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Coupling between initial and damage-induced anisotropies in 3D elastic damaged materials has been so far addressed by homogenization techniques only for particular microcracks configurations. The main difficulty in developing a general 3D micromechanical model lies in the lack of a closed-form solution of the Eshelby tensor corresponding to cracks in an elastic anisotropic medium. In this study, we begin to present closed form expressions of the Eshelby tensor S that we derived for a cylindrical crack embedded in an orthotropic material. The 3D obtained expressions reduce to existing results in the 2D case or in particular 3D cracks configurations. The effective compliance of an orthotropic medium containing arbitrarily oriented cracks is then derived by using the new Eshelby tensor. Finally, a damage model is formulated by combining the above results with classical thermodynamics approach. The ability of the model to capture coupling between initial orthotropy and damage induced anisotropy is demonstrated through a comparison with experimental data available for a ceramic matrix composite (unidirectional SiC-SiC).

Introduction

In the last few decades the study of inelastic behavior and failure characteristics of man-made or natural brittle materials under mechanical loading has been the object of numerous studies. Both phenomenological (i.e. continuum damage mechanics -CDM) or micromechanical based approaches have been considered (see for instance the reference works of [START_REF] Krajcinovic | Damage mechanics[END_REF], [START_REF] Nemat-Nasser | Micromechanics : overall properties of heterogenous materials[END_REF][START_REF] Dragon | Damage mechanics. some modelling challenges[END_REF] where some of the main contributions are reviewed). Since the mechanical behavior and some other microstructure-sensitive properties of heterogeneous media are strongly influenced by damage mechanisms occurring at different scales, the micromechanical approach of damage modeling appears to be very powerful. In particular, for quasi brittle materials considered in the present study, the inelastic deformation or other various complex effects observed at the macroscopic level by means of standard mechanical tests (e.g. deterioration of elastic properties, damage-induced anisotropy, volumetric dilatancy, unilateral effects, etc) are commonly attributed to matrix microcracking.

The present study addresses the problem of estimating the effective elastic properties of anisotropic bodies permeated by cylindrical cracks in the framework of Eshelby-like methods and the formulation of a micro-macro model able to account for the anisotropy of crack-induced damage. Despite the progresses concerning the mathematical formulation of constitutive laws and the evaluation of overall properties of engineering materials ( [START_REF] Lekhnitski | Stresses in an infinitely large anisotropic plate which is weakened by an elliptical hole[END_REF][START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion and related problems[END_REF][START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF][START_REF] Wang | Mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity[END_REF][START_REF] Hutchinson | Crack tip shielding by micro-cracking in brittle solids[END_REF][START_REF] Wu | Analysis of finite anisotropic media containing multiple cracks using superposition[END_REF][START_REF] Mauge | Anisotropic materials with interacting arbitrarily oriented cracks -stress intensity factors and crack-microcrack interactions[END_REF][START_REF] Pan | Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks[END_REF][START_REF] Kachanov | Mechanics of anisotropic materials with multiple cracks[END_REF][START_REF] Ting | Anisotropic elasticity: Theory and applications[END_REF] and many others, especially in the 2D context), the 3D modelling of interaction between initial and damage-induced anisotropies remains a difficult task, even in the context of phenomenological models (see, for example, [START_REF] Ladeveze | Inelastic strains and damage (chap. 4)[END_REF][START_REF] Talreja | Damage mechanics of composite materials[END_REF][START_REF] Halm | An modular damage model for quasi-brittle solids-interaction between initial and induced anisotropy[END_REF][START_REF] Cazacu | On Modeling the Interaction between Initial and Damage-Induced Anisotropy in Transversely Isotropic Solids[END_REF]). In this paper, this coupling is addressed by means of Eshelby-type homogenization techniques. The general case of arbitrarily oriented cylindrical cracks with respect to the symmetry axis of an orthotropic medium is considered.

It is worth emphasizing that the analysis of a plastic matrix containing microcracks is beyond the scope of the present work. Such an analysis can be conducted following the classic approach of [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part i. yield criteria and flow rules for porous ductile materials[END_REF]. The reader is referred to yielding of plastic microcracked materials (see [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric oblate ellipsoïdal cavities[END_REF][START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF], the recent studies of [START_REF] Monchiet | Approximate yield criteria for anisotropic metals with prolate or oblate voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids[END_REF] and the recent review by [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]).

In the context of upscaling techniques, the determination of the overall elastic properties of a cracked material requires the computation of the Eshelby tensor S associated to any crack. Many studies have addressed the case of a linearly elastic isotropic matrix containing penny-shaped and/or elliptical cracks (see for instance [START_REF] Horii | Overall moduli of solids with microcracks: Load induced anisotropy[END_REF][START_REF] Mura | Micromechanics of defects in solids[END_REF][START_REF] Nemat-Nasser | Micromechanics : overall properties of heterogenous materials[END_REF][START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]) for which the Eshelby tensor is well known. In the case of materials with matrix exhibiting structural (primary) anisotropy, few analytical results exist in literature. In a three dimensional case, only particular crack configurations have been considered, i.e. when the crack lies in one of the symmetry planes of the solid matrix (see [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF][START_REF] Laws | A note on penny-shaped cracks in transversely isotropic materials[END_REF][START_REF] Mura | Micromechanics of defects in solids[END_REF] and the more recent work of [START_REF] Kanaun | Elliptical cracks arbitrarily oriented in 3d-anisotropic elastic media[END_REF]). For an arbitrarily oriented crack in an anisotropic matrix, the results existing in literature are restricted to planar elasticity. The principal difficulty in conducting for a 3D analysis is that the Green function associated to anisotropic solids (from which is classically determined the analytical expression of the Eshelby tensor S) is generally not known in closed form (see, for example, [START_REF] Ting | Anisotropic elasticity: Theory and applications[END_REF], [START_REF] Martin | On green's function for a three-dimensional exponentially graded elastic solid[END_REF], [START_REF] Kachanov | Handbook of elasticity solutions[END_REF]). In this paper, we seek to address these limitations. The objectives of these study are:

