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(UPMC), 4, Place Jussieu, 75252 Paris Cedex 05, France

Abstract

Coupling between initial and damage-induced anisotropies in 3D elastic damaged
materials has been so far addressed by homogenization techniques only for par-
ticular microcracks configurations. The main difficulty in developing a general 3D
micromechanical model lies in the lack of a closed-form solution of the Eshelby
tensor corresponding to cracks in an elastic anisotropic medium. In this study, we
begin to present closed form expressions of the Eshelby tensor S that we derived for a
cylindrical crack embedded in an orthotropic material. The 3D obtained expressions
reduce to existing results in the 2D case or in particular 3D cracks configurations.
The effective compliance of an orthotropic medium containing arbitrarily oriented
cracks is then derived by using the new Eshelby tensor. Finally, a damage model is
formulated by combining the above results with classical thermodynamics approach.
The ability of the model to capture coupling between initial orthotropy and damage
induced anisotropy is demonstrated through a comparison with experimental data
available for a ceramic matrix composite (unidirectional SiC-SiC).

Key words: Homogenization; Eshelby tensor; Anisotropy; Damage; Brittle
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1 Introduction

In the last few decades the study of inelastic behavior and failure character-
istics of man-made or natural brittle materials under mechanical loading has
been the object of numerous studies. Both phenomenological (i.e. continuum
damage mechanics - CDM) or micromechanical based approaches have been
considered (see for instance the reference works of [25], [39, 8] where some of
the main contributions are reviewed). Since the mechanical behavior and some
other microstructure-sensitive properties of heterogeneous media are strongly
influenced by damage mechanisms occurring at different scales, the microme-
chanical approach of damage modeling appears to be very powerful. In partic-
ular, for quasi brittle materials considered in the present study, the inelastic
deformation or other various complex effects observed at the macroscopic level
by means of standard mechanical tests (e.g. deterioration of elastic properties,
damage-induced anisotropy, volumetric dilatancy, unilateral effects, etc) are
commonly attributed to matrix microcracking.

The present study addresses the problem of estimating the effective elastic
properties of anisotropic bodies permeated by cylindrical cracks in the frame-
work of Eshelby-like methods and the formulation of a micro-macro model
able to account for the anisotropy of crack-induced damage. Despite the pro-
gresses concerning the mathematical formulation of constitutive laws and the
evaluation of overall properties of engineering materials ([29, 9, 10, 48, 19, 51,
34, 41, 21, 45] and many others, especially in the 2D context), the 3D mod-
elling of interaction between initial and damage-induced anisotropies remains
a difficult task, even in the context of phenomenological models (see, for ex-
ample, [26, 44, 16, 5]). In this paper, this coupling is addressed by means of
Eshelby-type homogenization techniques. The general case of arbitrarily ori-
ented cylindrical cracks with respect to the symmetry axis of an orthotropic
medium is considered.

It is worth emphasizing that the analysis of a plastic matrix containing mi-
crocracks is beyond the scope of the present work. Such an analysis can be
conducted following the classic approach of [15]. The reader is referred to
yielding of plastic microcracked materials (see [12, 13], the recent studies of
[36, 35] and the recent review by [3]).

In the context of upscaling techniques, the determination of the overall elas-
tic properties of a cracked material requires the computation of the Eshelby
tensor S associated to any crack. Many studies have addressed the case of
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a linearly elastic isotropic matrix containing penny-shaped and/or elliptical
cracks (see for instance [18, 38, 39, 20]) for which the Eshelby tensor is well
known. In the case of materials with matrix exhibiting structural (primary)
anisotropy, few analytical results exist in literature. In a three dimensional
case, only particular crack configurations have been considered, i.e. when the
crack lies in one of the symmetry planes of the solid matrix (see [27, 28, 38]
and the more recent work of [23]). For an arbitrarily oriented crack in an
anisotropic matrix, the results existing in literature are restricted to planar
elasticity. The principal difficulty in conducting for a 3D analysis is that the
Green function associated to anisotropic solids (from which is classically de-
termined the analytical expression of the Eshelby tensor S) is generally not
known in closed form (see, for example, [45], [32], [22]). In this paper, we seek
to address these limitations. The objectives of these study are:

(i) to obtain the closed-form expression of the effective compliance of an or-
thotropic matrix containing cylindrical cracks. To this end we will recall and
use analytical expressions of the Eshelby tensor S that we briefly exposed in
[14] 1 based on the general methodology introduced by [24] and [11] (see also
the works of [46, 43]).

(ii) to propose an anisotropic damage model developed by the implementation
of these new results in an homogenization scheme, namely the Mori-Tanaka
model, in order to determine the macroscopic properties of the orthotropic ma-
terial weakened by an arbitrarily oriented system of cracks. The anisotropic
damage model is further applied for the prediction of the inelastic behavior of
a ceramic matrix composite.

