case, as the braiding c is
natural. Now, as in the proof of lemma 6.4, apply µW (resp. γ ⊗ IdW ) to both
sides of this relation.

Note that, contrary to the naturality of the braiding in a braided category,
one cannot take two distinct morphisms f, g : V → W here.

Theorems 1cat and 3cat put together give

Corollary 6.6. For any α : V ⊗ V → V, put

αi := Id
⊗(i−1)
V ⊗α⊗ Id

⊗(n−i−1)
V : V ⊗n → V ⊗(n−1).

1. Any character ǫ : V → I for a UAA (V, µ, ν) in a preadditive monoidal
category C produces a degree −1 tensor differential for V, given by

(ǫd)n := ǫ⊗ Idn−1 +
n−1∑

i=1

(−1)iµi.

2. Any Lie character ǫ : V → I for a ULA (V, [, ], ν) in a symmetric preaddi-
tive category C produces a degree −1 tensor differential for V, given by

(ǫd)n := (ǫ⊗ Idn−1) ◦ (
∑

16j6n

(−1)j−1cV ⊗(j−1),V )

+
∑

16i<j6n

(−1)j−1[, ]i ◦ (Id
⊗(i)
V ⊗cV ⊗(j−i−1),V ⊗ Id

⊗(n−j)
V ).

6.2 The super trick

The first bonus one generally obtains when passing to abstract symmetric cate-
gories is the possibility to derive graded and super versions of algebraic results
for free, thanks to the Koszul flip τKoszul. One clearly sees where to put signs,
which is otherwise quite difficult to guess. Here is a nice example.

Take a graded Leibniz algebra (V, [, ], ν), i.e. an object of Lei(VectGradk).
Recall that the categoryVectGradk comes with the symmetric braiding τKoszul.
Leibniz condition in this setting is

[v, [w, u]] = [[v, w], u]− (−1)degu degw[[v, u], w]
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for any homogeneous elements v, w, u ∈ V. Note that on the picture illustrating
(Lei), the crossing on the right corresponds to the ”internal” braiding cV,V =
τKoszul on V.

Theorem 1cat gives a weak braiding for V :

σV : v ⊗ w 7−→ (−1)deg v degww ⊗ v + 1⊗ [v, w],

which, together with a Lie character ǫ : V0 → k (respecting degrees, it has to be
zero on other components of V ), can be fed into the machinery from theorem
3cat to give

Proposition 6.7. A k-linear graded Leibniz algebra (V, [, ], ν) with a Lie char-
acter ǫ can be endowed with a −1 tensor differential by the formula

ǫd(v1 . . . vn) = ǫ(1)
∑

16i<j6n

(−1)j−1+αi,jv1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn+

+
∑

16j6n

(−1)j−1+α0,j ǫ(vj)v1 . . . v̂j . . . vn,

where αi,j := deg(vj)
∑

i<k<j deg(vk). All elements v, w, vi are taken homoge-
neous here.

Observe that the (−1)αi,j part of the sign comes from the Koszul braiding,
while (−1)j−1 appears because we take the opposite braiding when defining
(ǫd)n := (ǫ ⊗ Idn−1) ◦ �

−σ

1,n−1 in theorem 1cat.

Leibniz superalgebras are treated similarly: one has just to work in the cat-
egory of super vector spaces over k. The reader is sent to [14] and other papers
on the subject for details. One thus recovers the Leibniz superalgebra homology,
which is a lift of the Lie superalgebra homology.

Note that one also gets for free the color Leibniz algebra homology (cf. [7], or
[23] for a Lie version), since color Leibniz algebras are particular cases of Leibniz
algebras in a symmetric preadditive category. See also [29] for an excellent
survey of different types of braided Lie algebras.

6.3 Co-world, or the world upside down

One more nice feature of the categoric approach is an automatic treatment
of dualities. The most common notion of duality, the ”upside-down” one, is
described here, with the cobar complex for coalgebras (first defined by Cartier
in [4]) providing a nice example. In the monoidal context one has two more
dualities, the ”right-left” and the combined ones. They will be treated in the
next section.