(i) to obtain the closed-form expression of the effective compliance of an orthotropic matrix containing cylindrical cracks. To this end we will recall and use analytical expressions of the Eshelby tensor S that we briefly exposed in [START_REF] Gruescu | Eshelby tensor for a crack in an orthotropic elastic medium[END_REF] 1 based on the general methodology introduced by [START_REF] Kinoshita | Elastic field of inclusions in anisotropic media[END_REF] and [START_REF] Faivre | Hétérogénéités ellipsoïdales dans un milieu élastique anisotrope[END_REF] (see also the works of [START_REF] Ting | The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids[END_REF][START_REF] Suvorov | Rate form of the Eshelby and Hill tensors[END_REF]).

(ii) to propose an anisotropic damage model developed by the implementation of these new results in an homogenization scheme, namely the Mori-Tanaka model, in order to determine the macroscopic properties of the orthotropic material weakened by an arbitrarily oriented system of cracks. The anisotropic damage model is further applied for the prediction of the inelastic behavior of a ceramic matrix composite.

The paper is organized as follows. We begin with a brief description of the Mori-Tanaka homogenization scheme, that will be further used to obtain the effective compliance [START_REF] Barthelemy | Compliance and hill polarization tensor of a crack in an anisotropic matrix[END_REF]. The focus of section 3 is the derivation of an analytic expression of the Eshelby tensor for 3D microcracks systems. in particular, we present the basic methodology in subsection 3.1 while section 3.2 is devoted to the validation of the results and to the presentation of their connection with existing results in planar elasticity. The determination of the effective compliance and the illustration of combined effects of microcracks-induced anisotropic damage and initial anisotropy are performed in section 4. These results are then used in section 5 where is presented a micromechanical damage model able to describe the inelastic behavior of orthotropic composites. The proposed model is applied and tested on a ceramic matrix composite (SiC-SiC), in order to illustrate it's ability to account for the interaction ef-fects between the initial anisotropy and cracks orientation.

Notations: Standard tensorial notations will be used throughout. Lower underlined case letters will describe vectors, bold script capital letters will be associated to second-order tensors and mathematical double-struck capital letters will denote fourth-order tensors respectively. The following vector and tensor products are exemplified:

(A.b) i = A ij b j , (A.B) ij = A ik B kj , (A : B) ij = A ijkl B kl , (A : B) ijkl = A ijpq B pqkl .
Einstein summation convention, applied for the repeated indices and Cartesian coordinates are used. As usual, small respectively large characters refer to microscopic (resp. macroscopic) quantities. The reference configuration corresponds to the natural state (undamaged material); 1 and I are, respectively, the second and fourth order identity tensors, the former represents the Kronecker symbol (δ ij ) and the latter is defined as:

I ijkl = (1/2)(δ ik δ jl + δ il δ jk ).

Mori-Tanaka scheme for orthotropic matrix weakened by arbitrary oriented cracks

As already mentioned, in contrast to the continuum macroscopic damage approaches, the micromechanically based approaches to modeling microcraksinduced anisotropy present the advantage of incorporating damage mechanisms occurring at microscopic scales. In addition to having a physical basis, the resulting damage models provide an explicit way of modeling the coupling between the structural and microcracks-induced anisotropies. This section begins with a short description of the general concepts of the homogenization of disordered media using the classical Eshelby's equivalent inclusion method and how the Eshelby results can be further used in the Mori-Tanaka scheme to derive the effective properties of the cracked media.

Basic principles of Eshelby-based homogenization techniques

Consider a representative volume element (RVE) Ω of a material consisting of an orthotropic solid matrix Ω s (of stiffness tensor C s and volume fraction φ s ) and a system of microcracks occupying a domain Ω f . The orientation of each family r of microcracks (r = 1 to N) is characterized by a normal unit vector denoted by n. Uniform strain conditions are prescribed on the outer boundary ∂Ω of the RVE (see Figure 1). The crack is considered as an elastic material of stiffness tensor C f . ζ = E.x The microscopic stress and strain fields are respectively denoted by σ and ε whereas x and ζ denote respectively the position vector in the RVE and the microscopic displacement. A crucial step of the homogenization techniques consists in finding the fourthorder localization tensor A(x) which relates the microscopic strain field to the macroscopic one, i.e. ε(x) = A(x) : E. It follows that the homogenized stiffness tensor C hom is (see, for instance, [START_REF] Zaoui | Continuum micromechanics: Survey[END_REF]):

C hom = ⟨C(x) : A(x)⟩ Ω = C s + N ∑ r=1 φ f r ( C f r -C s ) : A f r (1)
where φ f r is the volume fraction of the r th family of microcracks (r = 1 to N), and the identity ⟨A(x)⟩ Ω = I (which results from the strain average rule) is used. The localization problem is solved by using the fundamental result provided by [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion and related problems[END_REF]: for an ellipsoidal crack (defining the r th family) embedded in a linear elastic solid matrix. In the dilute homogenization scheme, the localization tensor reads:

A f r = (I + P r : δC) = (I -S r ) -1 (2)
In (2), S r and P r denote the Eshelby and the Hill tensors respectively (S r = P r : C s ). Since only opened cracks are considered in the present study, C f = 0 and δC = C f r -C s (= -C s for opened cracks). Let us recall that the dilute scheme is restricted to infinitesimal concentrations of the inhomogeneous inclusions.

