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Abstract

In this paper we establish the exact solution for a hollow sphere with a rigid-plastic
pressure-sensitive matrix and subjected to hydrostatic traction or compression. The
matrix is assumed to obey to a parabolic Mises-Schleicher criterion. The closed-
form expressions of the velocity field and of the stress field are provided. These
exact solutions, expressed by means of the Lambert W function, allow to assess and
discuss existing results.
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1 Introduction

The study by Gurson [7] is known to provide an upper bound for the macro-
scopic yield function of porous plastic materials having von Mises matrix. The
approach is based on limit analysis of a hollow sphere made up of a rigid ideal
plastic von Mises material and subjected to an arbitrary loading in the con-
text of homogeneous strain rate boundary conditions. The macroscopic yield
function has been derived by considering two velocity fields: the first one cor-
responds to a homogeneous strain rate field, while the second one, which is
heterogeneous, accounts for the cavity expansion. For the latter, use has been
made of the exact solution of the hollow sphere subjected to a hydrostatic
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external loading. As a consequence, the obtained macroscopic yield function
provides the exact solution for this particular loading case. Improvements of
the Gurson criterion have been recently proposed by Monchiet al. [12], [13] by
making use of Eshelby-like trial velocity field.
Despite its great interest, the Gurson criterion appears to be inappropriate
for a large class of ductile porous materials (for instance some polymers or
some geomaterials) having a pressure-dependent matrix. To circumvent this
limitation, several studies have been further proposed in order to extend the
Gurson approach to porous materials with a Drucker-Prager type plastic ma-
trix [6] (see also [8,9]). Still, these authors used a two-field trial velocity which
contains the exact solution for the Drucker-Prager hollow sphere subjected
to a purely hydrostatic loading (see [19,14]). It must be emphasized that the
macroscopic yield function derived by [6] allows to recover the Gurson crite-
rion in the limit case of von Mises matrix.
Unfortunately, the above extensions of the Gurson model do not apply to
porous media with a pressure-dependent matrix obeying to a parabolic type
criterion (instead of the Drucker-Prager linear one), the so-called Mises-Schleicher
criterion [11] 1 (see also [15,16]) which exhibits also an asymmetry between
tension and compression 2 . It must be mentioned that this type of matrix has
been considered by Lee and Oung [10] (see also [5]) to model the ductile failure
behavior of glassy polymers. To this end, these authors used a trial velocity
field inspired from the one already considered by Gurson and accounting for
the matrix pressure sensitivity. A crucial observation, emphasized by the au-
thors themselves, is that their macroscopic yield function does not recover the
Gurson criterion in the limit of the von-Mises matrix. In particular, the exact
solution established by [7] for a hydrostatic loading is not retrieved. Based
on these observations, the authors proposed a heuristical modification of the
original criterion which allows to retrieve the Gurson exact solution. In the
case of the pressure-dependent matrix, this modification still misses the exact
solution for a hydrostatic external loading.
In the present study, we derive the exact stress and velocity fields for the hollow
sphere (with a matrix which obeys to a Mises-Schleicher criterion) subjected
to an external hydrostatic traction or compression. The closed-form expres-
sions of the velocity field is shown to be expressed in term of the Lambert W
function (see for instance [3]). These new results allows to assess the relevance
of the Lee and Oung (2000)’s criterion. Their use to derive an upper bound of
the macroscopic yield function for arbitrary loadings is addressed.

1 The original publication of this criterion can be found in [17]
2 Note that recent investigations on ductile porous metallic materials with matrix
having asymmetry between tension and compression has been carried out by [2].
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2 Statement of the problem

2.1 The local constitutive behavior

We consider a homogeneous plastic material obeying to the following pressure
sensitive criterion:

f(σ) = σ2
eq + 3ασ0σm − σ2

0 = 0 (1)

known as the Mises-Schleicher criterion [17] (see also [11] (page 28) [15,16])
in which α and σ0 are related to the tensile yield stress, T , and absolute yield
stress in compression, C, by:

σ0 =
√
CT, α =

C − T√
CT

(2)

Note that the Mises-Schleicher criterion predicts asymmetry between tension
and compression.
In (1), σeq and σm denote the equivalent von-Mises stress and the mean stress
respectively. σ0 and α are two material parameters with the assumption that
α ≥ 0 which physically means that the yield stress in traction is lower than
in compression. The strain rate is derived from the normality flow rule:

d = λ̇
∂f

∂σ
(σ) = λ̇

(
3σ + ασ0I

)
(3)

where σ is the deviatoric part of the local stress, σ = σ − σmI and I is the
second order identity tensor. In (3), λ̇ is the plastic multiplier. The compu-
tation of the von-Mises equivalent strain rate, deq, and the mean part of the
local strain rate, dm, leads to:

deq = 2λ̇σeq, dm = λ̇ασ0 (4)

The plastic multiplier being positive, the means strain rate is then positive,
dm ≥ 0.
The local dissipation reads:

π(d) = σ : d = σeqdeq + 3σmdm = (2σ2
eq + 3ασ0σm)λ̇ = λ̇(σ2

0 + σ2
eq) (5)

Eliminating λ̇ between the two equations in (4), one has:
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σeq =
ασ0

2

deq
dm

(6)

Replacing now the equivalent stress in (5) by its expression (6) and the plastic
multiplier by λ̇ = dm/(ασ0) (see equation (4)) one obtains:

π(d) =
σ0dm
α

+
ασ0

4

d2eq
dm

(7)

2.2 Application of the Gurson limit analysis approach

Let us now consider a hollow sphere, with the internal and external radii a
and b respectively, subjected at its outer boundary to homogeneous strain rate
conditions:

v(r = b) = D.x (8)

For this homogeneous strain rate boundary conditions, the following inequality
holds for all macroscopic stress Σ and macroscopic strain rate D [18], [4]:

Σ : D ≤ Π(D) = inf
v K.A

[
1

|Ω|

∫
Ω−ω

π(d)dV

]
(9)

Π(D) represents the macroscopic dissipation, Ω denotes the volume of the unit
cell, |Ω| = 4πb3/3, whereas ω denotes the volume of the void, |ω| = 4πa3/3.
In (9), the local dissipation π(d) is given by (7). The infimum is taken over
all kinematically admissible (K.A) velocity fields, v, complying then with (8).
As classically, the limit stress states at the macroscopic scale are shown to be
of the form:

Σ =
∂Π

∂D
(10)

2.3 Lee and Oung’s macroscopic yield surface [10]

An upper bound for the macroscopic yield function has been derived by Lee
and Oung [10]. These authors considered a trial velocity field inspired of the
one used by Gurson [7] in the case of a von-Mises matrix:
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v = (D + a0I).x+ (Dm − a0)
b3

r2
er (11)

This field is compatible with boundary conditions (8) and coincide with Gur-
son’s trial velocity field when a0 = 0. The constant a0 is introduced in order
to takes into account the compressibility of the matrix. Due to the presence
of this constant, it must be emphasized that the velocity field given by (11)
is not entirely determined by the boundary conditions. Its determination has
required the minimization of the macroscopic dissipation (9) according to a0
which is then given by (see [10]):

a0 =
α

2

(
4D2

m + f 2D2
eq

f + α2

)1/2

(12)

The macroscopic yield function, derived from (10) reads:

Σ2
eq +

9f

4
Σ2

m + 3(1− f)ασ0Σm − (1− f)2σ2
0 = 0 (13)

Note that the above criterion constitutes an upper bound of the exact yield
surface. However, the most important criticism which can be formulated about
(13) is that it does not allow to recover the Gurson criterion [7] when the limit
α → 0 is taken 3 . Moreover, under purely hydrostatic loadings (traction or
compression) and for α = 0, it provides:

|Σm| =
2

3
σ0

1− f

f
(15)

Which differs from the well-known exact solution:

|Σm| = −2

3
σ0 ln(f) (16)

Since the trial velocity field (11) contains the exact solution for purely hydro-
static loading and α = 0 (then a0 = 0), this observation is questionable. The
explanation may be found in the fact that, although the velocity field (11)
coincides with the one used by Gurson for α = 0, it may not be valid for the

3 To correct this shortcoming of the upper bound (13), Lee and Oung [10] has
proposed a heuristical modification of their result in the form:

Σ2
eq + 2fσ2

0 cosh

(
3Σm

2σ0

)
+ 3(1− f)ασ0Σm − (1− f)2σ2

0 = 0 (14)
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dissipation (7). Indeed, when the hollow sphere is subjected to an hydrostatic
traction or compression (D = 0 and D = DmI), the exact expression of the
local dissipation is:

π(d) = 2σ0|Dm|
b3

r3
(17)

whereas with the trial velocity field (11), π(d) takes the following form when
α → 0:

π(d) = σ0
|Dm|√

f

(
1 + f

b6

r6

)
(18)

3 Derivation of the local stress fields and the yield strength

3.1 The local stress field

Let us first introduce the spherical basis (er, eθ, eφ) and the associated co-
ordinates system (r, θ, φ), with θ ∈ [0, 2π] and φ ∈ [0, π]. The macroscopic
loading is assumed to be isotropic (the hollow sphere is subjected at its ex-
ternal boundary to hydrostatic traction or compression). Since the problem is
invariant by any rotation with an angle φ or θ, the stress tensor has the form:

σij =


σrr 0 0

0 σθθ 0

0 0 σφφ


(er,eθ,eφ)

(19)

where σrr and σθθ = σφφ are both functions of the coordinate r. The equivalent
stress as well as the mean stress, computed from (19), read then:

σeq = ϵ(σθθ − σrr), σm =
1

3
(σrr + 2σθθ) (20)

in which ϵ = sign(σθθ − σrr). Let us introduce the positive function of the
radial coordinate, G(r), such that

σeq = σ0G(r) (21)
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Due to the condition f(σ) = 0, the mean stress reads, for α ̸= 0:

σm =
σ0

3α
(1−G2(r)) (22)

The components of the stress tensor are:

σrr = σm − 2ϵ

3
σeq =

σ0

3α

[
1−G2(r)

]
− 2ϵ

3
σ0G(r)

σθθ = σm +
ϵ

3
σeq =

σ0

3α

[
1−G2(r)

]
+

ϵ

3
σ0G(r)

(23)

As classically, the local equilibrium is expressed as:

dσrr

dr
+

2

r
(σrr − σθθ) = 0 (24)

Introducing (23) into (24) leads to the following non linear differential equation
for G(r):

G(r)G′(r) + ϵαG′(r) +
3ϵα

r
G(r) = 0 (25)

The integration of the above equation allows to obtain the solution in the
following implicit form:

ln(G(r)) +
G(r)

ϵα
+ ln(r3) = K (26)

Where K is a constant. The above solution can be put into the equivalent
form:

G(r)

ϵα
exp

(
G(r)

ϵα

)
= p

a3

r3
(27)

where the notation p = exp(K)/(ϵαa3) has been adopted. The explicit solution
reads then:

G(r) = ϵαW

(
p
a3

r3

)
(28)

where W denotes the ”Lambert W” function which is defined to be the inverse
of the function x 7→ x exp(x). Function W is not injective and is double-valued
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on the interval [−1/e, 0]. Indeed, if x > 0 the equation x exp(x) = y has only
one solution for x but has two solutions when −1/e ≤ x > 0 (see figure 1). For
this reason, two branches of function W are distinguished. The upper branch,
corresponding to W (x) ≥ −1, is denoted W−1(x) whereas W0(x) denotes the
lower branch, corresponding to W (x) ≤ −1. On figure 1 are represented the
two branches of the Lambert W function.
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0 1 2
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x
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y=x exp(x)

y=W-1(x)

y=W0(x)

(lower branch)

(upper branch)

Fig. 1. At the left: function y = x exp(x). At the right: the two branches of the W
Lambert function, y = W0(x) and y = W−1(x).

Function G must be positive since G(r) = σeq/σ0. However W (x) has the sign
of x; it follows that, in (28), ϵ = sign(p). Finally, reporting (28) into (23) gives:

σrr =
σ0

3α

[
1− 2α2W

(
p
a3

r3

)
− α2W 2

(
p
a3

r3

)]

σθθ =
σ0

3α

[
1 + α2W

(
p
a3

r3

)
− α2W 2

(
p
a3

r3

)] (29)

Coefficient p is determined with condition σrr(r = a) = 0 (traction free con-
dition on the void boundary). This identification leads to :



p = p+ = z+ exp(z+), z+ =
−α+

√
α2 + 1

α

or

p = p− = z− exp(z−), z− =
−α−

√
α2 + 1

α

(30)

The variations of p+ and p− according to α are represented on figure 2. It can
be observed that coefficient p+ is positive and tends to zero when α → +∞
whereas p− is negative and tends to the finite value z− = −2 exp(−2) when
α → +∞.
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Fig. 2. Representation of the coefficients p+ and p− as function α

3.2 The yield strength

Under uniform strain rate boundary conditions, the macroscopic stress is de-
fined as the average of the local stress field:

Σ =< σ >Ω (31)

Here, the macroscopic strain rate is assumed to be isotropic, D = DmI.
Therefore, the macroscopic stress is isotropic and takes the form Σ = ΣmI
with:

Σm =< σm >Ω=
b

3|Ω|

∫
∂Ω

σrr(r = b)dS (32)

for which use has been done of the divergence theorem. Since σrr is only
function of the radial coordinate, r, one has:

Σm = σrr(r = b) (33)

(28) together with (30) lead to four expressions for each component of the
stress field, depending on whether one considers the upper or lower branch
of the Lambert W function but also whether one considers expressions p+
or p− for coefficient p. Note that W−1(x) takes complex values for x < 0
and consequently the solution W−1(p−a

3/r3) must be discarded. The solution
which uses the branch W0 with coefficient p− can be also discarded since it
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leads to the solution Σm = 0 when α = 0. The solution for traction is given
by (29) in which the upper branch W0 together with p+ are used:

Σm =
σ0

3α

[
1− α2W 2

0 (fp+)− 2α2W0(fp+)
]

(34)

where f = a3/b3 is the porosity.

Remark 1: The Taylor expansion of W0(fp+) at α = 0 gives: W0(fp+) =
1
α
+ ln(f) − 1 + o(α). It can then be shown that the expression of Σm, given

by (34), takes the finite limit Σm = −2σ0

3
ln(f) when α → 0 which coincides

with the result of Gurson (equation (16)).

The solution for compression use the lower branch W−1 together with p−:

Σm =
σ0

3α

[
1− α2W 2

−1(p−f)− 2α2W−1(p−f)
]

(35)

Remark 2: The Taylor expansion of W−1(fp−) at α = 0 is: W−1(fp−) =
− 1

α
+ ln(f)− 1+ o(α). It can then be shown that the expression of Σm, given

by (35), has a finite limit when α → 0. This limit is Σm = 2σ0

3
ln(f) which

coincides also with the result of Gurson (equation (16)).

Note that in [10] the authors derived the macroscopic flow stress for purely
hydrostatic loading by a direct method, i.e not requiring the determination
of the local stress field. This solution can be recovered from (34) and (35) by
reexpressing W (fp) as function of Σm and taking thereafter the exponential.
Doing that, the two solutions (34) and (35) can be reexpressed in the following
implicit form:

• if Σm ≥ 0

ln

−α+
√
1 + α2 − 3αΣm/σ0

−α+
√
1 + α2

+ 1

α

√
1 + α2 − 3αΣm/σ0

− 1

α

√
1 + α2 = ln(f)

(36)

• if Σm < 0

ln

α+
√
1 + α2 − 3αΣm/σ0

α+
√
1 + α2

− 1

α

√
1 + α2 − 3αΣm/σ0

+
1

α

√
1 + α2 = ln(f)

(37)

On figure 3 is represented the yield stress Σm/σ0 as function of the parameter
α for a porosity f = 0.1. The upper bound (13) and the modified criterion (14)

10



both proposed by Lee and Oung [10] are compared to the exact solution (34)
for a macroscopic hydrostatic tension. It is observed that the upper bound
(13) differs from the exact solution (34) when low values of the coefficient α
are considered. However for larger values of α the upper bound (13) coincide
with (34). The case of a hydrostatic compression is illustrated on figure 4 in
which the upper bound (13) and the modified criterion (14) are compared
to the exact solution (35). It appears that the upper bound differs from the
exact solution, whatever the value of α. The modified criterion (14) allows to
retrieve the exact solution provided by Gurson criterion (α = 0). However, for
strictly positive values of α, the approximate solution gives an estimation of
the yield stress which is different from the exact solution.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

Σ
m

/σ
0

 

 

exact solution

upper bound (Lee & Oung, 2000)

approximate solution (Lee & Oung, 2000)

Fig. 3. Normalized yield stress Σm/σ0 as function of α for a porosity f = 0.1. Case
of purely hydrostatic traction.

11



0 0.2 0.4 0.6 0.8 1
−14

−12

−10

−8

−6

−4

−2

0

α

Σ
m

/σ
0

 

 

exact solution

upper bound (Lee & Oung, 2000)

approximate solution (Lee & Oung, 2000)

Fig. 4. Normalized yield stress Σm/σ0 as function of α for a porosity f = 0.1. Case
of purely hydrostatic compression.

4 Derivation of the velocity field

We now propose to derive the expression of the velocity field, solution of the
rigid-plastic hollow sphere obeying to the Mises-Schleicher criterion. When the
sphere is subjected to a hydrostatic loading, the velocity field is in the form:

v = F (r)er (38)

and the local strain rate field reads:

dij =


drr 0 0

0 dθθ 0

0 0 dφφ


(er,eθ,eφ)

(39)

with:

drr = F ′(r), dθθ = dφφ =
1

r
F (r) (40)

From relation (3), one has ϵ = sign(σθθ − σrr) = sign(dθθ − drr). Consequently
the equivalent and mean strain rate read:
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deq =
2

3
|dθθ − drr| =

2ϵ

3

(
1

r
F (r)− F ′(r)

)
dm =

1

3
(drr + 2dθθ) =

1

3

(
F ′(r) +

2

r
F (r)

) (41)

Recalling that σeq = σ0G(r) (see (21)) where the expression of G(r) is given
in (28), and taking into account relation (6) with (41), it comes:

W

(
p
a3

r3

)
=

F (r)− rF ′(r)

2F (r) + rF ′(r)
(42)

Introducing in the above equation F (r) = exp(X(u)), with the change of
variable u = a3/r3, one obtains:

X ′(u) =
W (pu)

u(1 +W (pu))
− 1

3u
(43)

Due to the property:

dW (x)

dx
=

W (x)

x(1 +W (x))
(44)

the integration of X(u) from (43) gives:

X(u) =
1

3
W (pu)− 1

3
ln(u) +K ′ (45)

It follows that:

F (r) =
C

r2W (pa3/r3)
(46)

Where C = a2 exp(K ′) is a constant which has to be determined from bound-
ary conditions.
The hollow sphere being subjected to the uniform strain boundary conditions
v(r = b) = D.x with D = DmI, F (r) must satisfy F (r = b) = bDm. It comes,
for the coefficient C:

C = b3DmW (pf) (47)

for which it is recalled that the porosity reads f = a3/b3. The velocity field is
then given by:
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vr = Dm
b3

r2
W (pf)

W (pa3/r3)
(48)

In the case of a hydrostatic tension, the above solution is used with the upper
branch W0 and coefficient p+:

vr = Dm
b3

r2
W0(p+f)

W0(p+a3/r3)
(49)

whereas in the case of compression:

vr = Dm
b3

r2
W−1(p−f)

W−1(p−a3/r3)
(50)

Figures 5 and 6 show the variations of vr/(bDm) with r/a for traction and
compression, respectively. The porosity value is f = 0.01 and different values
of α are considered. On figures 5 and 6 are also reported the variations of the
trial velocity field (in fact the unique radial component) used by Lee and Oung
given by (11) together with (12) in which has been put D = 0. As already
mentioned, this velocity field coincides with the exact solution for α = 0. For
completeness we propose to compare the values of deq and dm, which enters
into the definition of the local dissipation, for low values of the coefficient α.
The Taylor expansions of deq and dm at α = 0 reads, for the exact solution:

deq = 2|Dm|
b3

r3
+ o(α); dm = |Dm|

b3

r3
α+ o(α3) (51)

whereas, from the trial velocity field (11), we get:

deq = 2|Dm|
b3

r3
+ o(α); dm =

|Dm|√
f
α+ o(α3) (52)

It is observed that the terms of order 0 in the series of deq and dm are the
same for the exact and approximate solutions. However, the terms of order 1
in the series of dm differs.
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Fig. 5. Normalized radial component of the velocity field, vr/(bDm) as function of
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Fig. 6. Normalized radial component of the velocity field, vr/(bDm) as function of
r/a for f = 0.01 and various values of coefficient α in the case of compression.

We aim now at comparing the exact and approximate expressions of the local
dissipation. The sphere being still submitted to an external hydrostatic strain
rate, the exact expression of the local dissipation is then obtained by replacing
in (7) the expressions of deq and dm obtained with (38) with (48). The resulting
expression reads:
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π(d) = σ0|Dm|
b3

r3
W (pf)[1 + α2W (pa3/r3)]

αW (pr3/a3)[1 +W (pr3/a3)]
(53)

whereas the approximate expression of the local dissipation, obtained by Lee
and Oung [10], is:

π(d) = σ0|Dm|
r6/b6 + f + 2α2 − 2α

√
f + α2

r6/b6
√
f + α2

(54)

On figure 7 are compared the two expressions (53) and (54) of the local dis-
sipation for α = 0 and a porosity f = 0.01. It is observed that, although the
approximate velocity field coincides with the exact solution for α = 0 (see
figure 5), the local dissipation significantly differs. This is due to the fact that
in the two solutions (see (51) and (52)) the ratio dm/α which directly enters
in the expression of the local dissipation does not deliver the same limit when
α → 0.
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Fig. 7. Normalized dissipation, π(d)/(σ0Dm) as function of r/a for f = 0.01 and
α = 0 in the case of a hydrostatic traction.

Figure 8 corresponds to the comparison for α = 0.2.
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Fig. 8. Normalized dissipation, π(d)/(σ0Dm) as function of r/a for f = 0.01 and
α = 0.2 in the case of a hydrostatic traction.

5 Conclusion

In this paper we derive the exact solution for a pressure-sensitive plastic hol-
low sphere subjected to a purely hydrostatic traction and compression. The
hollow sphere is made up of a rigid-plastic material which obeys to the Mises-
Schleicher criterion [17]. The closed-form expressions for the velocity and strain
field, as well as for the stress field are shown to be expressed in term of the
Lambert W function. These exact solutions are then used to assess the ac-
curacy of approximate expressions in tension and compression established by
[10]. The exact velocity field found in the present study can be used to con-
struct a trial velocity field for the limit analysis of the plastic hollow sphere
under arbitrary loadings.

References

[1] J.-F. Barthélémy, L. Dormieux.
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