The paper is organized as follows. We begin with a brief description of the
Mori-Tanaka homogenization scheme, that will be further used to obtain the
effective compliance (2). The focus of section 3 is the derivation of an analytic
expression of the Eshelby tensor for 3D microcracks systems. in particular, we
present the basic methodology in subsection 3.1 while section 3.2 is devoted
to the validation of the results and to the presentation of their connection
with existing results in planar elasticity. The determination of the effective
compliance and the illustration of combined effects of microcracks-induced
anisotropic damage and initial anisotropy are performed in section 4. These
results are then used in section 5 where is presented a micromechanical dam-
age model able to describe the inelastic behavior of orthotropic composites.
The proposed model is applied and tested on a ceramic matrix composite
(SiC-SiC), in order to illustrate it’s ability to account for the interaction ef-

1. It is convenient to note that the developed approach has been recently followed
and extended on some aspects by [33] and by [2] who proposed semi analytical tech-
niques for determining the effective compliance for higher anisotropic matrix con-
taining inclusions.
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fects between the initial anisotropy and cracks orientation.

Notations: Standard tensorial notations will be used throughout. Lower un-
derlined case letters will describe vectors, bold script capital letters will be
associated to second-order tensors and mathematical double-struck capital
letters will denote fourth-order tensors respectively. The following vector and
tensor products are exemplified: (A.b)i = Aijbj, (A.B)ij = AikBkj, (A : B)ij =
AijklBkl, (A : B)ijkl = AijpqBpqkl. Einstein summation convention, applied for
the repeated indices and Cartesian coordinates are used. As usual, small re-
spectively large characters refer to microscopic (resp. macroscopic) quantities.
The reference configuration corresponds to the natural state (undamaged ma-
terial); 1 and I are, respectively, the second and fourth order identity tensors,
the former represents the Kronecker symbol (δij) and the latter is defined as:
Iijkl = (1/2)(δikδjl + δilδjk).

2 Mori-Tanaka scheme for orthotropic matrix weakened by arbi-
trary oriented cracks

As already mentioned, in contrast to the continuum macroscopic damage ap-
proaches, the micromechanically based approaches to modeling microcraks-
induced anisotropy present the advantage of incorporating damage mecha-
nisms occurring at microscopic scales. In addition to having a physical basis,
the resulting damage models provide an explicit way of modeling the coupling
between the structural and microcracks-induced anisotropies. This section be-
gins with a short description of the general concepts of the homogenization
of disordered media using the classical Eshelby’s equivalent inclusion method
and how the Eshelby results can be further used in the Mori-Tanaka scheme
to derive the effective properties of the cracked media.

2.1 Basic principles of Eshelby-based homogenization techniques

Consider a representative volume element (RVE) Ω of a material consisting of
an orthotropic solid matrix Ωs (of stiffness tensor Cs and volume fraction φs)
and a system of microcracks occupying a domain Ωf . The orientation of each
family r of microcracks (r = 1 to N) is characterized by a normal unit vector
denoted by n. Uniform strain conditions are prescribed on the outer boundary
∂Ω of the RVE (see Figure 1). The crack is considered as an elastic material
of stiffness tensor Cf .
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ζ = E.x

Figure 1. The representative volume element (RVE) of the orthotropic cracked solid.

The microscopic stress and strain fields are respectively denoted by σ and ε
whereas x and ζ denote respectively the position vector in the RVE and the
microscopic displacement.
A crucial step of the homogenization techniques consists in finding the fourth-
order localization tensor A(x) which relates the microscopic strain field to the
macroscopic one, i.e. ε(x) = A(x) : E. It follows that the homogenized stiffness
tensor Chom is (see, for instance, [52]):

Chom = ⟨C(x) : A(x)⟩Ω = Cs +
N∑

r=1

φf
r

(
Cf

r − Cs
)
: Af

r (1)

where φf
r is the volume fraction of the rth family of microcracks (r = 1 to N),

and the identity ⟨A(x)⟩Ω = I (which results from the strain average rule) is
used.
The localization problem is solved by using the fundamental result provided
by [9]: for an ellipsoidal crack (defining the rth family) embedded in a linear
elastic solid matrix. In the dilute homogenization scheme, the localization
tensor reads:

Af
r = (I+ Pr : δC) = (I− Sr)

−1 (2)

In (2), Sr and Pr denote the Eshelby and the Hill tensors respectively (Sr = Pr :
Cs). Since only opened cracks are considered in the present study, Cf = 0 and
δC = Cf

r −Cs (= −Cs for opened cracks). Let us recall that the dilute scheme
is restricted to infinitesimal concentrations of the inhomogeneous inclusions.
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2.2 The Mori-Tanaka scheme applied to cracked media

The Mori-Tanaka homogenization scheme (see [37]) accounts for interaction
effects. It is classically formulated by adapting the Eshelby result to this situa-
tion. The resulting localization tensor for the rth family of microcracks (r = 1
to N) takes then the form (see for instance [6] or [7]):

Af
r = (I− Sr)

−1 :

φsI+
N∑

j=1

φf
j (I− Sj)

−1

−1

(3)

which, when substituted in (1), leads to:

Chom = Cs −
N∑

r=1

φf
rCs : (I− Sr)

−1 :

φsI+
N∑

j=1

φf
j : (I− Sj)

−1

−1

(4)

Note that the determination of the homogenized stiffness (or compliance) ten-
sor reduces to the computation of Sr. For orthotropic media, this is not a
straightforward task and is the focus of the next subsection.