The Mori-Tanaka scheme applied to cracked media

The Mori-Tanaka homogenization scheme (see [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]) accounts for interaction effects. It is classically formulated by adapting the Eshelby result to this situation. The resulting localization tensor for the r th family of microcracks (r = 1 to N) takes then the form (see for instance [START_REF] Deudé | Micromechanical approach to nonlinear poroelasticity : application to cracked rocks[END_REF] or [START_REF] Dormieux | Poroelasticity and damage theory for cracked media[END_REF]):

A f r = (I -S r ) -1 :   φ s I + N ∑ j=1 φ f j (I -S j ) -1   -1 (3) 
which, when substituted in (1), leads to:

C hom = C s - N ∑ r=1 φ f r C s : (I -S r ) -1 :   φ s I + N ∑ j=1 φ f j : (I -S j ) -1   -1 (4)
Note that the determination of the homogenized stiffness (or compliance) tensor reduces to the computation of S r . For orthotropic media, this is not a straightforward task and is the focus of the next subsection.

3 Closed-form expression of Eshelby tensor S r for an arbitrarily oriented cylindrical crack in an orthotropic medium

Methodology and results

Consider first that the solid matrix is orthotropic (of stiffness tensor C s ) and is weakened by a set of parallel microcracks. Let (z 1 , z 2 ,z 3 ) be the rectangular cartesian coordinates system and (k 1 , k 2 , k 3 ) the local frame associated to the microcracks. Let also define by (x 1 , x 2 , x 3 ) the global coordinate system and by (e 1 , e 2 , e 3 ) the global frame associated to the axes of symmetry (orthotropy) of the matrix. We model the crack as an infinite cylinder aligned along the direction e 3 ≡ k 3 and elliptical cross-section of low aspect ratio X = b/a (see Figure 2) geometrically prescribed by: Let us also recall that the components of the solid matrix stiffness tensor in the local frame (the angle θ gives the orientation of the crack with respect to the axes of orthotropy of the matrix), are obtained using classical tensor transformation rules as:

z 2 1 a 2 + z 2 2 b 2 = 1, -∞ < z 3 < ∞ (5)
C ijkl = U ip U jq U kr U ls C s pqrs .
The second-order orthogonal transformation tensor U used for the local frame coordinate system associated to the crack (z 1 , z 2 , z 3 ) is:

U =        cos θ sin θ 0 -sin θ cos θ 0 0 0 1        (6) 
Note that, for an arbitrary orientation of the cracks plane, θ, the stiffness tensor in the local frame displays a matrix of 13 non-zero components. The determination of the interaction tensor P, which is based on the work of [START_REF] Kinoshita | Elastic field of inclusions in anisotropic media[END_REF], (see also [START_REF] Faivre | Hétérogénéités ellipsoïdales dans un milieu élastique anisotrope[END_REF], [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF] or [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF]), consists in evaluating the integral:

P ijkl = ab π ∫ 2π 0 N ijkl (ξ 1 , ξ 2 ) (a 2 ξ 2 1 + b 2 ξ 2 2 ) dψ ( 7 
)
The integration is performed on the unit circle centered at the origin, in the plane (ξ 1 , ξ 2 ): ∥ξ∥ = 1 (e.g. ξ = cos ψe 1 + sin ψe 2 ). The components of the fourth order tensor N read:

N ijkl (ξ 1 , ξ 2 ) = D ijkl (ξ 1 , ξ 2 , 0) with: (8) 
D ijkl = 1 4 ( ξ i K -1 jk ξ l + ξ j K -1 ik ξ l + ξ i K -1 jl ξ k + ξ j K -1 il ξ k ) (9) 
In equation( 9), K = ξ.C.ξ represents the acoustic tensor associated to C and the vector ξ. It can be noted that the anisotropy of the elastic solid matrix affects P through the acoustic tensor K. Since the above expressions (equation 7, together with 8 and 9) imply computations in the local frame of the crack, P depends a priori on the orientation of the latter. Equivalently, the components of the tensor P can be expressed as:

P ijkl = 1 4 (M ijkl + M jikl + M ijlk + M jilk ) (10) 
where:

M ijkl = ab π ∫ 2π 0 ξ i K -1 jk ξ l (a 2 ξ 2 1 + b 2 ξ 2 2 ) dψ ( 11 
)
As mentioned before, note that the analytical evaluation of the interaction tensor P is not an easy task. An interesting and elegant method for estimating this integral which is based on the residue theorem was used by [START_REF] Gruescu | Eshelby tensor for a crack in an orthotropic elastic medium[END_REF] (see appendix A). The analytical expressions of the components of the tensor P are given in the appendix B.