Definition 6.8. Given a category C, its dual (or opposite) category Cop is con-
structed by keeping the objects of C and reversing all the arrows. In other words,
the domain and codomain of each morphism change places. One writes fop ∈
HomCop(W,V ) for the morphism in Cop corresponding to f ∈ HomC(V,W ).
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We will sometimes call Cop a co-category, to avoid confusion with other
notions of duality. Observe that this construction is involutive: (Cop)op = C.

A typical example comes from the full subcategory vectk ofVectk consisting
of finite dimensional vector spaces. The usual duality functor sending V to
V ∗ := Homk(V, k) and f to f∗ gives an equivalence of symmetric preadditive
categories vectk and (vectk)

op.
The duality principle (cf. [18], section II.2) tells that a ”categoric” theorem

for C implies a dual theorem for Cop by reversing all arrows and the order of
arrows in each composition.

Categoric structures also admit dual ones in the same sense. For example,

Definition 6.9. A counital coassociative coalgebra (abbreviated as co-UAA) in
a strict monoidal category C is an object V together with morphisms ∆ : V →
V ⊗ V and ε : V → I, such that (V,∆op, εop) is a UAA in Cop.

The associativity condition is then ”reversed” to the coassociativity condition

(IdV ⊗∆) ◦∆ = (∆⊗ IdV ) ◦∆,

and the unit condition to the counit condition.
Counital co-Leibniz coalgebras (abbreviated as co-ULA) are defined simi-

larly; cf. [22] where Lie coalgebras are introduced. The subcategory of co-UAAs
and co-ULAs in C are denoted by coAlg(C) and coLei(C) respectively. (Lie)
co-characters, lower cuts and degree 1 tensor differentials dn are also defined
via dualities. A lower cut e : I → V is described for example by the condition

e⊗ e = σV ◦ (e⊗ e) : I = I⊗ I → V ⊗ V.

A convenient way to handle the ”upside-down” duality is the graphical one:
changing from C to Cop consists simply in turning all diagrams upside down,
or, in other words, taking a horizontal mirror image. Here by ”diagrams” we
mean those scattered throughout the paper. For instance, the co-Leibniz con-
dition

(IdV ⊗∂) ◦ ∂ = (∂ ⊗ IdV ) ◦ ∂ − (Id⊗cV,V ) ◦ (∂ ⊗ Id) ◦ ∂

is graphically depicted as

= −

Now let us make a list of dualities for categoric structures. Some dualities
for theorems will follow.
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a monoidal structure a monoidal structure
a braiding a braiding

a symmetric braiding a symmetric braiding
a preadditive structure a preadditive structure

a unital associative algebra (V, µ, ν) a co-UAA (V, µop, νop)
a unital Leibniz algebra (V, [, ], ν) a co-ULA (V, [, ]op, νop)
a character ϕ for a UAA (V, µ, ν) a co-character ϕop for (V, µop, νop)

a Lie character ϕ for a ULA (V, [, ], ν) a Lie co-character ϕop for (V, [, ]op, νop)
a weak braiding σ for V a weak braiding σop for V
an upper cut ǫ for (V, σ) a lower cut ǫop for (V, σop)

a degree −1 tensor differential for V a degree 1 tensor differential for V

Note also that for a weakly braided (V, σ) and the action of B+
n on V ⊗n

coming from σ, one has

(T σ
s )

op = T
(σop)
s−1 ∈ EndCop(V ⊗n) ∀s ∈ Sn,

since a decomposition of s−1 into simple transpositions can be obtained from one
for s by simply reversing the order in the decomposition. Therefore, assuming
the category preadditive, the definition of the quantum co-shuffle coproduct
(remark 2.8) is translated as

(�
σ

p,q)op = �
σop

p,q.

In particular, the results of remark 2.8 follow from this duality.
Everything is now ready for dualizing theorems 1cat and 3cat.