3 Closed-form expression of Eshelby tensor Sr for an arbitrarily
oriented cylindrical crack in an orthotropic medium

3.1 Methodology and results

Consider first that the solid matrix is orthotropic (of stiffness tensor Cs) and
is weakened by a set of parallel microcracks. Let (z1, z2,z3) be the rectangular
cartesian coordinates system and (k1, k2, k3) the local frame associated to the
microcracks. Let also define by (x1, x2, x3) the global coordinate system and by
(e1, e2, e3) the global frame associated to the axes of symmetry (orthotropy)
of the matrix. We model the crack as an infinite cylinder aligned along the
direction e3 ≡ k3 and elliptical cross-section of low aspect ratio X = b/a (see
Figure 2) geometrically prescribed by:

z21
a2

+
z22
b2

= 1, −∞ < z3 <∞ (5)
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Figure 2. Crack modelled as an infinite cylinder with elliptical section; the aspect
ratio is X = b/a

Let us also recall that the components of the solid matrix stiffness tensor in the
local frame (the angle θ gives the orientation of the crack with respect to the
axes of orthotropy of the matrix), are obtained using classical tensor trans-
formation rules as: Cijkl = UipUjqUkrUlsC

s
pqrs. The second-order orthogonal

transformation tensor U used for the local frame coordinate system associ-
ated to the crack (z1, z2, z3) is:

U =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (6)

Note that, for an arbitrary orientation of the cracks plane, θ, the stiffness
tensor in the local frame displays a matrix of 13 non-zero components. The
determination of the interaction tensor P, which is based on the work of [24],
(see also [11], [27] or [50]), consists in evaluating the integral:

Pijkl =
ab

π

∫ 2π

0

Nijkl(ξ1, ξ2)

(a2ξ21 + b2ξ22)
dψ (7)

The integration is performed on the unit circle centered at the origin, in the
plane (ξ1, ξ2): ∥ξ∥ = 1 (e.g. ξ = cosψe1 + sinψe2). The components of the
fourth order tensor N read:

Nijkl(ξ1, ξ2) = Dijkl(ξ1, ξ2, 0) with: (8)

Dijkl =
1

4

(
ξiK

−1
jk ξl + ξjK

−1
ik ξl + ξiK

−1
jl ξk + ξjK

−1
il ξk

)
(9)

7



In equation(9), K = ξ.C.ξ represents the acoustic tensor associated to C and
the vector ξ. It can be noted that the anisotropy of the elastic solid matrix
affects P through the acoustic tensor K. Since the above expressions (equation
7, together with 8 and 9) imply computations in the local frame of the crack, P
depends a priori on the orientation of the latter. Equivalently, the components
of the tensor P can be expressed as:

Pijkl =
1

4
(Mijkl +Mjikl +Mijlk +Mjilk) (10)

where: Mijkl =
ab

π

∫ 2π

0

ξiK
−1
jk ξl

(a2ξ21 + b2ξ22)
dψ (11)

As mentioned before, note that the analytical evaluation of the interaction
tensor P is not an easy task. An interesting and elegant method for estimating
this integral which is based on the residue theorem was used by [14] (see ap-
pendix A). The analytical expressions of the components of the tensor P are
given in the appendix B.
It is worth noting that only the orientation and the geometry of the ellip-
tical inhomogeneity (i.e. the angle θ and the aspect ratio X = b/a) as well
as the initial anisotropy of the solid matrix (the stiffness tensor Cs) affects
the components of the interaction tensor P. Thus, the influence of the initial
anisotropy on the overall elastic properties of the material (which are now
obtainable by incorporating the previous results in various homogenization
schemes) and the coupling between initial and crack induced anisotropy is
described. To the best of our knowledge (especially for the validation of the
obtained results) the closed form expressions of the interaction tensor P of el-
lipsoidal inhomogeneities in orthotropic media are known only for cylindrical
cracks normal to one of the material symmetry axis (see [27, 11]). The only
3D analytical expressions were obtained by [28] for penny-shaped cracks nor-
mal to the symmetry axis, i.e. lying in the isotropy plane of the transversely
isotropic matrix. Thus, for validation purposes, we can only consider these
particular cases and show that the new results reduce to the corresponding
existing ones.

3.2 Connection with existing results

In the present section are presented several validations of the previous results
implying directly either the P or equivalently Q tensor (introduced in section
3.2.2).
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3.2.1 Aligned cracks normal to a symmetry axis of the orthotropic matrix

A first validation of the new results is done by considering the particular case
of a system of aligned cracks normal to the symmetry axis e1 of the solid
matrix. This problem has been studied by [27], who obtained the following
non-zero components for the fourth-order interaction tensor P:

P1111 =
Cs

2222 + Cs
1212

√
αβ

Cs
1111C

s
1212

√
αβ(

√
α+

√
β)
X

P2222 =
1

Cs
2222

+
Cs

2222 − Cs
1212(α+ β +

√
αβ)

Cs
2222C

s
1212

√
αβ(

√
α+

√
β)