It is worth noting that only the orientation and the geometry of the elliptical inhomogeneity (i.e. the angle θ and the aspect ratio X = b/a) as well as the initial anisotropy of the solid matrix (the stiffness tensor C s ) affects the components of the interaction tensor P. Thus, the influence of the initial anisotropy on the overall elastic properties of the material (which are now obtainable by incorporating the previous results in various homogenization schemes) and the coupling between initial and crack induced anisotropy is described. To the best of our knowledge (especially for the validation of the obtained results) the closed form expressions of the interaction tensor P of ellipsoidal inhomogeneities in orthotropic media are known only for cylindrical cracks normal to one of the material symmetry axis (see [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF][START_REF] Faivre | Hétérogénéités ellipsoïdales dans un milieu élastique anisotrope[END_REF]). The only 3D analytical expressions were obtained by [START_REF] Laws | A note on penny-shaped cracks in transversely isotropic materials[END_REF] for penny-shaped cracks normal to the symmetry axis, i.e. lying in the isotropy plane of the transversely isotropic matrix. Thus, for validation purposes, we can only consider these particular cases and show that the new results reduce to the corresponding existing ones.

Connection with existing results

In the present section are presented several validations of the previous results implying directly either the P or equivalently Q tensor (introduced in section 3.2.2).

Aligned cracks normal to a symmetry axis of the orthotropic matrix

A first validation of the new results is done by considering the particular case of a system of aligned cracks normal to the symmetry axis e 1 of the solid matrix. This problem has been studied by [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF], who obtained the following non-zero components for the fourth-order interaction tensor P:

P 1111 = C s 2222 + C s 1212 √ αβ C s 1111 C s 1212 √ αβ( √ α + √ β) X P 2222 = 1 C s 2222 + C s 2222 -C s 1212 (α + β + √ αβ) C s 2222 C s 1212 √ αβ( √ α + √ β) X P 1122 = - C s 1122 + C s 1212 C s 1111 C s 1212 √ αβ( √ α + √ β) X P 2323 = 1 4C s 2323 - √ C s 1313 4C s 2323 3/2 X; P 1313 = 1 4 √ C s 2323 C s 1313 X P 1212 = 1 4C s 1212 - C s 1111 C s 2222 -C s 1122 2 2C s 1111 C s 1212 2 √ αβ( √ α + √ β) X ( 12 
)
where α and β are the complex conjugate roots of the characteristic equation for the orthotropic solid matrix:

C s 1111 C s 1212 x 2 - [ C s 1111 C s 2222 -C s 1122 (C s 1122 + 2C s 1212 ) ] x + C s 2222 C s 1212 = 0 (13)
It can be easily verified that for θ = 0, the expressions (B.1) that we established coincide with the expressions (12).

Validation through comparison with classic results obtained from the study in planar elasticity of orthotropic cracked media

Rigorous results for planar elasticity problems2 involving elliptical inclusions (of aspect ratio X = b/a) embedded in an anisotropic matrix were available long time ago by using the complex potentials approach (see [START_REF] Lekhnitski | Stresses in an infinitely large anisotropic plate which is weakened by an elliptical hole[END_REF]). Interestingly, they are recently applied by [START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF] for the homogenization of cracked materials with orthotropic matrix. At the difference of the complex potentials method, the Eshelby-based results obtained in the present study allows to investigate 3D cracks configurations. The purpose of this second level of validation is to show that the results derived in the present study reduce to existing ones when 2D cracks are considered. The starting point is the relationship already established by [START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF] between the strain induced by the cavity, (ε c ), and the macroscopic stress field Σ applied to the RVE:

ε c = H : Σ (14) 
in which, following [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF], the H tensor is related to the Hill tensor by:

H = dXQ -1 with Q = C s -C s : P : C s ( 15 
)
where d is the crack density parameter (d = Ma 2 , M being the number of cracks per unit volume) introduced by [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF] and Q the second Hill tensor.

As a validation, it is convenient to compute tensor Q (corresponding to the arbitrarily oriented elliptical crack in the orthotropic matrix) from (B.1) and then its inverse Q -1 . It follows that:

XQ -1 1111 = t √ αβ( √ α + √ β) [ X 2 cos 2 (θ) + sin 2 (θ) + C s 1122 X C s 1111 √ αβ( √ α + √ β) ] XQ -1 1112 = XQ -1 1211 = t √ αβ( √ α + √ β) cos θ sin θ(X 2 -1)
XQ -1 1122 = XQ -1 2211 = -t √ αβX XQ -1 1212 = t( √ α + √ β) 4 • { X 2 [ cos 2 (θ) + √ αβ sin 2 (θ) ] + [ sin 2 (θ) + √ αβ cos 2 (θ) ] + X( √ α + √ β) } XQ -1 2212 = XQ -1 1222 = t( √ α + √ β) 2 (X 2 -1) cos θ sin θ XQ -1 2222 = t( √ α + √ β) { X 2 sin 2 (θ) + cos 2 (θ) + X √ α + √ β } ( 16 
)
where

t = C s 1111 /(C s 111 C s 2222 -C s 1122 2
). The final verification requires to compare the components of XQ -1 given by [START_REF] Halm | An modular damage model for quasi-brittle solids-interaction between initial and induced anisotropy[END_REF] with that of H given by [START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF] and reported in appendix (D) (in which the definition d = πa 2 /A must be adopted, A being the reference cell area).