Theorem 1co. Let (C,⊗, I) be a preadditive monoidal category. For any
weakly braided object (V, σ) with a lower cut e, the family of morphisms

(ed)
n := �

−σ

1,n ◦ (e⊗ Idn)

defines a degree 1 tensor differential for V.

Theorem 3co.

1. Take a counital coassociative coalgebra (V,∆, ε) in a monoidal category
(C,⊗, I).

(a) V can be endowed with a weak braiding

σV := ε⊗∆ : V ⊗ V → I⊗ V ⊗ V = V ⊗ V.

(b) Any co-character e ∈ HomcoAlg(C)(I, V ) is a lower cut for (V, σV ).

2. Take a counital co-Leibniz coalgebra (V, ∂, ε) in a symmetric preadditive
category (C,⊗, I, c).
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(a) V can be endowed with a weak braiding

σV := cV,V + ε⊗ ∂.

(b) Any Lie co-character e ∈ HomcoLei(C)(I, V ) is a lower cut for (V, σV ).

A graphical depiction of σV for, for instance, a co-UAA V is by construction
the horizontal mirror image of the diagram one had for UAAs:

∆ε

∆(w)

v w

A co-version of corollary 6.6 is then formulated in the evident way, with dual
explicit formulas. Lemma 6.4 and proposition 6.5 are also dualized directly. In
particular, the braidings from the previous theorem encode the co-associativity
(resp. co-Leibniz) condition.

Let us finish this section with some remarks proper to our favorite category
Vectk.

Lemma 6.10. In Vectk, a map e : k → V, α 7→ αe for a co-UAA (V,∆, ǫ) is
a co-character if and only if e ∈ V is group-like, i.e. ∆(e) = e⊗ e, while a Lie
co-character for a co-ULA (V, ∂, ǫ) corresponds to an e ∈ Ker(∂).

Further, ”non-unital parts” of sections 5.3 and 5.4 admit co-versions. To
create a counit for a coassociative or co-Leibniz coalgebra (V, δ) (resp. (V, ∂)),

one extends it by adding a formal element: Ṽ := V ⊕k1, modifying the coprod-
uct:

∆(v) = δ(v) + 1⊗ v + v ⊗ 1 ∀v ∈ V,

∆(1) = 1⊗ 1

in the coassociative coalgebra case, and

∂(1) = 0,

keeping the original ∂ on V, in the co-Leibniz case. Thus the application ε0 ∈ Ṽ ∗

given by ε0(V ) ≡ 0, ε0(1) = 1 is a (Lie) counit for ∆ (resp. ∂), and 1 is a group-
like element (resp. 1 ∈ Ker(∂)). One easily checks the following

Lemma 6.11. The new coproduct ∆ (resp. ∂) is coassociative (resp. co-
Leibniz) if and only if the original δ (resp. ∂) is.

To conclude, we write down the differentials obtained in this particular set-
ting:
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Proposition 6.12. Given a k-linear coalgebra (V, δ), extend it to a counital

one (Ṽ ,∆, ε0) as described above. Then the group-like 1 gives, via theorem 1co,

the following differential on T (Ṽ ):

1d(v1 . . . vn) = 1v1 . . . vn +

n∑

i=1

(−1)iv1 . . . vi−1∆(vi)vi+1 . . . vn

The differential induced on T (V ) ≃ T (Ṽ /k1) is

1̃d(v1 . . . vn) =

n∑

i=1

(−1)iv1 . . . vi−1∆(vi)vi+1 . . . vn.

One eagerly recognizes the cobar differential for coalgebras.

6.4 Right-left duality

One more notion of duality is available for a monoidal category (C,⊗, I). One
can simply change its tensor product to the opposite one:

V ⊗op W := W ⊗ V

for objects, and similarly for morphisms. We call this new monoidal category
monoidally dual to C, denoting it by C⊗op

(there seem to be no universally
accepted notation, some authors even using Cop here and another notation for
co-categories). Graphically, the categories C and C⊗op

differ by a vertical mirror
symmetry for all diagrams.

