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Abstract

In this study, we propose a micromechanics-based modification of the Gurson cri-
terion for porous media subjected to arbitrary loadings. The proposed formulation,
derived in the framework of limit analysis, consists in the consideration of Eshelby-
like exterior point trial velocity fields for the determination of the macroscopic dis-
sipation. This approach is implemented for perfectly plastic rigid von Mises matrix
containing spherical voids. After the minimization procedure required by the use of
the Eshelby-like trial velocity fields, we derive a two-field estimate of the macro-
scopic yield function. It is shown that the obtained closed-form estimate provides a
significant modification of the Gurson criterion, particularly in the domain of low
stress triaxialities. This estimate is first compared with existing criteria. Moreover,
its accuracy is assessed through comparison with results derived from numerical
exact two-field criterion and with recently available numerical bounds.
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1 Introduction

During the four past decades, the field of ductile damage has been the sub-
ject of important researches in non linear solids mechanics. Among the first
to study the mechanical behavior of porous materials, McClintock [16] and
Rice and Tracey [27] derived, from a variational procedure, a cavity growth
law for spherical and cylindrical voids in a von Mises matrix. These pioneering
works were developed in the domain of dilute concentration of voids, which
justifies an uncoupling between the plastic behavior of the matrix and the
void growth. For finite porosities, Gurson [10] developed a limit analysis ap-
proach of a hollow sphere made up of a rigid ideal plastic von Mises material
and subjected to an arbitrary loading. In the case of homogeneous strain rate
boundary conditions, Gurson derived a macroscopic yield function by con-
sidering two velocity fields: the first one corresponds to a homogeneous strain
rate, while the second one takes into account the cavity expansion. For the lat-
ter, Gurson makes use of the exact solution of the hollow sphere subjected to
a hydrostatic external loading. Consequently, the obtained macroscopic yield
surface provides the exact solution in this particular loading case. Moreover,
it was shown (see for instance [13]) that the Gurson yield surface constitutes
an upper bound for porous media, at least for Hashin composite-sphere as-
semblage. Later, Tvergaard [31] observed that Gurson model is too stiff when
compared with finite element unit-cell computations. This observation moti-
vated the heuristic extension of the Gurson model which has been proposed
by Tvergaard and Needleman [32]. Such extension, known as the GTN model,
introduces three parameters, q1, q2 and q3, which have to be determined 1 .

Alternatively, making use of variational techniques in non linear homogeniza-
tion framework, Ponte-Castañeda [24] 2 obtained rigorous Hashin-Shtrikman
type upper bounds for a von Mises plastic materials containing spherical voids.
An important observation is that the Gurson model violates the non lin-
ear homogenization-based upper bound for low values of the stress triaxiality
T = Σm/Σeq. However, the Gurson model predicts values more realistic than
the Hashin-Shtrikman bound which yields unreasonably high values. Note that
Danas and Ponte-Castañeda [2] recently derived accurate yield surfaces for
porous materials by using a second order homogenization method. A notable
advantage of this second order approach is to exhibits an effect of the third
invariant for isotropic microstructures. Note also that this effect has also be
investigated in recent numerical studies by Thore et al. (2011). However, since
one major advantage of the limit analysis approach over the latter is that it

1 For completeness, mention must be made of [14] and of several extensions of the
Gurson model accounting for voids shape effects (see for instance [7], [8], [9], [6],
[22], [1], [19])
2 A similar derivation has been done by Suquet [29] for cylindrical voids.
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provides closed-form expression of the yield function, it would be interesting
to improve the predictions of the original Gurson model. A possible way to do
this consists to consider refined trial velocity fields still in the limit analysis
framework. For instance, this was done by [5,6] who considered the exact so-
lution of the elastic hollow sphere subjected to an arbitrary loading. However
this criterion still violates the Hashin-Shtrikman bounds.

The main objective of the present paper is to develop a limit analysis ap-
proach based on Eshelby-like velocity fields and to derive new expression of
the yield function in the case of spherical voids. The paper is organized as
follows. In section 2, we briefly recall the Gurson approach and state the trial
velocity fields used in order to improve it (see subsection 2.2). Then, we dis-
cuss the question of boundary conditions associated to the consideration of the
Eshelby-type velocity field and point out the requirement of a minimization
procedure to derive the macroscopic yield surface. Section 3 is devoted to the
determination of a closed-form expression of the macroscopic yield function.
To this end, some approximations are introduced (see subsection 3.1). The
minimization procedure is described in subsection 3.2. In order to underline
the improvement of the new obtained criterion, some comparisons with other
criteria (Gurson [10] and Hashin-Shtrikman [24]) are provided in section 4.