The Mori-Tanaka estimate of the effective compliance: combined effects of initial and damage-induced anisotropies

Determination of the effective compliance

We aim at deriving the macroscopic elastic properties of an orthotropic solid matrix containing randomly oriented microcracks. To this end, a Mori-Tanaka estimate of the homogenized stiffness tensor of the microcracked medium is considered (4). Following [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF], let us recall the 2D cracks density parameter d r = Ma r 2 , where M denotes the number of cracks per unit area of the considered cracks system. Recalling the notation φ f r for the volume fraction of the r th family of microcracks (r = 1 to N), one has φ f r = πd r X r . Taking then the limit for low aspect ratio (lim Xr→0 ), it can be shown that the homogenized stiffness tensor, given by ( 4), takes the form (as in the isotropic case):

C hom = C s : ( I + r=N ∑ r=1 πd r T r ) -1 where T r = lim Xr→0 X r [ I -S r
] -1 [START_REF] Hayes | Connexions between the moduli for anisotropic elastic materials[END_REF] The components of tensor T r are given in Appendix D. Note that they depend on the cracks orientation defined by the θ angle (see figure 2). Moreover, the material orthotropy is only preserved when cracks are aligned along a material symmetry axis (θ = 0 or θ = π/2). This corresponds to the cancelation of some components of T r . The homogenized compliance tensor is obtained by inverting [START_REF] Hayes | Connexions between the moduli for anisotropic elastic materials[END_REF]:

S hom = ( I + r=N ∑ r=1 πd r T r ) : S s ( 18 
)
where S s = (C s ) -1 represents the compliance tensor of the solid matrix. The components of S hom are given by: 

S
√ α + √ β) [ (sin θ) 2 + √ αβ(cos θ) 2 ] S s 3333 (19) 
Note that the components of the homogenized compliance tensor depends on the elastic properties of the solid matrix and strongly on the crack orientation (the θ angle). Such dependence accounts for the interaction between the initial anisotropy and the cracks orientation. The deviation from material orthotropy can be found in components S hom 1112 = S hom 1211 , S hom 2212 = S hom 1222 and S hom 1323 = S hom 2313 .

Effects of interaction between the initial and micro-cracks induced anisotropy on the elastic moduli

We propose to illustrate here the effect of open cracks systems on the homogenized elastic properties, the solid matrix being orthotropic. Following [START_REF] Welemane | Some remarks on the damage unilateral effect modelling for microcracked materials[END_REF], one can derive from S hom the expressions of the generalized elastic moduli: the Young modulus, E(m), corresponding to an arbitrary direction defined by a unit vector m, the Poisson ratio ν(m, p), and the shear modulus µ(m, p), associated to two orthogonal directions of respective unit vectors m and p.

These moduli are respectively defined as (see also [START_REF] Hayes | Connexions between the moduli for anisotropic elastic materials[END_REF]): As an example, the effect of cracks on the generalized Young modulus E(m) will be only presented here. To this end, we consider a set of parallel cracks whose unit normal is n, e.g. associated to the angle θ with respect to the symmetry axis e 2 of the matrix (see Figure 2). For each space direction given by a vector m, taken in the plane (e 1 , e 2 ), the value of the elastic moduli is normalized by the corresponding value of the solid matrix (plotted as the unit circle in dashed line). The analysis is done for the case of open cracks. The elastic moduli of the orthotropic solid matrix, which are assumed to correspond to the composite studied in section are: E s 1 = 320000 MPa, E s 2 = 170000 MPa for the Young moduli, G s 12 = 90000 MPa for the shear modulus and ν s 12 = 0.18 for the Poisson ratio. The results (see for instance Figure 3a corresponding to θ = 0) show a significant degradation of the Young modulus in the normal direction to the crack. The same observation can be done for a cracks family oriented with an angle θ = π/2 (see Figure 3b). However, it must be emphasized that this second curve is not obtained by a simple rotation of the previous one (θ = 0), as it would be the case for an isotropic solid matrix. This is clearly a consequence of the orthotropy of the solid matrix. The effect of the matrix anisotropy is even more pronounced for θ = π/3 (see Figure 3c which shows a notable distortion).

                   E(m) = [(m ⊗ m) : S hom : (m ⊗ m)] -1 ν(m, p) = - (p ⊗ p) : S hom : (m ⊗ m) (m ⊗ m) : S hom : (m ⊗ m) µ(m, p) = [4(m ⊗ p) : S hom : (m ⊗ p)] -1 (20) 

A micromechanical damage model for initially orthotropic materials

In this section we propose a micromechanical damage model for initially orthotropic materials. The model is based on the results presented in the preceding section and on the choice of a damage criterion which will allow to describe the propagation of distributed microcracks. The predictive capabilities of the micromechanical model are demonstrated by application to a brittle matrix composite. Comparison with experimental data obtained by [START_REF] Aubard | Modélisation et identification du comportement mécanique des matériaux composites 2D SiC-SiC[END_REF] on a SiC-SiC ceramic composite shows the ability of the proposed model to describe the overall stress-response of this material when submitted to off axis loadings.

Free enthalpy. Damage propagation by cracks growth

A stress-based formulation of the damage is proposed. The corresponding macroscopic free enthalpy for an arbitrarily oriented cracks system depends on the macroscopic stress and on the damage state:

W * = 1 2 Σ : S hom : Σ (21) 
S hom depends on the cracks density parameters d r (representing the damage variables) and is given by ( 18) when a Mori-Tanaka scheme is considered.