Applying monoidal duality to a co-category Cop, one gets Cop,⊗op

:= (Cop)⊗
op

.
Graphically it corresponds to the central symmetry.

Similarly to what we have seen for Cop, all ”categoric” notions and theorems
have monoidally dual versions in C⊗op

. This gives in particular ”right differen-
tials”,

(dǫ)n := (Idn−1 ⊗ǫ) ◦ �
−σ

n−1,1,

(de)
n := �

−σ

n,1 ◦ (Idn ⊗e),

monoidally dual to the ”left” ones from theorems 1cat and 1co. Note that these
differentials should be endowed with a sign (cf. theorem 1) if one wants a
bidifferential structure.

One also has ”right braidings”, monoidally dual to those from theorems 3cat

and 3co. In particular, a new braiding emerges for UAAs:

σV := µ⊗ ν : V ⊗ V = V ⊗ V ⊗ I → V ⊗ V.

Its diagram is a vertical mirror symmetry of what one had in the ”left” case:

µ ν

Remark that the Leibniz algebra structure is not right-left symmetric: a
Leibniz algebra in C⊗op

is in fact a left Leibniz algebra in C (cf. [17]).
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7 (Co)homologies with coefficients

7.1 Modules over braided objects

We introduce here the notions of modules and bimodules over a weakly braided
object V in a monoidal category (in particular over a braided vector space), gen-
eralizing, in quite an unexpected manner, modules over associative and Leibniz
algebras (cf. [15]), as well as rack modules (cf. [5], where rack modules, called
shadows by the authors, are studied and applied to the construction of knot in-
variants). Since at the same time a module over a weakly braided object general-
izes an upper cut, one naturally arrives to homologies of weakly braided objects
with coefficients. As particular cases we point out Hochschild and Chevalley-
Eilenberg complexes. We also endow each tensor power V ⊗n with a V -module
structure, recovering in particular tensor powers of the adjoint representation
of Leibniz algebras. All these facts suggest that our notion of modules is the
”correct” one.

Fix a monoidal category (C,⊗, I).

Definition 7.1. A right module over a weakly braided object (V, σ) is an object
M ∈ Ob(C) equipped with a morphism ρ : M ⊗ V → M satisfying

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗σ) : M ⊗ V ⊗ V → M. (BrMod)

A left module is a right one in C⊗op

. A right (or left) comodule is a right (resp.
left) module in Cop.

Graphically condition (BrMod) is depicted as follows:

ρ
ρ

VVM

M
=

ρ
ρ

VVM

M

σ

Start as usual with a trivial example: in a preadditive category, any object
M equipped with the zero map M ⊗ V → M is a module over any weakly
braided object (V, σ).

Let us now interpret our new notions in more complicated settings from
section 5.

1. When the braiding is simply a (signed) flip, one recovers the notion of
(anti)commuting operators.

2. Take C = Set, and as a weak braiding on a set A take the σ⊳ from
(RackBraid), coming from a self-distributive operation⊳. Condition (BrMod)
becomes

(m⊳ a)⊳ b = (m⊳ b)⊳ (a⊳ b) ∀m ∈ M,a, b ∈ A,

which defines precisely a rack module (cf. [5]).
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3. Any UAA (V, µ, ν) in C comes with the weak braiding σµ from (AssBraid).
Take a right module (M,ρ) which we suppose normalized here, i.e.

ρ ◦ (IdM ⊗ν) = IdM

(morally, ”the unit acts by identity”). Condition (BrMod) becomes

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (IdM ⊗µ).

One recognizes the familiar notion of right modules over associative alge-
bras.

4. Take a ULA (V, [, ], ν) in a symmetric preadditive category C. Endow
V with the weak braiding σ[,] from (LeiBraid). Take a normalized right
module (M,ρ). Condition (BrMod) becomes

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗cV,V ) + ρ ◦ (IdM ⊗[, ]).

One recognizes the familiar notion of right modules over Leibniz algebras
(cf. [15]), raised to the categoric level.