X

P1122 = − Cs
1122 + Cs

1212

Cs
1111C

s
1212

√
αβ(

√
α+

√
β)
X

P2323 =
1

4Cs
2323

−
√
Cs

1313

4Cs
2323

3/2
X; P1313 =

1

4
√
Cs

2323C
s
1313

X

P1212 =
1

4Cs
1212

− Cs
1111C

s
2222 − Cs

1122
2

2Cs
1111C

s
1212

2 √
αβ(

√
α+

√
β)
X

(12)

where α and β are the complex conjugate roots of the characteristic equation
for the orthotropic solid matrix:

Cs
1111C

s
1212x

2 −
[
Cs

1111C
s
2222 − Cs

1122(C
s
1122 + 2Cs

1212)
]
x+ Cs

2222C
s
1212 = 0 (13)

It can be easily verified that for θ = 0, the expressions (B.1) that we established
coincide with the expressions (12).

3.2.2 Validation through comparison with classic results obtained from the
study in planar elasticity of orthotropic cracked media

Rigorous results for planar elasticity problems 2 involving elliptical inclusions
(of aspect ratio X = b/a) embedded in an anisotropic matrix were available
long time ago by using the complex potentials approach (see [29]). Interest-
ingly, they are recently applied by [47] for the homogenization of cracked
materials with orthotropic matrix. At the difference of the complex poten-
tials method, the Eshelby-based results obtained in the present study allows
to investigate 3D cracks configurations. The purpose of this second level of
validation is to show that the results derived in the present study reduce to

2. We recall that, in the present study, the analytical expressions of the compo-
nents of P tensor were obtained in a tridimensional context.
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existing ones when 2D cracks are considered. The starting point is the rela-
tionship already established by [47] between the strain induced by the cavity,
(εc), and the macroscopic stress field Σ applied to the RVE:

εc = H : Σ (14)

in which, following [27], the H tensor is related to the Hill tensor by:

H = dXQ−1 with Q = Cs − Cs : P : Cs (15)

where d is the crack density parameter (d = Ma2, M being the number of
cracks per unit volume) introduced by [4] and Q the second Hill tensor.
As a validation, it is convenient to compute tensor Q (corresponding to the
arbitrarily oriented elliptical crack in the orthotropic matrix) from (B.1) and
then its inverse Q−1. It follows that:

XQ−1
1111 = t

√
αβ(

√
α+

√
β)

[
X2 cos2(θ) + sin2(θ) +

Cs
1122X

Cs
1111

√
αβ(

√
α+

√
β)

]

XQ−1
1112 = XQ−1

1211 = t
√
αβ(

√
α+

√
β) cos θ sin θ(X2 − 1)

XQ−1
1122 = XQ−1

2211 = −t
√
αβX

XQ−1
1212 =

t(
√
α+

√
β)

4
·

{
X2

[
cos2(θ) +

√
αβ sin2(θ)

]
+
[
sin2(θ) +

√
αβ cos2(θ)

]
+X(

√
α+

√
β)
}

XQ−1
2212 = XQ−1

1222 =
t(
√
α+

√
β)

2
(X2 − 1) cos θ sin θ

XQ−1
2222 = t(

√
α+

√
β)
{
X2 sin2(θ) + cos2(θ) +

X√
α+

√
β

}

(16)

where t = Cs
1111/(C

s
111C

s
2222−Cs

1122
2). The final verification requires to compare

the components of XQ−1 given by (16) with that of H given by [47] and
reported in appendix (D) (in which the definition d = πa2/A must be adopted,
A being the reference cell area).
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4 The Mori-Tanaka estimate of the effective compliance: combined
effects of initial and damage-induced anisotropies

4.1 Determination of the effective compliance

We aim at deriving the macroscopic elastic properties of an orthotropic solid
matrix containing randomly oriented microcracks. To this end, a Mori-Tanaka
estimate of the homogenized stiffness tensor of the microcracked medium is
considered (4). Following [4], let us recall the 2D cracks density parameter dr =
Mar

2, where M denotes the number of cracks per unit area of the considered
cracks system. Recalling the notation φf

r for the volume fraction of the rth

family of microcracks (r = 1 to N), one has φf
r = πdrXr. Taking then the

limit for low aspect ratio (limXr→0), it can be shown that the homogenized
stiffness tensor, given by (4), takes the form (as in the isotropic case):

Chom = Cs :

(
I+

r=N∑
r=1

πdrTr

)−1

where Tr = lim
Xr→0

Xr

[
I− Sr

]−1

(17)

The components of tensor Tr are given in Appendix D. Note that they depend
on the cracks orientation defined by the θ angle (see figure 2).
Moreover, the material orthotropy is only preserved when cracks are aligned
along a material symmetry axis (θ = 0 or θ = π/2). This corresponds to the
cancelation of some components of Tr.
The homogenized compliance tensor is obtained by inverting (17):

Shom =

(
I+

r=N∑
r=1

πdrTr

)
: Ss (18)

11



where Ss = (Cs)−1 represents the compliance tensor of the solid matrix. The
components of Shom are given by:

Shom
1111 = Ss

1111 + dπ
(Ss

2222S
s
3333 − Ss

2233
2)(

√
α+

√
β)
√
αβ(sin θ)2

Ss
3333

Shom
1122 = Ss

1122 Shom
1133 = Ss

1133 Shom
2233 = Ss

2233 Shom
3333 = Ss

3333

Shom
2222 = Ss

2222 + dπ
(Ss

2222S
s
3333 − Ss

2233
2)(

√
α+

√
β)(cos θ)2

Ss
3333

Shom
1112 = Ss

1112 + dπ
(Ss

2233
2 − Ss

2222S
s
3333)(

√
α+

√
β)
√
αβ sin θ cos θ

2Ss
3333

Shom
2212 = Ss

2212 + dπ
(Ss

2233
2 − Ss

2222S
s
3333)(

√
α+

√
β) sin θ cos θ

2Ss
3333

Shom
2323 = Ss

2323 + dπ(sin θ)2
√
Ss
2323S

s
1313

2

Shom
1313 = Ss

1313 + dπ(cos θ)2
√
Ss
2323S

s
1313

2

Shom
1323 = Ss

1323 + dπ sin θ cos θ

√
Ss
2323S

s
1313

2

Shom
1212 = Ss

1212 + dπ
(Ss

2233
2 − Ss

2222S
s
3333)(

√
α+

√
β)
[
(sin θ)2 +

√
αβ(cos θ)2

]
Ss
3333

(19)
Note that the components of the homogenized compliance tensor depends on
the elastic properties of the solid matrix and strongly on the crack orientation
(the θ angle). Such dependence accounts for the interaction between the initial
anisotropy and the cracks orientation. The deviation from material orthotropy
can be found in components Shom

1112 = Shom
1211, S

hom
2212 = Shom

1222 and Shom
1323 = Shom

2313.

4.2 Effects of interaction between the initial and micro-cracks induced anisotropy
on the elastic moduli

We propose to illustrate here the effect of open cracks systems on the homog-
enized elastic properties, the solid matrix being orthotropic. Following [49],
one can derive from Shom the expressions of the generalized elastic moduli:
the Young modulus, E(m), corresponding to an arbitrary direction defined by
a unit vector m, the Poisson ratio ν(m, p), and the shear modulus µ(m, p),
associated to two orthogonal directions of respective unit vectors m and p.
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These moduli are respectively defined as (see also [17]):

E(m) = [(m⊗m) : Shom : (m⊗m)]−1

ν(m, p) = −
(p⊗ p) : Shom : (m⊗m)

(m⊗m) : Shom : (m⊗m)

µ(m, p) = [4(m⊗ p) : Shom : (m⊗ p)]−1

(20)
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a) θ = 0

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

b) θ = 0, θ = π/2
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Figure 3. Variation of the generalized Young’s modulus produced by opened cracks
systems. Three distinct families are respectively considered: a) θ = 0; b) comparison
for orientations θ = 0 and θ = π/2; c) θ = π/3. The results are normalized with the
initial values of the Young moduli, which are represented by the unit circle

As an example, the effect of cracks on the generalized Young modulus E(m)
will be only presented here. To this end, we consider a set of parallel cracks
whose unit normal is n, e.g. associated to the angle θ with respect to the
symmetry axis e2 of the matrix (see Figure 2). For each space direction given
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by a vector m, taken in the plane (e1, e2), the value of the elastic moduli is
normalized by the corresponding value of the solid matrix (plotted as the unit
circle in dashed line).
The analysis is done for the case of open cracks. The elastic moduli of the
orthotropic solid matrix, which are assumed to correspond to the composite
studied in section are: Es

1 = 320000 MPa, Es
2 = 170000 MPa for the Young

moduli, Gs
12 = 90000 MPa for the shear modulus and νs12 = 0.18 for the Pois-

son ratio.
The results (see for instance Figure 3a corresponding to θ = 0) show a signif-
icant degradation of the Young modulus in the normal direction to the crack.
The same observation can be done for a cracks family oriented with an angle
θ = π/2 (see Figure 3b). However, it must be emphasized that this second
curve is not obtained by a simple rotation of the previous one (θ = 0), as it
would be the case for an isotropic solid matrix. This is clearly a consequence of
the orthotropy of the solid matrix. The effect of the matrix anisotropy is even
more pronounced for θ = π/3 (see Figure 3c which shows a notable distortion).

5 A micromechanical damage model for initially orthotropic ma-
terials

In this section we propose a micromechanical damage model for initially or-
thotropic materials. The model is based on the results presented in the preced-
ing section and on the choice of a damage criterion which will allow to describe
the propagation of distributed microcracks. The predictive capabilities of the
micromechanical model are demonstrated by application to a brittle matrix
composite. Comparison with experimental data obtained by [1] on a SiC-SiC
ceramic composite shows the ability of the proposed model to describe the
overall stress-response of this material when submitted to off axis loadings.

5.1 Free enthalpy. Damage propagation by cracks growth

A stress-based formulation of the damage model is proposed. The correspond-
ing macroscopic free enthalpy for an arbitrarily oriented cracks system depends
on the macroscopic stress and on the damage state:

W ∗ =
1

2
Σ : Shom : Σ (21)

Shom depends on the cracks density parameters dr (representing the damage
variables) and is given by (18) when a Mori-Tanaka scheme is considered.
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The first state law provides the macroscopic strain tensor E as a function of
the macroscopic stress Σ:

E =
∂W ∗

∂Σ
= Shom : Σ (22)

To derive the complete formulation of the model, one needs to propose a
damage criterion and a damage evolution law. Let us recall that the quantities
dr (for r = 1 to N) constitute the set of internal damage variables. The damage
criterion being based on the intrinsic dissipation due to damage, the latter can
be obtained from the expression:

D =
r=N∑
r=1

∂W ∗

∂dr
ḋr =

r=N∑
r=1

F dr ḋr ≥ 0 (23)

in which, F dr is the thermodynamic force (energy release rate associated to
the rth cracks family) associated to damage variable dr:

F dr =
∂W ∗

∂dr
r = 1 to N (24)

The previous expression constitutes the second state law which was obtained
by adopting as damage variable the crack density parameter dr corresponding
to a crack family denoted i. Based on the above thermodynamic arguments,
the damage criterion for the considered cracks family can be put in the form
(see also [31]):

fr(F
dr , dr) = F dr − R(dr) r = 1 to N (25)

In (25) the function R(dr) describes the crack resistance to damage propa-
gation. In principle, the damage activation criterion can be determined from
experimental investigations (see [30] and [40]). It’s dependency on dr confers
to the latter the role of a hardening variables. For simplicity, the following
form is chosen for R(dr):

R(dr) = k(1 + ηdr) r = 1 to N (26)

where k is a parameter which describes the damage threshold and η accounts
for the hardening effect of damage. These two parameters can be identified
from standard tensile tests.
The damage evolution is obtained by assuming the normality rule:∣∣∣∣∣∣∣∣∣∣∣∣

ḋr = Λ̇dr

∂fr(F
dr , dr)

∂F dr
= Λ̇dr ; Λ̇dr ≥ 0

so ḋr =


0 if fr < 0 or fr = 0, ḟr < 0

Λ̇dr if fr = 0 and ḟr = 0

(27)
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The damage multiplier Λ̇dr is derived from the classical Kuhn-Tucker consis-
tency condition: ḟr = 0. From a physical point of view, this implies that the
representing point of loading is placed on the loading surface, so:

Λ̇dr =
1

R′(dr)
(Br : Σ̇)+ (28)

with Br = ∂F dr/∂Σ. It should be stated that the adopted damage evolution
law supposes implicitly that cracks are propagating in their own plane. The
adopted framework (of thermodynamic irreversible processes) indicates also
that the propagation speed ḋr of each variable is dependent of the macro-
scopic stress Σ only via the associated thermodynamic force. This framework
is similar to the one adopted by [42] for the micro-macro transition, by using
the parameters describing the microstructural arrangement of the material as
internal variables.

5.2 Rate formulation of the stress-based model

For a damage activation state unchanged by the application of a stress incre-
ment, the tangent compliance tensor is determined by the use of the damage
evolution law (relations (27-28)). The rate form of the damage model can be
then deduced as:

Ė = Shom
t : Σ̇ (29)

with Shom
t = Shom −

N∑
r=1

ϖr
1

R′(dr)
GrBr ⊗Br (30)

and Gr =


0 if fr < 0 or fr = 0, ḟr < 0

1 if fr = 0 and ḟr = 0
(31)

ϖr denotes the associated weight of the rth integration point. Due to the
symmetry of the second order tensor Br, the homogenized tangent compliance
Shom
t has the minor and major symmetries.
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5.3 Numerical local integration of the constitutive damage law

Algorithmic aspects related with the numerical integration of the proposed
model are presented in the following. The formulation is strain based.
During a time step (tj, tj+1) an elastic trial state is computed:

fr(F
dr j+1

, djr) ≤ 0 (32)

then the trial state is the final state (i.e. the solution to the problem):
Ej+1 = Ej +∆E

dj+1
r = djr (r = 1 to N)

(33)

If the condition (32) is not satisfied, a linear correction should be imposed:


∆dr =

1

kη
fr(F

dr j+1
, djr)

dj+1
r = djr +∆dr

(34)

5.4 Application of the model to an unidirectional SiC-SiC composite

In this section, we apply the proposed model to study the response of a brittle
matrix SiC-SiC ceramic composite subjected to uniaxial off-axis tensile loading
in different directions φ with respect to the axis of symmetry of the material
(see Figure 4). The experimental data were reported by [1]. The elastic moduli
of the orthotropic solid matrix, which are assumed to correspond to the initial
elastic moduli of the composite are: E1 = 320000 MPa, E2 = 170000 MPa for
the Young moduli, G12 = 90000 MPa for the shear modulus and ν12 = 0.18
for the Poisson ratio.
The model involves two material parameters k and η that appear in the ex-
pression of the damage criterion. The identification procedure consists in cal-
ibrating the model parameters k and η from the tensile test corresponding to
φ = 0̊ . The obtained numerical values are: k = 3.75J.m−2 and η = 140. No
experimental data were available on the initial cracks density parameter. In
all the simulations, we set this parameter value to 0.01. We also assumed that
there are 60 distinct families of cracks randomly oriented in the solid matrix.
The validation of the model is done by simulating off-axis tests (corresponding
to φ = 200 and φ = 450). Figure 5 shows the overall stress-strain response in
tensile tests for φ = 00, φ = 200 and φ = 450. The agreement between the sim-
ulated response at φ = 00 confirms the relevance of the parameters calibration.
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ϕ

e1
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Σ

Figure 4. Representation of the tensile test applied with the φ angle

The results predicted for the off-axis loading tests show also a good agreement
with experimental data; this indicates the good predictive capabilities of the
proposed micromechanical damage model. In particular, the relative positions
of the three curves manifest the combined effect of the initial anisotropy and
the evolving damage.
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Figure 5. Comparison of the tensile tests of unidirectional SiC-SiC composite
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6 Conclusions

In the present study we investigate and evaluate the effective properties of an
orthotropic matrix weakened by arbitrarily oriented microcracks. The deter-
mination of the macroscopic elastic properties of this class of materials has
been performed in the framework of Eshelby’s equivalent inclusion problems.
To this end, we have derived original closed-form expressions of the Eshelby
tensor (or equivalently, of the Hill tensor). The macroscopic elastic proper-
ties (compliance), deduced from these results, shows a coupling between the
initial orthotropy of the solid matrix and the cracks-induced anisotropy. As
a consequence, the deviation from elastic orthotropy can be characterized. A
new damage model for initially orthotropic materials is then proposed and im-
plemented by adopting a Mori-Tanaka homogenization scheme and a damage
criterion based on the derived energy release rate. The numerical predictions of
the damage model are in good agreement with experimental data reported by
[1] on a ceramic matrix composite (SiC-SiC), particularly for off-axis loadings
experiments.
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anisotrope. Le Journal de Physique, 252(32):325–331, 1971.

[12] M. Gologanu, J.B. Leblond, , G. Perrin, and J. Devaux. Approximate
models for ductile metals containing non-spherical voids - case of axisym-
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A Proposed methodology for the determination of P tensor

The starting point here is the recent study of [43] which follows the procedure
described by [45] 3 . Let us consider the two global unit orthogonal vectors
e1 and e2 in the plane ξ3 = 0; any unit vector in this plane reads then ξ =
cosψe1+sinψe2. It follows that the acoustic tensor K = ξ.C.ξ takes the form:

K = (cosψ)2Q+ cosψ sinψ(R+RT ) + (sinψ)2T (A.1)

Substituting y = cotψ in this expression yields:

K(ψ) = (sinψ)2
[
Qy2 + y(R+RT ) +T

]
= (sinψ)2K(y), with:(A.2)

K(y) = y2Q+ y(R+RT ) +T. (A.3)

The second order tensors Q, R, and T are defined, respectively as:

Q = e1.C.e1 R = e1.C.e2 T = e2.C.e2 (A.4)

3. These authors have not studied the case of arbitrarily oriented inclusions in
an orthotropic solid matrix
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For the computation of P (equations (7-9)), one needs to invert K(y). By
denoting | K(y) | the determinant of K(y) and by K̃(y) it’s adjoint, it follows
that: K(y).K̃(y) =| K(y) | 1, and respectively:

K−1(y) =
K̃(y)

| K(y) |
(A.5)

For the second-order tensor ∆ = ξ ⊗ ξ which, as for K−1, appears in the
definition (9) of the tensor N, it can be shown that: ∆(ψ) = (sinψ)2∆(y)
with ∆(y) = y2e1 ⊗ e1 + y(e1 ⊗ e2 + e2 ⊗ e1) + e2 ⊗ e2. Note also that a2ξ21 +
b2ξ22 = (sinψ)2(a2y2+b2). Using then equation (A.2) and the change of variable
y = cotψ, the expression (11) becomes:

Mijkl =
ab

π

∫ ∞

−∞

K̃jk(y)∆il(y)dy

(a2y2 + b2) | K(y) |
=

1

π

∫ ∞

−∞

XK̃jk(y)∆il(y)dy

(y2 +X2) | Q | f(y)
(A.6)

where X = b/a denotes the microcrack aspect ratio. In general, f(y) is a
polynomial of degree 6:

f(y) = (y − y1)(y − ȳ1)(y − y2)(y − ȳ2)(y − y3)(y − ȳ3). (A.7)

where yp (p = 1, 2, 3) are the roots with positive imaginary part, while ȳp their
complex conjugate, respectively. The M tensor depends only on the shape of
the inclusion and on the material’s stiffness. Note also that the representation
(A.6) allows the evaluation of Mijkl by the residues theorem. The first order
approximation of M at X = 0 (X being the microcrack aspect ratio) gives:

Mijkl =
K̃jk(0)∆il(0)

f(0)| Q |
+

2iX

| Q |

3∑
i=1

K̃jk(yi)∆il(yi)

f ′(yi)y2i
+

iX

f(0) | Q |
·

[
K̃

′

jk(0)∆il(0) + K̃jk(0)∆
′

il(0)− K̃jk(0)∆il(0)
f ′(0)

f(0)

] (A.8)

where K̃jk are the components of the adjoint of K. The quantity | Q |, the
determinant of Q (see (A.4)) is expressed as:

| Q |= Cs
1111C

s
1212(cos

2(θ) + α sin2(θ))(cos2(θ) + β sin2(θ))

(Cs
3232 sin

2(θ) + Cs
3131 cos

2(θ))
(A.9)

with α and β are given by (13). Thus,

α+ β =
Cs

1111C
s
2222 − Cs

1122
2 − 2Cs

1122C
s
1212

Cs
1111C

s
1212

αβ =
Cs

2222

Cs
1111

(A.10)
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It can be shown that the imaginary part, ℑ(M), of M is null:

ℑ(Mijkl) =
2X

| Q |
ℜ

3∑
i=1

K̃jk(yi)∆il(yi)

f ′(yi)y2i
+

X

f(0) | Q |
·

[
K̃

′

jk(0)∆il(0) + K̃jk(0)∆
′

il(0)− K̃jk(0)∆il(0)
f ′(0)

f(0)

]
= 0.

(A.11)

Hence its real part, ℜ(M), is:

Mijkl = ℜ(Mijkl) =
K̃jk(0)∆il(0)

f(0) | Q |
− 2X

| Q |
ℑ

3∑
i=1

K̃jk(yi)∆il(yi)

f ′(yi)y2i
(A.12)

In summary, we have obtained the expression of M in the local frame of the
crack. Its expression in the global frame is given by a simple change of frame.

B Expression of the components of Hill’s tensor P

In the global frame, the components of Hill’s tensor P are:
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P1111 =
(C2222u

2 + C1212v
2)v2

C1111C1212(αu2 + v2)(βu2 + v2)
+

X

C1111C1212(α− β)
·

{√
α(αu2 − v2)(αC1212 − C2222)

(αu2 + v2)2
−

√
β(βu2 − v2)(βC1212 − C2222)

(βu2 + v2)2

}

P1122 = − (C1122 + C1212)u
2v2

C1111C1212(αu2 + v2)(βu2 + v2)

+
X(C1122 + C1212)

C1111C1212(α− β)

{√
α(αu2 − v2)

(αu2 + v2)2
−

√
β(βu2 − v2)

(βu2 + v2)2

}

P2222 =
(C1111v

2 + C1212u
2)u2

C1111C1212(αu2 + v2)(βu2 + v2)
+

X

C1111C1212(α− β)
·

{
(αu2 − v2)(αC1111 − C1212)√

α(αu2 + v2)2
− (βu2 − v2)(βC1111 − C1212)√

β(βu2 + v2)2

}

P1112 =
(C2222u

2 − C1122v
2)uv

2C1111C1212(αu2 + v2)(βu2 + v2)
+

Xuv

C1111C1212(α− β)
·

{√
α(αC1122 + C2222)

(αu2 + v2)2
−

√
β(βC1122 + C2222)

(βu2 + v2)2

}

P2212 =
(C1111v

2 − C1122u
2)uv

2C1111C1212(αu2 + v2)(βu2 + v2)
− Xuv

C1111C1212(α− β)
·

{√
α(αC1111 + C1122)

(αu2 + v2)2
−

√
β(βC1111 + C1122)

(βu2 + v2)2

}

P1212 =
C1111v

4 + C2222u
4 − 2C1122v

2u2

4C1111C1212(αu2 + v2)(βu2 + v2)
+
X(C1111C2222 − C2

1122)

4C1111C2
1212(α− β)

·
{√

α(αu2 − v2)

(αu2 + v2)2
−

√
β(βu2 − v2)

(βu2 + v2)2

}

P1313 =
v2

4(C2323u2 + C1313v2)
+
X

4

√
C2323

C1313

(C2323u
2 − C1313v

2)

(C3232u2 + C3131v2)2

P2323 =
u2

4(C3232u2 + C1313v2)
− X

4

√
C1313

C2323

C2323u
2 − C1313v

2

(C3232u2 + C1313v2)2

P1323 =
uv

4(C2323u2 + C3131v2)
− X

√
C1313C2323uv

2(C2323u2 + C1313v2)2

(B.1)

with u = cos(θ) and v = sin(θ).
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C Components of the T tensor

Componentwise Tijkl terms deduced in the section 4.1 are as follows (using
the notation t = Cs

1111/(C
s
111C

s
2222 − Cs

1122
2)):

T1111 = t Cs
1111(

√
α+

√
β)
√
αβ sin2(θ)

T1122 = t Cs
1122(

√
α+

√
β)
√
αβ sin2(θ)

T2211 = t Cs
1122(

√
α+

√
β) cos2(θ)

T2222 = t Cs
2222(

√
α+

√
β) cos2(θ)

T1133 = t Cs
1133(

√
α+

√
β)
√
αβ sin2(θ)

T2233 = t Cs
2233(
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D Components of the H tensor

The components of the H tensor obtained by [47] in planar elasticity are as
follows:

H1111 =
πL
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√
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(D.1)

in which A is the representative area of the considered cell. The constant L is
related to the elastic moduli of the orthotropic 2D matrix by:
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√
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s
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2 (D.2)

α, β are the roots of the characteristic equation of the bidimensional or-
thotropic medium.
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