The first state law provides the macroscopic strain tensor E as a function of the macroscopic stress Σ:

E = ∂W * ∂Σ = S hom : Σ (22)
To derive the complete formulation of the model, one needs to propose a damage criterion and a damage evolution law. Let us recall that the quantities d r (for r = 1 to N) constitute the set of internal damage variables. The damage criterion being based on the intrinsic dissipation due to damage, the latter can be obtained from the expression:

D = r=N ∑ r=1 ∂W * ∂d r ḋr = r=N ∑ r=1 F dr ḋr ≥ 0 ( 23 
)
in which, F dr is the thermodynamic force (energy release rate associated to the r th cracks family) associated to damage variable d r :

F dr = ∂W * ∂d r r = 1 to N ( 24 
)
The previous expression constitutes the second state law which was obtained by adopting as damage variable the crack density parameter d r corresponding to a crack family denoted i. Based on the above thermodynamic arguments, the damage criterion for the considered cracks family can be put in the form (see also [START_REF] Marigo | Modelling of brittle and fatigue damage for elastic material by growth of microvoids[END_REF]):

f r (F dr , d r ) = F dr -R(d r ) r = 1 to N (25) 
In [START_REF] Krajcinovic | Damage mechanics[END_REF] the function R(d r ) describes the crack resistance to damage propagation. In principle, the damage activation criterion can be determined from experimental investigations (see [START_REF] Mai | Failure characterization of fibre-reinforced cement composites with R-curve characteristics[END_REF] and [START_REF] Ch | An r-curve approach for fracture of quasi-brittle materials[END_REF]). It's dependency on d r confers to the latter the role of a hardening variables. For simplicity, the following form is chosen for R(d r ):

R(d r ) = k(1 + ηd r ) r = 1 to N ( 26 
)
where k is a parameter which describes the damage threshold and η accounts for the hardening effect of damage. These two parameters can be identified from standard tensile tests. The damage evolution is obtained by assuming the normality rule:

ḋr = Λdr ∂f r (F dr , d r ) ∂F dr = Λdr ; Λdr ≥ 0 so ḋr =      0 if f r < 0 or f r = 0, ḟr < 0 Λdr if f r = 0 and ḟr = 0 (27) 
The damage multiplier Λdr is derived from the classical Kuhn-Tucker consistency condition: ḟr = 0. From a physical point of view, this implies that the representing point of loading is placed on the loading surface, so:

Λdr = 1 R ′ (d r ) (B r : Σ) + (28) 
with B r = ∂F dr /∂Σ. It should be stated that the adopted damage evolution law supposes implicitly that cracks are propagating in their own plane. The adopted framework (of thermodynamic irreversible processes) indicates also that the propagation speed ḋr of each variable is dependent of the macroscopic stress Σ only via the associated thermodynamic force. This framework is similar to the one adopted by [START_REF] Rice | Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity[END_REF] for the micro-macro transition, by using the parameters describing the microstructural arrangement of the material as internal variables.

Rate formulation of the stress-based model

For a damage activation state unchanged by the application of a stress increment, the tangent compliance tensor is determined by the use of the damage evolution law (relations [START_REF] Laws | A note on interaction energies associated with cracks in anisotropic solids[END_REF][START_REF] Laws | A note on penny-shaped cracks in transversely isotropic materials[END_REF]). The rate form of the damage model can be then deduced as:

Ė = S hom t : Σ (29) 
with

S hom t = S hom - N ∑ r=1 ϖ r 1 R ′ (d r ) G r B r ⊗ B r (30) 
and

G r =      0 if f r < 0 or f r = 0, ḟr < 0 1 if f r = 0 and ḟr = 0 (31) 
ϖ r denotes the associated weight of the r th integration point. Due to the symmetry of the second order tensor B r , the homogenized tangent compliance S hom t has the minor and major symmetries.

Numerical local integration of the constitutive damage law

Algorithmic aspects related with the numerical integration of the proposed model are presented in the following. The formulation is strain based. During a time step (t j , t j+1 ) an elastic trial state is computed:

f r (F dr j+1 , d j r ) ≤ 0 (32) 
then the trial state is the final state (i.e. the solution to the problem):

     E j+1 = E j + ∆E d j+1 r = d j r (r = 1 to N) (33) 
If the condition (32) is not satisfied, a linear correction should be imposed:

       ∆d r = 1 kη f r (F dr j+1 , d j r ) d j+1 r = d j r + ∆d r (34)

Application of the model to an unidirectional SiC-SiC composite

In this section, we apply the proposed model to study the response of a brittle matrix SiC-SiC ceramic composite subjected to uniaxial off-axis tensile loading in different directions φ with respect to the axis of symmetry of the material (see Figure 4). The experimental data were reported by [START_REF] Aubard | Modélisation et identification du comportement mécanique des matériaux composites 2D SiC-SiC[END_REF]. The elastic moduli of the orthotropic solid matrix, which are assumed to correspond to the initial elastic moduli of the composite are: E 1 = 320000 MPa, E 2 = 170000 MPa for the Young moduli, G 12 = 90000 MPa for the shear modulus and ν 12 = 0.18 for the Poisson ratio.