2 Limit analysis approach and Eshelby-based velocity field

2.1 Statement of the Gurson approach

Since substantial modifications of the Gurson limit analysis will be proposed,
we briefly recall here the main steps of the methodology which will be followed.
In the following we consider the spherical basis (er, eθ, eφ) and the associated
coordinates system (r, θ, φ), with θ ∈ [0, 2π] and φ ∈ [0, π]. Let us consider
a hollow sphere with an external radius b and a void of radius a. This hol-
low sphere is subjected at its outer boundary to a homogeneous strain rate
conditions:

v(r = b) = D.x (1)

The determination of an approximate macroscopic criterion, in the framework
of limit analysis requires the choice of the velocity field into the solid matrix. As
classically, and in agreement with [10], we adopt the velocity in the following
general form:

3



v = A.x+ vE (2)

in which the term A.x is associated to a uniform strain rate A and vE is
a heterogeneous field which corresponds to the expansion of the cavity. The
matrix incompressibility implies that tr(A) = 0 and div(vE) = 0. For vE,
the choice made by Gurson corresponds to the solution of the plastic hollow
sphere subjected to an hydrostatic loading; this field takes the form:

vE =
C

r2
er (3)

in which C is a constant. The consideration of the boundary conditions leads
to:

v = D̄.x+Dm
b3

r2
er (4)

where Dm = 1
3
tr(D) and D̄ represents the deviatoric part of D.

It is assumed that the matrix material obeys to a von Mises criterion, with σ0

the uniaxial tensile yield stress (material constant). Accordingly, the macro-
scopic plastic dissipation Π(D) is defined as:

Π(D) =
σ0

|Ω|

∫
Ω−ω

deqdV (5)

where deq is the equivalent strain rate, deq =
√

2
3
d̄ : d̄. Tensor d̄ is the devia-

toric part of the strain rate tensor d deduced from the velocity field (4). The
following inequality then holds for all macroscopic stresses, Σ and strain rate,
D (Hill-Mandel lemma):

Σ : D ≤ Π(D) (6)

As a consequence, the macroscopic yield locus of the plastic porous medium
is given by:

Σ =
∂Π

∂D
(7)

In the case of von Mises matrix, the computation performed by Gurson, using
(4), leads to:

Σ2
eq

σ2
0

+ 2f cosh
(
3

2

Σm

σ0

)
− 1− f 2 ≤ 0 (8)
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where Σeq is the macroscopic von Mises equivalent stress, Σeq =
√

3
2
Σ̄ : Σ̄,

Σm = 1
3
tr(Σ) and f is the material porosity.

As indicated before and proposed by [5], an improvement of the above yield
function can be expected by investigating other velocity fields than the one
used by Gurson.

2.2 Eshelby-based velocity field

Our proposal is to adopt, for vE, a field inspired from the solution of the Es-
helby inclusion problem [3], [4]. To this end, consider an infinite linear viscous
medium in which a finite subdomain ω has a spherical shape with radius a.
This subdomain is subjected to a uniform eigenstrain rate d∗. From Eshelby’s
well-known results, the strain rate field is homogeneous inside the inclusion,
while for an exterior point (outside the inclusion), it is heterogeneous. In the
particular case of a spherical inclusion, the exterior point solution reads [4]
(see also [21] or [12]):

vE =
a5

5r4

[
5d∗m1+ 2d̄∗

]
.er +

a3

r2

[
1− a2

r2

]
d∗rrer (9)

in which d∗m = 1
3
tr(d∗) and d̄∗ represents the deviatoric part of d∗.

In spherical coordinates, vE is expressed:

vEr =
a3

r2

[(
1− 3a2

5r2

)
d∗rr +

3a2

5r2
d∗m

]
; vEθ =

2a5

5r4
d∗rθ; vEφ =

2a5

5r4
d∗rφ (10)

where d∗rr, d
∗
rθ and d∗rφ are given by:

d∗rr = d∗ : (er ⊗ er) = d∗m + (1− 3 cos2(φ))d∗2 − sin2(φ) cos(2θ)d∗3

+ sin2(φ) sin(2θ)d∗4 + sin(2φ) cos(θ)d∗5 + sin(2φ) sin(θ)d∗6

d∗rφ = d̄∗ : (er ⊗ eφ) =
3

2
sin(2φ)d∗2 −

1

2
sin(2φ) cos(2θ)d∗3

+ 1
2
sin(2φ) sin(2θ)d∗4 + cos(2φ) cos(θ)d∗5 + cos(2φ) sin(θ)d∗6

d∗rθ = d̄∗ : (er ⊗ eθ) = sin(φ) sin(2θ)d∗3 + sin(φ) cos(2θ)d∗4

− cos(φ) sin(θ)d∗5 + cos(φ) cos(θ)d∗6

(11)
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with:

d∗2 =
1

3

[
d∗11 + d∗22

2
− d∗33

]
; d∗3 =

d∗22 − d∗11
2

d∗4 = d∗12; d∗5 = d∗13; d∗6 = d∗23

(12)