Note that dually left modules over associative or left Leibniz algebras are par-
ticular cases of left modules over weakly braided objects.

Summarizing,

Proposition 7.2. In the particular cases of shelves, UAAs and ULAs, the
notion of modules over corresponding weakly braided objects coincides with the
usual notions of modules.

Now, returning to the general categoric setting, we try a special choice of
M, putting M = I.

Lemma 7.3. For a morphism ǫ : V = I ⊗ V = V ⊗ I → I, the following
conditions are equivalent:

1. ǫ defines a right module;

2. ǫ defines a left module;

3. ǫ is an upper cut.

Thus an upper cut for V defines a right and left V -module structure on I.
This observation can be generalized to endow each tensor power of V with a
V -module structure:

Proposition 7.4. Given a weakly braided object (V, σ) with an upper cut ǫ, the
map

ǫρ := (ǫ⊗ Id⊗n
V ) ◦ σV ⊗n,V : V ⊗n ⊗ V → V ⊗n

defines a right module structure on V ⊗n. The braiding σ is extended here to
arbitrary powers of V as in remark 2.2.
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Proof. The definition of ǫρ and repeated applications of equation (YB) give

ǫρ ◦ (ǫρ⊗ IdV ) ◦ (Id V ⊗n ⊗ σ) =

(ǫ ⊗ ǫ⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2 ◦ (Id V ⊗n ⊗ σ) =

((ǫ⊗ ǫ) ◦ σ)⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2

which is, by the definition of an upper cut, the same as

(ǫ⊗ ǫ⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2 = ǫρ ◦ (ǫρ⊗ IdV ).

Here is a pictorial presentation of this action:

σ
σ

σ

VV ⊗n

ǫ

We will call these modules adjoint – the motivation will be clear from ex-
amples, where one recognizes familiar actions on T (V ):

1. For a shelf A in C = Set and, as an upper cut, the only map ǫ0 from A to
the one-element set I, A×n becomes an A-module via

(a1 . . . an)⊳ b = (a1 ⊳ b) . . . (an ⊳ b).

2. For a UAA V in C with a normalized character ϕ (”normalized” in the
sense of modules over UAAs, that is ϕ ◦ ν = IdI), only the rightmost
component of V ⊗n is affected by the adjoint action if n > 0:

ϕρ = Id⊗(n−1) ⊗µ.

In Vectk it means

(v1 . . . vn) · w = v1 . . . vn−1µ(vn ⊗ w).

3. For a ULA V in C with a normalized Lie character ϕ, one gets

ϕρ =

n∑

i=1

[, ]i ◦ cV ⊗(n−i),V + (ϕ⊗ Id⊗n) ◦ cV ⊗n,V

(cf. the notations of corollary 6.6). Working in Vectk, it gives

[v1 . . . vn, w] =

n∑

i=1

v1 . . . vi−1[vi, w]vi+1 . . . vn + ϕ(w)v1 . . . vn.

Starting with a non necessarily unital Leibniz algebra, adding a formal
unit, taking the character ǫ0 and then passing to its kernel (cf. section
5.4), one gets rid of the last term and arrives to the usual adjoint action
of a Lie algebra V on T (V ).
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We have seen that a module over a weakly braided object is a generalization
of an upper cut. Observe that moreover it picks the right property for a gener-
alized version of theorem 1cat (where we replace the V -module I by arbitrary
modules) to hold:

Theorem 1coeffs. Let (C,⊗, I) be a preadditive monoidal category, (V, σ)
a weakly braided object in C, and (M,ρ) and (N, λ) a right and a left modules
over V respectively. Then two families of morphisms

(ρd)n := (ρ⊗ Idn−1
V ⊗ IdN ) ◦ (IdM ⊗ �

−σ

1,n−1 ⊗ IdN ),

(dλ)n := (−1)n−1(IdM ⊗ Idn−1
V ⊗λ) ◦ (IdM ⊗ �

−σ

n−1,1 ⊗ IdN ),

define a bidegree −1 tensor bidifferential for V with coefficient in M and N.

The complicated expression a bidegree −1 tensor bidifferential for V with
coefficient in M and N hides what one naturally expects: it means two families
of morphisms dn, d

′
n : M ⊗ V n ⊗N → M ⊗ V n−1 ⊗N, satisfying

dn−1 ◦ dn = d′n−1 ◦ d
′
n = d′n−1 ◦ dn + dn−1 ◦ d

′
n = 0 ∀n > 1.

Pictorially, (ρd)n for example is a signed sum of terms of the form

σ
σ

σ
ρ

M NV ⊗n

The proof of this result is a direct generalization of that of theorem 1.

Remark 7.5. Taking as M or N the unit object I with a zero module structure,
one obtains a degree −1 tensor differential for V with coefficient in the left
module N (resp. right module M) only.

As usual, everything described here can be dualized, in any of the three
senses described in sections 6.3 and 6.4.

Having the Hochschild homology in mind, one should also categorify the
notion of bimodules.

Definition 7.6. A bimodule over a weakly braided object (V, σ) is an object
M ∈ Ob(C) equipped with two morphisms ρ : M⊗V → M and λ : V ⊗M → M,
turningM into a left and right module and satisfying the following compatibility
condition:

ρ ◦ (λ ⊗ IdV ) = λ ◦ (IdV ⊗ρ) : V ⊗M ⊗ V → M.

The bidifferential structure from theorem 1coeffs can be nicely adapted to
bimodules:
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Proposition 7.7. Let (C,⊗, I, c) be a symmetric preadditive category, (V, σ) a
weakly braided object in C, and (M,ρ, λ) a bimodule over V . Then the family of
morphisms

(ρd)n := (ρ⊗ Idn−1
V ) ◦ (IdM ⊗ �

−σ

1,n−1),

(dλ)n := (−1)n−1c−1
M,V n−1 ◦ (Id

n−1
V ⊗λ) ◦ (�

−σ

n−1,1 ⊗ IdM ) ◦ cM,V n ,

defines a bidegree −1 tensor bidifferential for V with coefficient in M on the
left.

By definition, (dλ)n is a signed sum of terms of the form

λ

M V V V V

Proof. Relations (ρd)n−1 ◦ (
ρd)n = 0 and

(dλ)n−1 ◦ (d
λ)n = c−1

M,V n−2 ◦ (d
′λ)n−1 ◦ cM,V n−1 ◦ c−1

M,V n−1 ◦ (d
′λ)n ◦ cM,V n

= c−1
M,V n−2 ◦ (d

′λ)n−1 ◦ (d
′λ)n ◦ cM,V n = 0,

with (d′λ)n := (−1)n−1(Idn−1
V ⊗λ) ◦ (�

−σ

n−1,1 ⊗ IdM ), follow directly from the

corresponding identities in theorem 1coeffs.
To prove the compatibility between (ρd)n and (dλ)n, observe that

(dλ)n = (−1)n−1((λ ◦ cM,V )⊗ Idn−1
V ) ◦ (IdM ⊗ c−1

V,V n−1) ◦ (IdM ⊗ �
−σ

n−1,1),

then use the defining property of a bimodule, the naturality of the braiding c
and the Yang-Baxter relation for σ.

Remark 7.8. We have kept the notation c−1, redundant for symmetric c, to be
able to treat the non symmetric situation. In this case, on the picture showing
(dλ)n the thick line (corresponding to M) should go behind all normal lines,
in order to distinguish c from c−1. One should be careful to differentiate two
braidings, c and σ, which is difficult to do pictorially. For the above theorem to
be still valid, one should change the compatibility condition defining a bimodule
to the following one, different from the old one in general:

λ ◦ (IdV ⊗ρ) ◦ cM⊗V,V = ρ ◦ (λ⊗ IdV ) ◦ cM,V ◦ c−1
V,V : M ⊗ V ⊗ V → M.

λ

ρ

M V V

=
λ

ρ

M V V
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All the crossings correspond to the braiding c here.

A more elegant solution for the non symmetric case would be welcome.

Let us terminate this section with examples, as usual very familiar.

1. Taking a vector space V with a simple flip as braiding and, for instance,
its symmetric algebra S(V ) as a module over V (the action coming from
concatenation, as usual), one obtains more complicated versions of the
Koszul complex.

2. In the case of shelves one recovers the rack homology with coefficients,
hinted at in [5].

3. For Leibniz algebras our machinery gives Leibniz homology with coeffi-
cients, generalizing Chevalley-Eilenberg homology (cf. [15]).

In these three cases one generally puts the coefficients only on the left (cf.
remark 7.5).

4. Coefficients on both sides turn out to be particularly useful for associative
algebras in a symmetric category. Proposition 7.7 gives in this setting a
differential for any bimodule:

(ρd− dλ)n := ρ⊗ Idn−1
V +

n−1∑

i=1

(−1)iµi + (−1)n(λ⊗ Idn−1
V ) ◦ cM⊗V n−1,V

+ some terms involving ν.

For C = Vectk, one can get rid of the terms with ν as it was done in the
proof of proposition 5.5, getting the Hochschild differential.

5. The co-version of the previous differential is the Cartier differential for
coalgebras (c.f. [4], where it was first introduced). It is easily obtained by
duality.

7.2 Structure mixing techniques

Another approach to studying (bi)modules over an associative or a Leibniz alge-
bra consists in interpreting these structures as an associative / Leibniz multipli-
cation on a larger vector space, mixing the module structure and the multipli-
cation on the acting algebra. It resembles to what is often done when studying
Hochschild or Leibniz extensions (see [1] and [17] for example).

We have chosen not to raise this section to the categoric level for simplicity,
but this can be done in the setting of an additive category.

We study only the example of a bimodule V ∈ AModB over associative
algebras here.

Take three vector spaces A,B, V with four bilinear operations

µA : A⊗A −→ A µB : B ⊗B −→ B
ρA : A⊗ V −→ V ρB : V ⊗B −→ V.
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These operations are denoted by a dot, e.g. a · v = ρA(a ⊗ v), when it doesn’t
lead to confusion.

Now mix these structures, posing V ′ = A ⊕ B ⊕ V and defining a bilinear
operation µ on V ′ by

µ|A⊗A = µA, µ|B⊗B = µB,

µ|A⊗V = ρA, µ|V⊗B = ρB,

extended by zero for other couples of spaces. One easily checks the following

Lemma 7.9. The associativity of µ is equivalent to a set of conditions:

⊛ A and B are associative algebras;

⊛ ρA is a left action of A on V ;

⊛ ρB is a right action of B on V ;

⊛ these actions are compatible, in the sense that

(a · v) · b = a · (v · b), ∀a ∈ A, v ∈ V, b ∈ B.

Add a formal unit Ṽ := V ′⊕k1 and consider the application σµ from section
5.3. Combining the preceding lemma with lemma 5.3, one gets:

Corollary 7.10. The application σµ is a braiding on Ṽ if and only if the maps
µA, µB, ρA, ρB define a structure of two associative algebras A and B and a
bimodule V ∈ AModB .

Thus our braiding encodes the structure of a bimodule.
Still proceeding as in section 5.3, consider the left-stable upper cut ǫ0(V ⊕

A⊕B) ≡ 0, ǫ0(1) = 1. The subspace T (Ker ǫ0) is then
ǫ0d-stable. Now we try to

restrict ǫ0d even further. First, the linear span of pure tensors in T (Ṽ ) containing
an element of V exactly once is stable under the action of the positive braid
monoid given by σµ (cf. section 2) and is ǫ0-stable (since ǫ0(V ) ≡ 0), hence
ǫ0d-stable. The same holds for its ”ordered” part T (A⊕ k1) ⊗ V ⊗ T (B ⊕ k1)
(i.e. one forces the element of V to follow all elements of A and to preceed those
of B). The intersection of the last space with T (Ker ǫ0) is then a ǫ0d-stable space

T (A;V ;B) := T (A)⊗ V ⊗ T (B) ⊆ T (Ṽ ),

thus proving
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Proposition 7.11. Take a bimodule V ∈ AModB . The restriction of ǫ0d de-
scribed above to T (A;V ;B) gives a differential

ǫ0d(a1 . . . anvb1 . . . bm) =

=

n−1∑

i=1

(−1)ia1 . . . ai−1(ai · ai+1)ai+2 . . . anvb1 . . . bm

+ (−1)na1 . . . an−1(an · v)vb1 . . . bm + (−1)n+1a1 . . . an(v · b1)b2 . . . bm

+

m−1∑

i=1

(−1)n+1+ia1 . . . anvb1 . . . bi−1(bi · bi+1)bi+2 . . . bm

The differential from the proposition can be upgraded to the Hochschild
differential, giving an aproach alternative to that presented in the previous
section. This will be done and analyzed in detail in a subsequent paper.

8 What next?

This paper is the first one in a series of publications devoted to a braided inter-
pretation of algebraic and homological phenomena. The tools developped here
will be further expanded and applied to new examples. Two follow-up papers
are in preparation. The first one treats the ”bi-world”: bialgebras and Hopf
algebras, Hopf and Yetter-Drinfeld modules. We will present quite elaborate
braidings for these structures and will then easily derive formulas for corre-
sponding differentials which seem otherwise quite heavy and obscure. In the
center of the second one is the ”cyclic world”, with cyclic homologies of asso-
ciative and Hopf algebras understood in our new braided settings. The ”shuffle
world” and notably Harrison homology for associative algebras can be treated
with the same ideas as guidelines.

Many other questions wait for a braided interpretation. For instance, a
braiding giving Poisson algebra homology would be interesting to obtain. Ger-
stenhaber structure on Hochschild homology is also likely to have a quantum
shuffle explanation. Further, a homology theory for Zinbiel algebra and, in the
same vein, a braided version of the operad duality do not seem impossible.

The author’s dream is to get new homologies for certain algebraic structures
with the help of the ”braided” tools presented here.
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[5] Wesley Chang and Sam Nelson. Rack shadows and their invariants. J.
Knot Theory Ramifications, 20(9):1259–1269, 2011.

[6] Christian Cuvier. Homologie de Leibniz et homologie de Hochschild. C. R.
Acad. Sci. Paris Sér. I Math., 313(9):569–572, 1991.

[7] A. S. Dzhumadil′daev. Cohomologies of colour Leibniz algebras: pre-
simplicial approach. In Lie theory and its applications in physics, III
(Clausthal, 1999), pages 124–136. World Sci. Publ., River Edge, NJ, 2000.

[8] Roger Fenn, Colin Rourke, and Brian Sanderson. Trunks and classifying
spaces. Appl. Categ. Structures, 3(4):321–356, 1995.

[9] I. Goyvaerts and J. Vercruysse. A Note on the categorification of Lie alge-
bras. ArXiv e-prints, February 2012.

[10] David Joyce. A classifying invariant of knots, the knot quandle. J. Pure
Appl. Algebra, 23(1):37–65, 1982.

[11] Seiichi Kamada. Knot invariants derived from quandles and racks. In
Invariants of knots and 3-manifolds (Kyoto, 2001), volume 4 of Geom.
Topol. Monogr., pages 103–117 (electronic). Geom. Topol. Publ., Coventry,
2002.

[12] Christian Kassel and Vladimir Turaev. Braid groups, volume 247 of Grad-
uate Texts in Mathematics. Springer, New York, 2008. With the graphical
assistance of Olivier Dodane.

[13] Louis H. Kauffman. Virtual knot theory. European J. Combin., 20(7):663–
690, 1999.

[14] Dong Liu and Naihong Hu. Leibniz superalgebras and central extensions.
J. Algebra Appl., 5(6):765–780, 2006.

[15] Jean-Louis Loday. Cyclic homology, volume 301 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1992. Appendix E by Maŕıa O. Ronco.
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