The model involves two material parameters k and η that appear in the expression of the damage criterion. The identification procedure consists in calibrating the model parameters k and η from the tensile test corresponding to φ = 0˚. The obtained numerical values are: k = 3.75J.m -2 and η = 140. No experimental data were available on the initial cracks density parameter. In all the simulations, we set this parameter value to 0.01. We also assumed that there are 60 distinct families of cracks randomly oriented in the solid matrix.

The validation of the model is done by simulating off-axis tests (corresponding to φ = 20 0 and φ = 45 0 ). Figure 5 shows the overall stress-strain response in tensile tests for φ = 0 0 , φ = 20 0 and φ = 45 0 . The agreement between the simulated response at φ = 0 0 confirms the relevance of the parameters calibration. The results predicted for the off-axis loading tests show also a good agreement with experimental data; this indicates the good predictive capabilities of the proposed micromechanical damage model. In particular, the relative positions of the three curves manifest the combined effect of the initial anisotropy and the evolving damage. 

Conclusions

In the present study we investigate and evaluate the effective properties of an orthotropic matrix weakened by arbitrarily oriented microcracks. The determination of the macroscopic elastic properties of this class of materials has been performed in the framework of Eshelby's equivalent inclusion problems. To this end, we have derived original closed-form expressions of the Eshelby tensor (or equivalently, of the Hill tensor). The macroscopic elastic properties (compliance), deduced from these results, shows a coupling between the initial orthotropy of the solid matrix and the cracks-induced anisotropy. As a consequence, the deviation from elastic orthotropy can be characterized. A new damage model for initially orthotropic materials is then proposed and implemented by adopting a Mori-Tanaka homogenization scheme and a damage criterion based on the derived energy release rate. The numerical predictions of the damage model are in good agreement with experimental data reported by [START_REF] Aubard | Modélisation et identification du comportement mécanique des matériaux composites 2D SiC-SiC[END_REF] on a ceramic matrix composite (SiC-SiC), particularly for off-axis loadings experiments.

For the computation of P (equations (7-9)), one needs to invert K(y). By denoting | K(y) | the determinant of K(y) and by K(y) it's adjoint, it follows that: K(y). K(y) =| K(y) | 1, and respectively:

K -1 (y) = K(y) | K(y) | (A.5)
For the second-order tensor ∆ = ξ ⊗ ξ which, as for K -1 , appears in the definition (9) of the tensor N, it can be shown that: ∆(ψ) = (sin ψ) 2 ∆(y) with ∆(y) = y 2 e 1 ⊗ e 1 + y(e 1 ⊗ e 2 + e 2 ⊗ e 1 ) + e 2 ⊗ e 2 . Note also that a 2 ξ 2 1 + b 2 ξ 2 2 = (sin ψ) 2 (a 2 y 2 +b 2 ). Using then equation (A.2) and the change of variable y = cot ψ, the expression (11) becomes:

M ijkl = ab π ∫ ∞ -∞ Kjk (y)∆ il (y)dy (a 2 y 2 + b 2 ) | K(y) | = 1 π ∫ ∞ -∞ X Kjk (y)∆ il (y)dy (y 2 + X 2 ) | Q | f (y) (A.6)
where X = b/a denotes the microcrack aspect ratio. In general, f (y) is a polynomial of degree 6:

f (y) = (y -y 1 )(y -ȳ1 )(y -y 2 )(y -ȳ2 )(y -y 3 )(y -ȳ3 ). (A.7)
where y p (p = 1, 2, 3) are the roots with positive imaginary part, while ȳp their complex conjugate, respectively. The M tensor depends only on the shape of the inclusion and on the material's stiffness. Note also that the representation (A.6) allows the evaluation of M ijkl by the residues theorem. The first order approximation of M at X = 0 (X being the microcrack aspect ratio) gives:

M ijkl = Kjk (0)∆ il (0) f (0)| Q | + 2iX | Q | 3 ∑ i=1 Kjk (y i )∆ il (y i ) f ′ (y i )y 2 i + iX f (0) | Q | • [ K′ jk (0)∆ il (0) + Kjk (0)∆ ′ il (0) -Kjk (0)∆ il (0) f ′ (0) f (0) ] (A.8)
where Kjk are the components of the adjoint of K. The quantity | Q |, the determinant of Q (see (A.4)) is expressed as:

| Q |= C s 1111 C s 1212 (cos 2 (θ) + α sin 2 (θ))(cos 2 (θ) + β sin 2 (θ)) (C s 3232 sin 2 (θ) + C s 3131 cos 2 (θ)) (A.9)
with α and β are given by [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. Thus,

α + β = C s 1111 C s 2222 -C s 1122 2 -2C s 1122 C s 1212 C s 1111 C s 1212 αβ = C s 2222 C s 1111 (A.10)
It can be shown that the imaginary part, ℑ(M), of M is null:

ℑ(M ijkl ) = 2X | Q | ℜ 3 ∑ i=1 Kjk (y i )∆ il (y i ) f ′ (y i )y 2 i + X f (0) | Q | • [ K′ jk (0)∆ il (0) + Kjk (0)∆ ′ il (0) -Kjk (0)∆ il (0) f ′ (0) f (0) ] = 0. (A.11)
Hence its real part, ℜ(M), is:

M ijkl = ℜ(M ijkl ) = Kjk (0)∆ il (0) f (0) | Q | - 2X | Q | ℑ 3 ∑ i=1 Kjk (y i )∆ il (y i ) f ′ (y i )y 2 i (A.12)
In summary, we have obtained the expression of M in the local frame of the crack. Its expression in the global frame is given by a simple change of frame.