It must be emphasized that the Eshelby-based velocity field allows to recover
the one considered by Rice and Tracey [27] and by Gurson [10] as a particular
case associated to d̄∗ = 0 and d∗m = C/a2 in (9). This corresponds to the case
of an inclusion subjected to uniform dilatational eigenstrain rate. Note that
the deviatoric part of d∗ induces the inclusion shape change. Moreover, the
resulting field, (2), corresponding to the Eshelby-like velocity field introduces
11 unknown kinematic parameters (the components of d∗ and A). The strain
rate field d derived from the velocity field (2) with (9) reads:

d = A+ dE (13)

with dE = ∇sv
E, the symmetric part of the velocity gradient associated to

vE. The components of the dE are given by:

dErr = −2a3

r3
d∗rr +

4

5

a5

r5

[
2d∗rr − d∗θθ − d∗φφ

]

dEφφ =
a3

r3
d∗rr +

1

5

a5

r5

[
− 4d∗rr + d∗θθ + 3 ∗ d∗φφ

]

dEθθ =
a3

r3
d∗rr +

1

5

a5

r5

[
− 4d∗rr + d∗θθ + 3d∗φφ

]

dErφ =
a3

r3

[
1− 8

5

a2

r2

]
d∗rφ; dErθ =

a3

r3

[
1− 8

5

a2

r2

]
d∗rθ; dEφθ =

2

5

a5

r5
d∗θφ

(14)

and can be put on the form:

dE = D : d∗ (15)

where D is a fourth order tensor, which has the minor symmetries Dijkl =
Djikl = Dijlk but not the major symmetry Dijkl ̸= Dklij. Components of
tensor D are given by:
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Drrrr = −2Dθθrr = −2Dφφrr = −2
a3

r3

[
1− 4

5

a2

r2

]

Dθθθθ = Dφφφφ =
3

5

a5

r5
Drrθθ = Drrφφ = −4

5

a5

r5

Dθθφφ = Dφφθθ = Dθφθφ =
1

5

a5

r5
Drθrθ = Drφrφ =

1

2

a3

r3

[
1− 8

5

a2

r2

] (16)

Note that the components of the fourth order tensor D are such that Drrrr +
Dθθrr +Dφφrr = 0, which corresponds to the matrix incompressibility.

2.3 Analysis of the associated boundary conditions

The verification of homogeneous strain rate boundary conditions (1), for the
velocity field (2) with (9), implies:

Arr + f

[(
1− 3f2/3

5

)
d∗rr +

3f2/3

5
d∗m

]
= Drr

Arθ +
2f 5/3

5
d∗rθ = Drθ; Arφ +

2f 5/3

5
d∗rφ = Drφ

(17)

Introducing the deviatoric and mean part of A, d∗ and D into (17) (i.e.
A = Ā, d∗ = d∗m1+ d̄∗, D = Dm1+ D̄) gives:

fd∗m = Dm

Arr + f

(
1− 3f 2/3

5

)
d̄∗rr = D̄rr

Arθ +
2f 5/3

5
d̄∗rθ = D̄rθ; Arφ +

2f 5/3

5
d̄∗rφ = D̄rφ

(18)

Solution of (18) is:

d∗m =
Dm

f
; A = D̄; d̄∗ = 0 (19)

It appears that the considered class of Eshelby-based velocity fields ((2) with
(9)) complies with the homogeneous strain rate boundary conditions if and
only if d̄∗ = 0. This is equivalent to d∗rr = constant. The velocity field (2)
with (9) reduces then to (4) used by Gurson. It follows that all supplementary
velocity fields (associated to d̄∗ ̸= 0) cannot comply with the macroscopic
strain rate tensor D. In fact, the consideration of the Eshelby-based velocity
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field can be rigorously justified in the context of limit analysis only for ho-
mogeneous stress boundary conditions, σ.n = Σ.n. Then, and in agreement
with Hill-Mandel lemma, the macroscopic strain rate D is related to the local
strain rate, d, by the average rule:

D =
1

|Ω|

∫
Ω
ddV (20)

Note that, the use of the kinematic approach (developed in section 3) leads
to an upper bound of the macroscopic yield surface in the context of the
homogeneous stress boundary conditions.
Introducing now (13) with (15) into (20) leads to:

D =
1

|Ω|

∫
Ω
ddV = A+ f

[
d∗m +

2

5
d̄∗
]

(21)

which links the macroscopic strain rate D to A and d∗. Consideration of the
deviatoric and the mean part of D gives:


D̄ = A+

2f

5
d̄∗

Dm = fd∗m

(22)

In these relations, one can observe that the mean part of the tensor d∗ is known
and explicitly given in terms of the macroscopic strain rate,Dm. Moreover (22)
provides 6 scalar relations for the 11 unknown parameters (the components of
A and d∗). It still remains 5 parameters, namely the components of d̄∗, whose
determination will imply a minimization procedure.

3 The two-field estimate of the macroscopic yield criterion

3.1 The approximate macroscopic dissipation

This section is devoted to the determination of an approximate criterion
by considering the Eshelby-based trial velocity field. Although the general
methodology has been depicted in the section 2.1, it must be emphasized that
our approach presents some substantial differences with the Gurson one. In-
deed, as mentioned before, the macroscopic plastic dissipation will be obtained
after a minimization procedure on the remaining unknown parameters:
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Π(D) = min
d̄∗

[
Γ(D, d̄∗)

]
(23)

with:

Γ(D, d̄∗) =
σ0

|Ω|

∫
Ω−ω

deqdV (24)

in which

d2eq = A2
eq +

4

3
A : D : d∗ +

2

3
d∗ : DT : D : d∗ (25)

We now propose to derive an explicit expression of Γ(D, d̄) which requires the
integration of the equivalent strain rate deq as given by (25). Let us introduce
the first approximation used to perform the integration of the local dissipation:

A1 : The mean value of deq over the unit sphere, i.e. < deq >S(r), is replaced

by
√
< d2eq >S(r), such as:

< d2eq >S(r)= A2
eq +

4

3
A :< D >S(r): d

∗ +
2

3
d∗ :< DT : D >S(r): d

∗ (26)

Note that this approximation has been used by [10] and has the advantage to
preserve the upper bound character of the derived macroscopic yield function.
As the mean value of D over the unit sphere is zero, < D >S(r)= 0, the crossed
term is null. Concerning the term < DT : D >S(r), its computation gives:

< DT : D >S(r)=
{
2J+

6

25
G(u)K

}
u2 (27)

with J = 1
3
1 ⊗ 1, 1 being the second order unit tensor. Tensor K is defined

by K = I − J, with I the fourth order symmetric identity tensor. G(u) is a
function of variable u = a3/r3, defined by:

G(u) =
1

3

(
15− 40u2/3 + 28u4/3

)
(28)

To summarize, < d2eq >S(r) is expressed as:

< d2eq >S(r)= A2
eq +

[
4d∗m

2 +
6G(u)

25
d∗eq

2

]
u2 (29)
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With approximation A1, Γ(D, d̄) reads:

Γ(D, d̄) = σ0f
∫ u=1

u=f

√√√√A2
eq +

(
4d∗m

2 +
6G(u)

25
d∗eq

2

)
u2

du

u2
(30)

We aim now at deriving a closed-form expression of Γ(D, d̄). Due to the pres-
ence of G(u) in (30), a second approximation is needed, the objective being to
put Γ(D, d̄) in the form σ0f

∫ 1
f

√
A2 +B2u2 du

u2 (which can be easily computed)
where A and B are two constants. This second approximation is expressed as:

A2 : function G(u) is replaced by its mean value, denoted thereafter g(f),
over the interval [u1, u2] = [1, f ]

The computation of g(f) leads to:

g(f) =
1

1− f

∫ 1

f
G(u)du = 1− 4f

(1− f 2/3)2

1− f
(31)

from which:

Γ(D, d̄∗) = σ0f
∫ 1

f

{
A2

eq +B2u2
}1/2 du

u2

= σ0f

B arcsinh

{
uB

Aeq

}
−

√
A2

eq + u2B2

u

1
f

(32)

with

B2 = 4d∗m
2 +

6g(f)

25
d∗eq

2 =
4

f 2
D2

m +
6g(f)

25
d∗eq

2 (33)

Note that, in this form, Γ(D, d̄∗) is equivalent to the one obtained by Gurson
in the case d∗eq = 0 and Aeq = Deq.
It is important to emphasize that, since any inequality can be established, A2
introduces an ”uncontrolled” approximation in the computation of Γ(D, d̄∗).
Consequently, at the difference of Gurson result, the upper bound character
of the approximate criterion which will be established in the following is not
ensured. Note however that such upper bound can be numerically determined
starting from (34) in which Γ(D, d̄∗) is obtained from a numerical integration.
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3.2 Minimization procedure and determination of the macroscopic criterion

The main objective of the present section is to determine an expression of
the macroscopic yield function from the procedure depicted in section (3.1).
This requires first the determination of the unknown parameters d̄∗ from the
minimization of Γ(D, d̄∗). Once this minimization is performed, it still remains
to determine the macroscopic yield surface from (7). However, it was possible
to perform these two steps at the same time as 3 :

Σ =
∂Γ(D, d̄∗)

∂D
with:

∂Γ(D, d̄∗)

∂d̄∗ = 0 (34)

A complete resolution of this non linear system can be done by introducing
into (34) the following change of variables: Γ(D, d̄∗) = Γ(Aeq, B). In one hand,
the macroscopic stress tensor Σ is given by:

Σ =
∂Γ

∂Aeq

∂Aeq

∂D
+

∂Γ

∂B

∂B

∂D
(35)

In another hand, in (34), the second relation reads:

∂Γ

∂Aeq

∂Aeq

∂d̄∗ +
∂Γ

∂B

∂B

∂d̄∗ = 0 (36)

Derivatives of Aeq and B according to D and d̄∗ provide:

∂Aeq

∂D
=

2

3

A

Aeq

;
∂Aeq

∂d̄∗ = −f
4

15

A

Aeq

∂B

∂D
=

4Dm

3f 2B
1;

∂B

∂d̄∗ =
4g(f)

25B
d̄∗

(37)

Introducing expressions in (37) into (35) and (36) gives the following expres-
sions for the mean and equivalent macroscopic stress, as well as the minimum
condition:

3 Note that the computation of d̄∗ has been done and the result is reported in ap-
pendix A.
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Σm =
4

3

∂Γ

∂B

Dm

f2B

Σeq =
∂Γ

∂Aeq

∂Γ

∂Aeq

=
3g(f)

5f

d∗eq
B

∂Γ

∂B

(38)

The elimination of B between the first and the last equation in (38) leads to:

∂Γ

∂Aeq

= Σeq

∂Γ

∂B
= f

√
9

4
Σ2

m +
2

3g(f)
Σ2

eq

(39)

The computation of
∂Γ

∂Aeq

and
∂Γ

∂B
is performed by considering (32):

∂Γ

∂Aeq

= σ0

[√
1 + f2ξ2 − f

√
1 + ξ2

]
∂Γ

∂B
= σ0f

[
arcsinh(ξ)− arcsinh(fξ)

] (40)

with ξ = B/Aeq, B being given by (33).
The macroscopic criterion is obtained by replacing the derivatives of Γ in (40)
by (39) and eliminating ξ in (40):

F (Σ, f) =
Σ2

eq

σ2
0

+ 2f cosh


√√√√9

4

Σ2
m

σ2
0

+
2

3g(f)

Σ2
eq

σ2
0

− 1− f2 ≤ 0 (41)

which is the most important practical result of the present paper. In the case
of low values of the porosity, one can consider for simplicity that g(f) ≃ 1
which leads to:

F (Σ, f) ≃
Σ2

eq

σ2
0

+ 2f cosh


√√√√9

4

Σ2
m

σ2
0

+
2

3

Σ2
eq

σ2
0

− 1− f2 ≤ 0 (42)

Remark: it must be emphasized that the closed form expression of the macro-
scopic criterion depends on the different approximations considered for the
derivation of Γ(D, d̄). Indeed, consideration of alternative approximation in-
stead of A2 (see section 3.1) may lead to a criterion different of (41). This has
been done and reported in appendix B.
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4 Evaluation and validation of the established criterion

We aim now at comparing the new macroscopic yield function (41) with ex-
isting criteria. Moreover, the accuracy of this criterion will be evaluated by its
comparison with recent numerical bounds.

4.1 Comparison with existing criteria

The main difference of the new criterion (41) with (8) lies in the presence of
the term introduced by the equivalent stress and the porosity into the hy-
perbolic cosine. However, the new criterion still preserves, as Gurson’s one,
the exact solution of the hollow sphere subjected to an hydrostatic loading,
Σm = −2σ0

3
ln(f). This is a consequence of the fact that the velocity field

considered in the present study contains the one already used by Gurson.
Moreover, it is interesting to compare the obtained results to the one deduced
from non linear variational homogenization techniques proposed by Ponte Cas-
tañeda [24], [25] and Suquet [29]. Indeed, for a representative elementary vol-
ume of a porous medium with spherical voids, these authors established a
macroscopic elliptic criterion which reads [24]:

(
1 +

2f

3

)
Σ2

eq

σ2
0

+
9f

4

Σ2
m

σ2
0

− (1− f)2 ≤ 0 (43)

and constitutes an upper bound for the yield surface of the porous medium.
It is convenient to recall that the Gurson criterion violates this upper bound
for low values of the stress triaxiality T = Σm/Σeq. This has motivated modi-
fications such as the ones proposed by Tvergaard [31] or [17] and widely used
in literature for numerical applications. However, due to the heuristic nature
of these modifications, they are not considered in the following comparative
analysis.
The results are shown on figure 1 to 3 for three values of porosity, f = 0.01,
f = 0.1 and f = 0.2. On these figures are also reported data numerically
obtained by computing the exact value of Γ(D, d̄∗) given by (24) without
any approximation. For this ”exact” solution, the limit analysis of the hollow
sphere is performed by the consideration of the Eshelby type velocity field. So,
one has to compute Γ(D, d̄∗) by integrating the local dissipation (24) and to
minimize Γ(D, d̄∗) according to the unknown kinematical parameters, d̄∗. In
a second time, the macroscopic criterion is obtained from (7). These numerical
results validate the approximations made for the derivation of the closed-form
criterion (41).
We compare now the new criterion to the one obtained from variational ho-
mogenization techniques and to the Gurson one. Note first that for low values
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of porosity (see figure 1), the new criterion seems to coincide with the Gur-
son one. The comparison also shows that for higher porosities, the established
criterion provides a significant modification of the Gurson criterion for low
triaxialities. Moreover, it appears that the new criterion is close to the one
predicted by the variational technique for low stress triaxialities while it is
interestingly in agreement with the Gurson criterion at high triaxialities. The
predictions of the different criteria for pure deviatoric macroscopic stress states
(triaxiality equal to 0) are illustrated on figure (4) for various values of porosi-
ties.
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Fig. 1. Comparison between the new criterion (41), Gurson’s model (8), the Hash-
in-Shtrikman bound (43) and the numerical exact solution (obtained by using Es-
helby-type velocity fields). The porosity has been chosen equal to f = 0.01.
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helby-type velocity fields). The porosity has been chosen equal to f = 0.1.
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Fig. 3. Comparison between the new criterion (41), Gurson’s model (8), the Hash-
in-Shtrikman bound (43) and the numerical exact solution (obtained by using Es-
helby-type velocity fields). The porosity has been chosen equal to f = 0.2.
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For completeness, it must be emphasized that the very recent works by Danas
et al. [2], using a second order method, lead to significant improvements of the
predictions provided by non linear homogenization techniques. Note however
that the latter do not deliver a closed-form expression of the macroscopic yield
function.

4.2 Comparison to numerical limit analysis results

As mentioned in section 2.3, boundary conditions used for the derivation of
the closed form criterion can be interpreted as homogeneous stress boundary
conditions. The determination of the macroscopic criterion has been made by
using a kinematical approach and so leads to an upper bound of the macro-
scopic yield surface for these stress boundary conditions. However to obtain
the closed form expression (41), two approximations have been done. The first
one, A1, already used by Gurson, has the advantage to preserve the upper
bound character. But, the second approximation (A2) is ”uncontrolled”. In
order to assess the accuracy of this approximation, we now propose, in table
1, 2 and 3, some comparisons with numerical solutions recently reported by
Trillat and Pastor [30]. These comparisons are made for the following values
of the porosity: f = 0.01, f = 0.064 and f = 0.1. The numerical data given in
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table 1, corresponding to the porosity f = 0.1, are reported on figure 5.
In each table, are given the ratio between the macroscopic equivalent stress
and the yield shear stress, namely Σeq/τ0 (with σ0 = τ0

√
3) for a number of

fixed values of the ratio Σm/τ0. The last line in each table provides the numer-
ical value of the ratio Σmax

m /τ0 corresponding to Σm/τ0 associated to Σeq = 0
(purely hydrostatic macroscopic stress).
In the first column, are given the prediction of the new approximate criterion
(41) whose accuracy is first compared to the ”exact”numerical solution without
any approximation. These numerical data are reported in the second column
of each table. It can be first observed that, for the three porosities, and what-
ever the value of the stress triaxiality T = Σm/Σeq, the approximated criterion
(41) is close to the exact two-field criterion. Moreover, it appears that, despite
the approximations required for its derivation, (41) preserves (for the problem
with homogeneous stress boundary conditions) the upper bound character of
the approach.
To evaluate the accuracy of the above results, we now propose some compar-
isons with data provided by Trillat and Pastor [30] and numerically obtained
by means of Finite Element-based limit analysis of the hollow sphere com-
bined with convex optimization. In [30], the unit cell is subjected either to
a homogeneous strain rate conditions (v = D.x) or, as in the present study,
to homogeneous stress boundary conditions (σ.n = Σ.n). For each boundary
conditions, the problem is solved by means of a static approach (leading to a
lower bound for the macroscopic criterion) and a kinematical approach (giving
an upper bound). Tables 1, 2 and 3 give the numerical results corresponding
to homogeneous stress boundary conditions (BC) and strain rate boundary
conditions. It is generally observed that, comparatively to homogeneous stress
boundary conditions, the values obtained in the present study are larger than
the upper bound provided by the Finite Element bounds. This can also be
clearly observed on figure 5.
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Σm/σ0

Present approach Trillat and Pastor’s results Trillat and Pastor’s results:

stress BC strain rate BC

approx.
criterion

exact
2 fields
criterion

static kinematic static kinematic

0 1.7084 1.6937 1.7048 1.7 1.7086

1.6 1.6867 1.6817 1.6732 1.6835 1.6784 1.6894

3.2 1.5711 1.5631 1.5016 1.5511 1.5435 1.5805

4 1.4058 1.3893 1.2745 1.3713 1.3452 1.4271

4.4 1.2564 1.2290 1.0705 1.2214 1.1568 1.2888

4.8 1.0141 0.9674 0.7698 1.0009 0.845 1.067

5 0.8245 0.7636 0.5472 0.8467 0.5467 0.9013

5.1 0.6954 0.6150 0.2001 0.7509 0.3856 0.7966

5.2 0.5211 0.4358 − 0.6355 − 0.6698

5.3 0.2055 0.1649 − 0.4872 − 0.5084

Σmax
m /τ0 5.3176 5.3175 5.1791 5.4385 5.1746 5.4388

Table 1: numerical values of Σeq/τ0 versus Σm/τ0 corresponding to f = 0.01
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Σm/σ0

Present approach Trillat and Pastor’s results Trillat and Pastor’s results:

stress BC strain rate BC

approx.
criterion

exact
2 fields
criterion

static kinematic static kinematic

0 1.5776 1.5671 1.4421 1.4963 1.5848 1.5911

0.8 1.5454 1.5253 1.4276 1.4749 1.5589 1.5651

1.6 1.4298 1.4140 1.2836 1.3235 1.4417 1.4532

2 1.3200 1.3070 1.1661 1.1922 1.3241 1.3420

2.4 1.1483 1.1358 0.9642 1.0106 1.1330 1.1621

2.8 0.8570 0.8369 0.6791 0.7396 0.7942 0.8528

3 0.6063 0.5747 0.3968 0.5120 0.5057 0.5978

3.1 0.4029 0.3658 − 0.3613 0.2618 0.4077

Σmax
m /τ0 3.0701 3.0699 3.1085 3.1911 3.1086 3.1915

Table 2: numerical values of Σeq/τ0 versus Σm/τ0 corresponding to f = 0.064
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Σm/σ0

Present approach Trillat and Pastor’s results Trillat and Pastor’s results:

stress BC strain rate BC

approx.
criterion

exact
2 fields
criterion

static kinematic static kinematic

0 1.4882 1.4736 1.3913 1.4213 1.5020 1.5206

(1.3774) (1.4150) (1.4805) (1.5206)

0.8 1.4368 1.4113 1.3621 1.3853 1.4598 1.4774

(1.3430) (1.3849) (1.4624) (1.4774)

1.6 1.2473 1.2297 1.1557 1.1875 1.2699 1.2869

(1.1550) (1.1872) (1.2669) (1.2868)

2 1.0562 1.0451 0.9490 0.9913 1.0373 1.0820

(0.9436) (0.9912) (1.0373) (1.0820)

2.2 0.9136 0.9038 0.8039 0.8511 0.8729 0.9269

(0.7918) (0.8511) (0.8598) (0.9269)

2.4 0.7113 0.6994 0.5789 0.6608 0.6347 0.7108

(0.5973) (0.6608) (0.6315) (0.7106)

2.5 0.5674 0.5525 0.4504 0.5305 0.4300 0.5632

(0.4318) (0.5305) (0.4621) (0.5601)

Σmax
m /τ0 2.6587 2.6587 2.6239 2.6705 2.6316 2.6707

(2.6229) (2.6704) (2.5650) (2.6316)

Table 3: numerical values of Σeq/τ0 versus Σm/τ0 corresponding to f = 0.1.
The values within parenthesis correspond to the initial results in [30]

(Numerical results without parenthesis are recent results kindly
communicated by the J. Pastor).
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Fig. 5. Comparison between the new criterion (41), numerical results provided by
Trillat and Pastor [30], and exact solution, obtained numerically, of the problem
depicted in section 3.1 for the porosity f = 0.1.

For sake of completeness, it can be useful to compare in table 1 to 3 our results
to the ones given by the Finite Element bounds in the case of homogeneous
strain rate boundary conditions. Interestingly, it appears that our results com-
pare well to these numerical bounds.

5 Conclusion

A micromechanics-based modification of the classical Gurson criterion for
porous media has been derived. The approach has been developed for a hol-
low sphere in the framework of limit analysis. The originality of the present
study lies in the consideration of new trial velocity fields inspired from the Es-
helby exterior point solution to inclusions problem in which the eigenstrains
are unknown. Due to the presence of these unknowns, the new estimate of the
macroscopic yield criterion has been obtained by implementing a minimiza-
tion procedure. It has been shown that the derived criterion exhibits some
remarkable properties:

• the new criterion is of Gurson type (i.e. non elliptic), but has the significant
difference to contain the equivalent stress, Σeq, into the hyperbolic cosine
while preserving the accuracy of the Gurson model for high stress triaxi-
alities. In particular, as for the Gurson model, the new criterion allows to
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retrieve the exact solution for hydrostatic loadings.
• the most important modification of the Gurson criterion appears for low
stress triaxialities, where the derived yield surface is close to the Hashin-
Shtrikman bound established by Ponte-castañeda [24] in the framework of
the non-linear homogenization applied to a representative elementary vol-
ume of isotropic porous media.

In addition to these general remarks, the good accuracy of the various ap-
proximations used to obtain the closed-form expression of the yield function
is shown by means of comparison with the numerical exact two-field criterion.
Moreover, complete evaluation of the criterion is provided by comparisons with
recent numerical upper and lower bounds reported by [30]. Both homogeneous
strain rate boundary conditions and homogeneous stress boundary conditions
are considered in these numerical computations. It is observed that the ob-
tained estimate of the criterion provides yield surfaces close to the numerical
results with homogeneous strain boundary conditions. It must be recalled that
the Eshelby-based velocity fields do not comply with homogeneous strain rate
boundary conditions for the hollow sphere problem. Consequently, the ob-
tained result must be rigorously interpreted in terms of homogeneous stress
boundary conditions. A first step of generalization of the above results in order
to formulate a constitutive model of isotropic porous media has been proposed
in [15] in which the derived model (and its predictions) is compared to the
standard Gurson model and the GTN model.
Moreover, a generalization of the present work to anisotropic microstructures
has been already introduced in Monchiet et al. [18] by taking into account
voids shape effects. Investigation of ductile porous media made up of a von
Mises solid matrix and spheroidal (prolate or oblate) cavities is the subject of
a forthcoming paper [20].
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A Expression of d̄∗

From relations (36) with (37) and (38), one has:
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Σeq
A

Aeq

=
3g(f)

5

Σb

B
d̄∗ (A.1)

which can also be put on the form:

A

Aeq

=
d̄∗

d∗eq
(A.2)

where d∗eq is given by:

d∗eq
B

=
5B

3g(f)

Σeq

Σb

(A.3)

In the last relation B is also function of d∗eq (see equation (33)), the computa-
tion of d∗eq gives:

d∗eq =
20

9

Σeq

Σm

Dm (A.4)

Let us recall that D̄ = A+
2f

5
d̄∗, so from (A.2) it appears that the directions

of A, d̄∗ and D̄ are the same:

A

Aeq

=
d̄∗

d∗eq
=

D̄

Deq
(A.5)

Finally, d̄∗ can read:

d̄∗ =
20

9

Σeq

Deq

Dm

Σm

D̄ (A.6)

B Alternative expression of the macroscopic yield function

We aim at presenting here an alternative form of the macroscopic yield func-
tion of the porous medium. To this end, instead of approximation A2 (see
section 3.1), we use in (30) giving Γ(D, d̄) the following alternative one:

A2∗: function 6G(u)u2/25 is replaced by a constant denoted h(f).

Γ(D, d̄) is then approximated by:

25



Γ(D, d̄) = σ0f
∫ u=1

u=f

√
A2

eq + h(f)d∗eq
2 + 4d∗m

2u2
du

u2
(B.1)

The approximation consisting to replace 6G(u)u2/25 by its average value over
the interval [u1, u2] = [f, 1] appears to be poor here. A better approximation
has be found by introducing the change of variable w = f/u in (B.1) :

Γ(D, d̄) = σ0

∫ w=1

w=f

√
A2

eq +H(w)d∗eq
2 +

4D2
m

w2
dw (B.2)

with:

H(w) =
2

25

(
15− 40(f/w)2/3 + 28(f/w)4/3

)
(f/w)2 (B.3)

and by replacing H(w) by its average over the interval [w1, w2] = [f, 1]. This
leads to the following expression for h(f):

h(f) =
1

1− f

∫ 1

f
H(w)dw =

6fg(f)

25
(B.4)

where g(f) is defined by (31). Now, the integration of (B.2) yields:

Γ(D, d̄∗) = σ0

∫ 1

f

√
A2 +

4D2
m

w2
dw

= σ0

[
B arcsinh

(
2Dm

Aw

)
−
√
A2w2 +B2

]1
f

(B.5)

with:

A =
√
A2

eq + h(f)(d∗eq)
2 (B.6)

At this stage, it is interesting to notice that the macroscopic dissipation is
exactly the one derived by Gurson, Aeq being replaced here by A whose ex-
pression has to be established now.
As Γ(D, d̄∗) only depends on d̄∗ through the scalarA, the minimum of Γ(D, d̄∗)
according to d̄∗ is obtained for:

∂A

∂d̄∗ = 0 (B.7)

Since A = D̄ − 2f
5
d̄∗ (see equation (22)), it can be shown that the minimum

is attained for:
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d̄∗ =
2f
5

4f2

25
+ h(f)

D̄ (B.8)

which appears to be more simple than (A.6).
It follows that A is given by:

A2 =
h(f)

4f2

25
+ h(f)

D2
eq =

g(f)
2f
3
+ g(f)

D2
eq (B.9)

Putting (B.9) in (B.5) yields the macroscopic dissipation Π(D). Recalling that
the macroscopic dissipation is the one derived by Gurson with Aeq replaced
by A, the macroscopic criterion is obtained by a change of variable:

(
1 +

2

3

f

g(f)

)
Σ2

eq

σ2
0

+ 2f cosh
(
3

2

Σm

σ0

)
− 1− f2 ≤ 0 (B.10)

It is worth noticing that, for low porosities (f ≃ 0):

1 +
2

3

f

g(f)
≃ 1 +

2

3
f + o(f 2) (B.11)

which leads to the following approximate expression of the macroscopic yield
function for low values of porosities:

(
1 +

2

3
f
) Σ2

eq

σ2
0

+ 2f cosh
(
3

2

Σm

σ0

)
− 1− f 2 ≤ 0 (B.12)

Remarkably, this expression is exactly the one heuristically proposed by [14].
It must be emphasized that the alternative criterion (B.10), still preserve the
exact solution for purely hydrostatic loading, i.e Σm = −2σ0

3
ln(f). In the case

of purely deviatoric macroscopic stress states (Σm = 0), we represent on figure
B.1 the value of the equivalent stress as function of the porosity for the two
approximate criterion (41) and (B.10) and the numerical two-field criterion.
It can be observed that the predictions of the two approximate criteria (41)
and (B.10) are equivalent.
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Fig. B.1. Comparison between the approximate criteria (41), (B.10) and numerical
data for the exact two field criterion. Value of the equivalent stress as function of
the porosity.

Also for comparison purpose, the predictions of the alternative criterion, (B.10),
and the previously proposed one, (42), are plotted on figure B.2 for a porosity
f = 0.1. On this figure are also reported the data numerically obtained for
the exact two-field solution. Despite the high proximity of the results, it can
be observed that the first approximate form (42) is slightly more close to the
numerical points than the second form (B.2). expression (42) of the criterion
is then preferred.
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Fig. B.2. Comparison between the approximate criteria (41), (B.10) and numerical
data for the exact two field criterion. The porosity has been chosen equal to f = 0.1.
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