B Expression of the components of Hill's tensor P

In the global frame, the components of Hill's tensor P are: 

P 1111 = (C 2222 u 2 + C 1212 v 2 )v 2 C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) + X C 1111 C 1212 (α -β) • { √ α(αu 2 -v 2 )(αC 1212 -C 2222 ) (αu 2 + v 2 ) 2 - √ β(βu 2 -v 2 )(βC 1212 -C 2222 ) (βu 2 + v 2 ) 2 } P 1122 = - (C 1122 + C 1212 )u 2 v 2 C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) + X(C 1122 + C 1212 ) C 1111 C 1212 (α -β) { √ α(αu 2 -v 2 ) (αu 2 + v 2 ) 2 - √ β(βu 2 -v 2 ) (βu 2 + v 2 ) 2 } P 2222 = (C 1111 v 2 + C 1212 u 2 )u 2 C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) + X C 1111 C 1212 (α -β) • { (αu 2 -v 2 )(αC 1111 -C 1212 ) √ α(αu 2 + v 2 ) 2 - (βu 2 -v 2 )(βC 1111 -C 1212 ) √ β(βu 2 + v 2 ) 2 } P 1112 = (C 2222 u 2 -C 1122 v 2 )

D Components of the H tensor

The components of the H tensor obtained by [START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF] in planar elasticity are as follows: 

H 1111 = πL A √ E s 1 [ (b 2 -a 2 )
H 1212 = πL 4A √ E s 1 E s 2 [ (a 2 -b 2 ) ( √ E s 2 - √ E s 1 ) cos 2 (θ) + a 2 √ E s 1 + abL √ E s 1 E s 2 + b 2 √ E s
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 1 with u = cos(θ) and v = sin(θ).C Components of the T tensorComponentwise T ijkl terms deduced in the section 4.1 are as follows (using the notation t = C s 1111 /(C s 111 C s 2222 -
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 21 in which A is the representative area of the considered cell. The constant L is related to the elastic moduli of the orthotropic 2D matrix by: are the roots of the characteristic equation of the bidimensional orthotropic medium.

  uv 2C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) + Xuv C 1111 C 1212 (α -β) • { √ α(αC 1122 + C 2222 ) (αu 2 + v 2 ) 2 -√ β(βC 1122 + C 2222 ) (βu 2 + v 2 ) 2 } P 2212 = (C 1111 v 2 -C 1122 u 2 )uv 2C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) -Xuv C 1111 C 1212 (α -β) • C 1111 v 4 + C 2222 u 4 -2C 1122 v 2 u 2 4C 1111 C 1212 (αu 2 + v 2 )(βu 2 + v 2 ) C 2323 u 2 -C 1313 v 2 ) (C 3232 u 2 + C 3131 v 2 ) 2 2323 u 2 -C 1313 v 2 (C 3232 u 2 + C 1313 v 2 ) 2 P 1323 = uv 4(C 2323 u 2 + C 3131 v 2 ) -X √ C 1313 C 2323 uv 2(C 2323 u 2 + C 1313 v 2 ) 2

		{ √	α(αC 1111 + C 1122 ) (αu 2 + v 2 ) 2	-	√	β(βC 1111 + C 1122 ) (βu 2 + v 2 ) 2
							+	X(C 1111 C 2222 -C 2 1122 ) 4C 1111 C 2 1212 (α -β)	•
		{ √ (αu 2 + v 2 ) 2 -α(αu 2 -v 2 )	(βu 2 + v 2 ) 2 √ β(βu 2 -v 2 )	}
	P 1313 = P 2323 =	v 2 4(C 2323 u 2 + C 1313 v 2 ) u 2 4(C 3232 u 2 + C 1313 v 2 )	+ -	X 4 X 4	√ √	C 2323 C 1313 C 1313 C 2323

} P 1212 = (C

  cos 2 (θ) + a 2 +

					L √ ab E s 1	]
	H 1122 = -	A	πab √ E s 1 E s 2
	H 1112 = H 2222 =	π(b 2 -a 2 )L 2A √ E s 1 πL A √ E s 2 [ (a 2 -b 2 ) cos 2 (θ) + b 2 + sin(θ) cos(θ)	L √ ab E s 2	]
	H 2212 =	π(b 2 -a 2 )L 2A √ 2 E s	sin(θ) cos(θ)

We recall that, in the present study, the analytical expressions of the components of P tensor were obtained in a tridimensional context.

These authors have not studied the case of arbitrarily oriented inclusions in an orthotropic solid matrix

A Proposed methodology for the determination of P tensor

The starting point here is the recent study of [START_REF] Suvorov | Rate form of the Eshelby and Hill tensors[END_REF] which follows the procedure described by [START_REF] Ting | Anisotropic elasticity: Theory and applications[END_REF] 3 . Let us consider the two global unit orthogonal vectors e 1 and e 2 in the plane ξ 3 = 0; any unit vector in this plane reads then ξ = cos ψe 1 + sin ψe 2 . It follows that the acoustic tensor K = ξ.C.ξ takes the form:

Substituting y = cot ψ in this expression yields:

The second order tensors Q, R, and T are defined, respectively as: