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Random uncertainties modeling in dynamical systems

C. Soize

Laboratory of Engineering Mechanics, University of Marne-la-Vallée, France, e-mail: soize@univ-mlv.fr

ABSTRACT: In the introduction of this paper, we summarize the usual parametric probabilistic models for
random uncertainties modeling in dynamic systems and we introduce a new nonparametric probabilistic ap-
proach. In a first part, a random matrix theory, recently developed by the author, is introduced allowing the
nonparametric probabilistic approach to be constructed. This theory is compared with the usual GOE from
the random matrix theory. In a second part of the paper, we present applications of this new theory for linear
structural vibrations with dynamical substructuring techniques and for nonlinear transient elastodynamics.

1 INTRODUCTION

This paper deals with random uncertainties model-
ing for linear and nonlinear dynamic systems, using
a new probabilistic approach, recently proposed by
the author, called “nonparametric model of random
uncertainties”.

Usual parametric probabilistic model of random un-
certainties in dynamic systems

In dynamic systems, random uncertainties are usu-
ally modeled using parametric models. The uncertain
parameters of the boundary value problem can be ge-
ometric parameters, boundary conditions, mass den-
sity, mechanical parameters of constitutive equations,
structural complexity, interface and junction model-
ing, etc, and are modeled by real- and vector-valued
random variables, stochastic processes and stochastic
fields. Concerning details related to such a parametric
approach,

(1) for general developments and applications, we
refer the reader to Collins & Thomson (1969), Shi-
nozuka&Astill (1972), Soong (1973), Chen& Soroka
(1973), Prasthofer & Beadle (1975), Haug, Choi &

Komkov (1986), Ibrahim (1987), Kotulski& Sobczyk
(1987), Shinozuka (1987), Jensen & Iwan (1992),
Iwan & Jensen (1993), Lee & Singh (1994), Spanos
& Zeldin (1994), Papadimitriou, Katafygiotis et al
(1995), Lin & Cai (1995), Micaletti et al (1998);

(2) for aspects related to stochastic finite elements, we
refer the reader to Vanmarcke & Grigoriu (1983), Liu
et al (1986), Shinozuka & Deodatis (1988), Spanos &

Ghanem (1989), Ghanem and Spanos (1991), Kleiber
et al (1992), Ditlevsen & Tarp-Johansen (1998);

(3) for other aspects related to parametric models
in the context of stochastic dynamics and paramet-
ric stochastic excitations, we refer the reader to Lin
(1967), Kree & Soize (1986), Bergman & Spencer
(1987), Roberts & Spanos (1990), Sobczyk (1991),
Soong & Grigoriu (1993), Soize (1994), Lin & Cai
(1995), Sarkani & Lutes (1996), Schueller (1997).

A new nonparametric probabilistic model of random
uncertainties in dynamic systems

In this paper, we present an overview of a set of
results recently obtained by the author, concerning
a new nonparametric probabilistic model of random
uncertainties in linear and nonlinear structural dy-
namics. In addition, we explain the differences be-
tween this probability model and probability mod-
els derived from the use of the Gaussian orthogo-
nal ensemble (GOE). The fundamentals of this non-
parametric approach and the first development to fre-
quency response calculations in linear structural dy-
namics with random uncertainties, can be found in
Soize (1999 & 2000). The algebraic closure of this
nonparametric model, the convergence analysis as di-
mension goes to infinity and the development to time
response calculations in transient linear elastodynam-
ics with random uncertainties, can be found in Soize
(2001a). The application of this complete nonpara-
metric model to time response calculations in tran-
sient linear structural dynamics can be found in Soize
(2001b & 2001c). The development of a random un-
certainties model to frequency response calculations
in linear structural dynamics using a dynamic sub-
structuring method, can be found in Chebli & Soize
(2001) and Soize & Chebli (2002). The use of the dy-
namic substructuring method allows the nonparamet-
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ricmodel of randomuncertainties to be usedwith non-
homogeneous uncertainties through the structure. Fi-
nally, the introduction of this nonparametricmodel for
transient response calculation in nonlinear structural
dynamics with random uncertainties can be found in
Soize (2001d).

Linear structural dynamics. The two main objectives
introduced to construct such a nonparametric model
of random uncertainties in linear structural dynamics
are:

(1) the non use of the local parameters of the finite
element model of the structure, but the use of gen-
eralized quantities directly related to dynamics (non
parametric approach);

(2) the use of the available information for construct-
ing the probability model, knowing that, in prac-
tice, the main available information related to dy-
namics is constituted of an adapted mean reduced
model derived from the mean finite element model.
Usually, for modal range, this mean reduced model
is constructed using the generalized coordinates of
the mode-superposition method associated with the
structural modes corresponding to the lowest eigen-
frequencies of the structure.

To satisfy these two objectives, the nonparametric
probabilistic model of random uncertainties in lin-
ear structural dynamics is constructed by replacing
the generalized mass, damping and stiffness matrices
of the mean reduced model by full random matrices
with values in the set of all the positive-definite sym-
metric real matrices. The probability model of these
random matrices is constructed using the entropy op-
timization principle from information theory (for the
entropy optimization principle, see Shannon (1948),
Jaynes (1957) and Kapur & Kesavan (1992)) whose
available information is constituted of the following
three constraints:

(C1) each full random matrix has to be symmetric
positive definite;

(C2) the mean value of each full random matrix is
known and is equal to the corresponding generalized
matrix of the mean reduced model;

(C3) the second-order moment of the Frobenius norm
of the inverse of each random matrix has to exist.

It is natural to introduce constraint (C2). Constraint
(C1) has to be taken into account in order to obtain a
mechanical system with random uncertainties, which
models a dynamic system. For instance, if there are
uncertainties in the generalizedmassmatrix, the prob-
ability distribution has to be such that this random
generalized mass matrix be positive definite. If not,
the probability model would be wrong because the
generalized mass matrix of any dynamic system has
to be positive definite. Below, we will recall the rea-
son why constraint (C3) has to be introduced.

It should be noted that such a nonparametric model
of random uncertainties

(1) allows the uncertainties for the parameters of the
finite element model to be taken into account (simi-
larly to the parametric approaches, but using a global
approach),

(2) but also allows the model uncertainties to be taken
into account, that is to say, modeling the errors which
cannot be reached through the model parameters (by
definition, any parametric approach cannot model the
kind of uncertainties which correspond to non ex-
isting parameters in the mean finite element model
under consideration); for instance, the use of thick
plate finite elements instead of three-dimensional el-
ements, the use of a mean finite element model for
which the number of degrees of freedom is fixed and
is not considered as a parameter (error induced by the
finite element discretization of the boundary value
problem), etc.

Nonlinear structural dynamics. The above nonpara-
metric model of random uncertainties in linear struc-
tural dynamics can directly be used for modeling
random uncertainties existing in the linear part of a
nonlinear dynamic system. Consequently, such an
approach is very efficient for nonlinear dynamic sys-
tems exhibiting a usual linear part and a nonlinear part
due to damping and restoring nonlinear forces cor-
responding to localized nonlinearities (for instance,
nonlinear restoring forces induced by stops which
limit the vibration amplitudes at a given point on the
structure).

Analyzing the role played by the constraints defining
the available information

In order to explain the role played by the introduction
of constraints (C2) and (C3) as available informa-
tion for the construction of the nonparametric model,
we consider the mean one-DOF linear static prob-
lem K x = f in which the mean stiffness is K = 1,
the force f is prescribed and x is the unknown dis-
placement. If there are stiffness uncertainties, the
stiffness is modeled by a random variable K such that
E{K} = K where E is the mathematical expectation,
and the displacement is the random variable X such
that K X = f .

(1) Let Kg be the Gaussian random variable with unit
mean value and standard deviation δ = 0.5. Conse-
quently, the probability density function of Kg with
respect to dk is written as

p
Kg

(k) =
1√
2π δ

exp

{
(k − 1)2

2δ2

}
. (1)

The graph of function k 7→ p
Kg

(k) is shown in Figure 1.
It is clear that random variable K cannot be modeled
by Gaussian random variable Kg because K has to
be a positive-valued random variable and this is not
the case for Kg. Such a probabilistic model for K is
wrong.
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(2) If a random variable Ke is constructed using the
maximum entropy principle for which the available
information is defined by constraints (C1) and (C2),
that is to say, Ke is a positive-valued random variable
and its mean value E{Ke} is equal to 1, then the prob-
ability density function of Ke with respect to dk is the
exponential distribution written as

p
Ke

(k) =  ]0,+∞[(k) exp(−k) , (2)

in which  ]0,+∞[(k) = 0 if k ≤ 0 and  ]0,+∞[(k) = 1 if
k > 0. The standard deviation of Ke is equal to 1 and
the graph of function k 7→ p

Ke
(k) is shown in Figure 1.

Random variable K cannot be modeled by random
variable Ke for the following reason. Since Ke is a
random variable with values in ]0, +∞[, therefore Ke

is almost surely invertible and then the random dis-
placement is given by X = K−1

e f almost surely. In
this case, X is a random variable, but the second-
order moment of X does not exist, that is to say, we
have E{X2} = E{|K−1

e |2} f2 = +∞. This is clearly
not admissible for such a mechanical problem. Con-
sequently, the constraint E{|K−1|2} < +∞ has to be
added in the construction of the probability model of
stiffness K and corresponds to constraint (C3) intro-
duced above.

(3) If a random variable Ks is now constructed using
the maximum entropy principle for which the avail-
able information is such that Ks is a positive-valued
random variable, E{Ks} = 1 and E{ln(Ks)} = v with
|v| < +∞, then the probability density function of Ks

with respect to dk can be written as

p
Ks

(k) =  ]0,+∞[(k)
δ−2δ−2

Γ(δ−2)
k(δ−2−1) exp

(
− k

δ2

)
, (3)

in which δ < 1/
√

2 is the standard deviation ofKs. The
graph of function k 7→ p

Ks
(k) is shown in Figure 1. It

is clear that, if condition E{ln(Ks)} = v with |v| < +∞
holds, then constraint (C3) introduced above is satis-
fied. In this case, we have E{|K−1

s |2} < +∞ and there-
fore, X = K−1

s f is a second-order random variable,
that is to say, E{X2} < +∞. Consequently, random
variable K can be modeled by random variable Ks.

532 41O−1

0.4
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Figure 1. Graphs of the probability density functions of random

variablesKe (thin solid line),Kg (med solid line) andKs (thick

solid line).

2 A PROBABILITY MODEL FOR SYMMETRIC
POSITIVE-DEFINITE REAL RANDOM MATRI-
CES

Let !n(") be the set of all the (n × n) real matrices,!S
n(") be the set of all the (n × n) real symmetric

matrices and !+
n (") be the set of all the (n × n) real

symmetric positive-definite matrices.

In this section, we summarize the theory developed in
Soize (1999, 2000 & 2001a) concerning the construc-
tion of a probability model for a symmetric positive-
definite real random matrix [An], defined on a proba-
bility space (A, T , P ), using the entropy optimization
principle for which the constraints which define the
available information are the following.

(1) Matrix [An] is a symmetric positive-definite real
random matrix, that is to say,

[An] ∈ !+
n (") a.s . (4)

(2) The mean value [An] of random matrix [An] is a
given matrix in !+

n (") such that

E{[An]} = [An] ∈ !+
n (") . (5)

(3) The second-order moment of the Frobenius norm
of the inverse [An]−1 has to exist,

E
{
‖[An]−1‖2

F

}
< +∞ , (6)

in which ‖[A ]‖F = (tr{[A ] [A ]T })1/2 is the Frobenius
norm of matrix [A ].

Concerning the nonparametric probabilistic model of
random uncertainties in dynamic systems, such a ran-
dommatrix [An]will represent the randomgeneralized
mass, damping or stiffness matrix.

2.1 Normalization and dispersion parameter

Since [An] is a positive-definite real matrix, there is an
upper triangular matrix [LAn

] in !n(") such that

[An] = [LAn
]T [LAn

] , (7)

which corresponds to the Cholesky factorization of
matrix [An]. Considering Eq. (7), random matrix [An]

can be written as

[An] = [LAn
]T [GAn

] [LAn
] , (8)

in whichmatrix [GAn
] is a random variablewith values

in !+
n ("). From Eqs. (5) and (8), we deduce that the

mean value [GAn
] of random matrix [GAn

] is such that

[GAn
] = E{[GAn

]} = [ In] , (9)

in which [ In] is the (n× n) identity matrix. Let δA > 0

be the real parameter defined by

δA =

{
E{‖ [GAn

] − [GAn
] ‖2

F }
‖ [GAn

] ‖2
F

}1/2

, (10)

that allows the dispersion of the probability model of
random matrix [An] to be fixed. Let n0 ≥ 1 be a fixed
integer. Then, the dispersion of the probability model
is fixed by giving parameter δA, independent of n, a
value such that

0 < δA <
√

(n0 + 1)(n0 + 5)−1 . (11)
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2.2 Probability distribution

The probability distribution P[GAn ] of random ma-
trix [GAn

] is defined by a probability density function
[Gn] 7→ p[GAn ]([Gn]) from  +

n (!) into !+ = [0 , +∞[, with

respect to the measure (volume element) d̃Gn on the
set  S

n(!) such that

d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij . (12)

We then have

P[GAn ] = p[GAn ]([Gn]) d̃Gn , (13)

with the normalization condition
∫ +

n (!)

p[GAn ]([Gn]) d̃Gn = 1 . (14)

Probability density function p[GAn ]([Gn]) is then writ-
ten as

p[GAn ]([Gn]) = " +
n (!)([Gn]) × CGAn

×
(
det [Gn]

)(n+1)
(1−δ2

A
)

2δ2
A × exp

{
− (n + 1)

2δ2
A

tr [Gn]

}
, (15)

in which det is the determinant, " +
n (!)([Gn]) is equal

to 1 if [Gn] ∈  +
n (!) and is equal to zero if [Gn] /∈  +

n (!)

and where positive constant CGAn
is such that

CGAn
=

(2π)−n(n−1)/4
(

n+1
2δ2

A

)n(n+1)(2δ2
A)−1

{
Πn

j=1Γ
(

n+1
2δ2

A

+ 1−j
2

)} , (16)

where Γ(z) is the gamma function defined for z > 0 by
Γ(z) =

∫ +∞

0 tz−1 e−t dt.

2.3 Characteristic function

For all [Θn] in  S
n(!), the characteristic function of

random matrix [GAn
] with values in  +

n (!) ⊂  S
n(!) is

defined by Φ[GAn ]([Θn]) = E
{
exp(i ≪ [Θn] , [GAn

]≫)
}
in

which ≪ [Θn],[GAn
]≫= tr{[Θn][GAn

]T }= tr{[Θn][GAn
]}.

We then have

Φ[GAn ]([Θn]) =∫ +
n (!)

exp( i tr{[Θn] [Gn]}) p[GAn ]([Gn]) d̃Gn , (17)

which yields

Φ[GAn ]([Θn])=
{
det

(
[ In]− i

2δ2
A

n+1
[Θn]

)}−(n+1)(2δ2
A)−1

. (18)

2.4 Second-order moments

Since [GAn
]jk = δjk in which δjk = 0 if j 6= k and

δjj = 1, the covariance CGn

jk,j′k′ of random variables
[GAn

]jk and [GAn
]j′k′ , defined by

CGn

jk,j′k′ = E
{
([GAn

]jk − δjk)([GAn
]j′k′ − δj′k′)

}
, (19)

is written as

CGn

jk,j′k′ =
δ2
A

n+1

{
δj′k δjk′ + δjj′ δkk′

}
. (20)

2.5 Invariance under real orthogonal transformations

Let [Φn] be any real orthogonal matrix belonging to n(!) such that [Φn]T [Φn] = [Φn] [Φn]T = [ In]. Let [G′
An

]

be the random matrix with values in  +
n (!) defined by

[G′
An

] = [Φn]T [GAn
] [Φn]. We then have

[GAn
] = [Φn] [G′

An
] [Φn]T . (21)

The probability density function p[G′

An
]([G

′
n]) of ran-

dommatrix [G′
An

], with respect to the volume element

d̃G′
n (see Eq. (12)), is such that

p[G′

An
]([G

′
n]) d̃G′

n = p[GAn ]([Gn]) d̃Gn , (22)

in which p[GAn ]([Gn]) is defined by Eq. (15). Let [Gn]

and [G′
n] be such that [Gn] = [Φn] [G′

n] [Φn]T . Since [Φn]

is a real orthogonalmatrix, we deduce that d̃Gn = d̃G′
n,

det [Gn] = det [G′
n] and tr [Gn] = tr [G′

n]. From Eq. (15),
we deduce that

p[GAn ]([Gn]) d̃Gn = p[GAn ]([G
′
n]) d̃G′

n . (23)

From Eqs. (22) and (23), we deduce that

p[G′

An
]([G

′
n]) d̃G′

n = p[GAn ]([G
′
n]) d̃G′

n , (24)

which proves the invariance of random matrix [GAn
]

under real orthogonal transformations. Let [An] be
the random matrix defined by Eq. (8). Using the
characteristic function (see Eq. (17)), it can easily be
proved that the probability distribution P[A′

n] of the
random matrix [A′

n] = [Φn]T [An] [Φn] with values in +
n (!) and with the mean value [A′

n] = [Φn]T [An] [Φn],
is equal to the probability distribution P[An] of random
matrix [An] inwhichmean value [An] has to be replaced
by mean value [A′

n].

2.6 Convergence property when dimension goes to
infinity

For θ fixed inA, the norm ofmatrix [GAn
(θ)]−1 induced

by the Euclidean norm of !n is defined by

‖[GAn
(θ)]−1‖ = sup

q∈!n,‖q‖=1

‖[GAn
(θ)]−1q‖ . (25)

It should be noted that

‖[GAn
(θ)]−1‖ ≤ ‖[GAn

(θ)]−1‖F ≤
√

n ‖[GAn
(θ)]−1‖ . (26)

We then have the following inequality,

∀n ≥ n0 , E{‖[GAn
]−1‖2} ≤ CδA < +∞ , (27)

in which CδA
is a positive finite constant that is inde-

pendent of n but that depends on δA. Equation (27)
means that n 7→ E{‖[GAn

]−1‖2} is a bounded function
from {n ≥ n0} into !+. Figure 2 shows the graph of
function n 7→ E{‖[GAn

]−1‖2} for n ≥ n0 = 2, δA = 0.1,
0.3 and 0.5, obtained by a Monte Carlo numerical sim-
ulation.
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Figure 2. Graph of function n 7→ E{‖[GAn
]−1‖2} for δA = 0.1

(lower line), 0.3 (mid line) and 0.5 (upper line), in which the

horizontal axis is dimension n of the reduced model.

2.7 Algebraic representation of the random matrix

The following algebraic representation of positive-
definite real random matrix [GAn

] allows a procedure
for the Monte Carlo numerical simulation of random
matrix [GAn

] to be defined. With this procedure, the
numerical cost induced by the simulation is a constant
that depends on dimension n but that is independent
of the values of parameter δA. Random matrix [GAn

]

can be written as

[GAn
] = [LAn

]T [LAn
] , (28)

in which [LAn
] is an upper triangular random matrix

with values in  n(!) such that:

(1) randomvariables {[LAn
]jj′ , j ≤ j′} are independent;

(2) for j < j′, real-valued random variable [LAn
]jj′

can be written as [LAn
]jj′ = σnUjj′ in which σn =

δA(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian
random variable with zero mean and variance equal
to 1;

(3) for j = j′, positive-valued random variable [LAn
]jj

can be written as [LAn
]jj = σn

√
2Vj in which σn is de-

fined above and where Vj is a positive-valued gamma
random variable whose probability density function
pVj

(v) with respect to dv is written as

pVj
(v) = " +(v)

1

Γ
(

n+1
2δ2

A

+ 1−j
2

) v
n+1

2δ2
A

− 1+j

2
e−v . (29)

2.8 Probability model of a set of positive-definite sym-
metric real random matrices

Let us consider ν random matrices [A1
n], . . . , [Aν

n] with
values in  +

n (!) such that for each j in {1, . . . , ν},
the probability density function of random matrix
[Aj

n] satisfies Eqs. (4), (5) and (6). This means that
only the mean values of the random matrices are
known. Applying the maximum entropy principle,
it can be proved that the probability density func-
tion ([A1

n], . . . , [Aν
n]) 7→ p[A1

n],...,[Aν
n]([A

1
n], . . . , [Aν

n]) from +
n (!)× . . .× +

n (!) into !+ with respect to the measure
(volume element) d̃A1

n× . . .× d̃Aν
n on  S

n(!)× . . .× S
n(!)

is written as

p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n])

= p[A1
n]([A

1
n]) × . . . × p[Aν

n]([A
ν
n]) , (29)

which means that [A1
n], . . . , [Aν

n] are independent ran-
dom matrices.

3 COMPARISONS BETWEEN THE PROPOSED
THEORY AND THE GAUSSIAN ORTHOGONAL
ENSEMBLE (GOE)

The theory summarized in Section 2 for symmetric
positive-definite real random matrices will be called
the "positive-definite" ensemble and differs from the
usual Gaussian orthogonal ensemble (GOE) of ran-
dom matrices which have been extensively studied
in the literature (see Dyson (1962), Dyson & Mehta
(1963),Mehta (1967& 1991), Nagao& Slevin (1993),
Moorthy (1995) and Katz & Sarnak (1999)) and for
which an excellent synthesis is given in Mehta’s book
(1991). The random matrix theory has already been
used for analyzing high-frequency spectral statistics
of certain undamped linear vibration problems, i.e.
studying the random generalized eigenvalue problem

[Kn] = Λ [ Mn] , (30)

in which [ Mn] is the generalized mass matrix (pres-
ently assumed to be deterministic to simplify the de-
velopments), [Kn] is the random generalized stiffness
matrix,  is the random eigenvector associated with
the random eigenvalue Λ. It has been proved that, if
random matrix [Kn] is taken in the Gaussian orthog-
onal ensemble (GOE), then a good estimation of the
high-frequency spectral statistics can be obtained (see
Bohigas et al (1984), Weaver (1989), Bohigas et al
(1991), Schmit (1991), Legrand et al (1992)). If [Kn]

belongs to the GOE, then the eigenvalues can be neg-
ative with a non zero probability. However, it is well
known that, for an undamped linear vibration prob-
lem, the generalized mass and stiffness matrices have
to be positive definite. Consequently, the eigenval-
ues have to be positive and cannot be negative. From
a theoretical point of view, it is not coherent to use
the GOE for modeling random matrix [Kn] for such
an undamped linear vibration problem. Nevertheless,
if the GOE is used in the high-frequency range and
if the mean values of the considered eigenvalues are
large with respect to their standard deviations, then
the probability that a random eigenvalue located in the
high-frequency range be negative is very small (not
significant). This is the reason why the GOE can give
good results for certain high-frequency undamped lin-
ear vibrations problems. This is very different when
the frequency response or the transient response of
the linear dynamic system considered is mainly due
to the contributions of the first eigenvalues, that is
to say for the low-frequency range. In addition, we
have to consider damped dynamic system. For this
case considered in Soize (1999, 2000, 2001a,b,c,d),
it is absolutely necessary to take into account the al-
gebraic property related to the positiveness of these
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randommatrices (that is not the case for a randomma-
trix belonging to the GOE). In addition, as explained
in Soize (2000& 2001a), it is not sufficient to take into
account this algebraic property and the second-order
moment of the Frobenius norm of their inverse has to
exist (of course, such a property does not hold for the
GOE).

3.1 Probability density functions of the random eigen-
values

In order to compare the two ensembles, we introduce
the two following random eigenvalue problems.

A. "Positive-definite" ensemble. The first eigenvalue
problem is written as

[GAn
] = Λ , (31)

in which random matrix [GAn
] is the symmetric pos-

itive-definite (n×n) real random matrix defined in
Section 2. Therefore, its probability density function
is given by Eq. (15) and for all j and k in {1, . . . , n}, the
mean value and the variance of the random variable
[GAn

]jk are written (see Eqs. (9) and (20)) as

E{[GAn
]jk} = δjk , V

GAn

jk =
δ2
A

(n + 1)
(1 + δjk) . (32)

The joint probability density function of the n ran-
dom eigenvalues is explicitely constructed in Soize
(2000). Presently, we are interested in the probabil-
ity density function of each random egenvalue for the
order statistics. Let Λ1 ≤ Λ2 ≤ . . . ≤ Λn be the order
statistics of the random eigenvalues Λj for j = 1, . . . n

of the randomeigenvalue problemdefined byEq. (31).
Let pΛj

(λj) be the probability density functionwith re-
spect to dλj of random variable Λj . Figure 3 shows
the graphs of probability density functions pΛj

for
j = 1, . . . n with δA = 0.5, n = 30 and estimated by the
Monte Carlo numerical method with 10 000 samples.
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Figure 3. Graphs of probability density functions pΛj
for j =

1, . . . n corresponding to the random eigenvalues of symmetric

positive-definite real random matrix [GAn
].

B. Gaussian orthogonal ensemble. The second eigen-
value problem is written as

[Hn]! = Ξ! , (33)

in which random matrix [Hn] is a symmetric (n×n)

real random matrix which is defined by

[Hn] = [ In] + [HGOE
n ] , (34)

in which [HGOE
n ] is a symmetric (n×n) real randomma-

trix belonging to the Gaussian orthogonal ensemble
such that its probability density function with respect
to the volume element d̃Hn (given by Eq. (12)) is
written as

p[HGOE
n ]([Hn]) = Cn × exp

{
− (n + 1)

4δ2
A

tr{[Hn]2}
}

, (35)

in which Cn is the constant of normalization. For all
j and k in {1, . . . , n}, the mean value and the variance
of random variable [Hn]jk are written as

E{[Hn]jk} = δjk , V Hn

jk =
δ2
A

(n + 1)
(1 + δjk) . (36)

From Eqs. (32) and (36), we deduce that random ma-
trices [GAn

] and [Hn] have the same mean value and
the same covariance matrix. The joint probability
density function of the n random eigenvalues is ex-
plicitely constructed in Mehta (1991). As above, we
are interested in the probability density function of
each random egenvalue for the order statistics. Let
Ξ1 ≤ Ξ2 ≤ . . . ≤ Ξn be the order statistics of the random
eigenvalues Ξj for j = 1, . . . n of the random eigenvalue
problem defined by Eq. (33). Let pΞj

(ξj) be the prob-
ability density function with respect to dξj of random
variable Ξj . Figure 4 shows the graphs of probabil-
ity density functions pΞj

for j = 1, . . . n with δA = 0.5,
n = 30 and estimated by the Monte Carlo numerical
simulation with 10 000 samples.
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Figure 4. Graphs of probability density functions pΞj
for j =

1, . . . n corresponding to the random eigenvalues of symmetric

real random matrix [Hn].

3.2 Comparisons of the two ensembles for the mean
values, standard deviations and variation indexes

Figures 5 to 7 correspond to n = 30, δA = 0.5 and
10 000 samples. Figure 5 shows the graph j 7→ mΛj

of
the mean value mΛj

= E{Λj} of random eigenvalues
Λj of random matrix [GAn

] and the graph j 7→ mΞj
of

the mean value mΞj
= E{Ξj} of random eigenvalues

Ξj of random matrix [Hn]. Figure 6 shows the graph
j 7→ σΛj

of the standard deviation of random eigenval-
ues Λj of random matrix [GAn

] and the graph j 7→ σΞj
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of the standard deviation of random eigenvalues Ξj

of random matrix [Hn]. Finally, Figure 7 shows the
graph j 7→ σΛj

/mΛj
of the variation index of random

eigenvalues Λj of random matrix [GAn
] and the graph

j 7→ σΞj
/mΞj

of the variation index of random eigen-
values Ξj of random matrix [Hn].
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Figure 5. Mean values of the random eigenvalues for the two

ensembles. Graphs j 7→ mΛj
(solid line) and j 7→ mΞj

(dashed

line).
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Figure 6. Standard deviation of the random eigenvalues for the

two ensembles. Graphs j 7→ σΛj
(solid line) and j 7→ σΞj

(dashed line).
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Figure 7. Variation index of the random eigenvalues for the

two ensembles. Graphs j 7→ σΛj
/mΛj

(solid line) and j 7→
σΞj

/mΞj
(dashed line).

3.3 Analyzing the differences between the two ensem-
bles

(1) Figure 4 shows that the probability density func-
tions of the first eigenvalues of random matrix [Hn]

are not zero for negative values and consequently, all
the random eigenvalues are not positive almost surely.
Such a probabilistic model is then wrong because the
corresponding dynamic system is not stable almost
surely. Random matrix [Kn] being defined on prob-
ability space (A, T , P ), this means that there exists a
subset A0 ⊂ A with P (A0) 6= 0, such that for all θ ∈ A0,
the solution {Qn(t, θ), t ≥ 0} of the Cauchy problem
[ Mn] Q̈n(t, θ) + [Kn(θ)] Qn(t, θ) = 0 for t ≥ 0 with the
initial conditions Qn(0, θ) = q0 6= 0 and Q̇n(0, θ) = 0,
is not a bounded function. In opposite, as shown in
Figure 3, all the eigenvalues of random matrix [GAn

]

are positive almost surely and consequently, the above
dynamic system is stable almost surely.

(2) The second important difference is related to the
standard deviation of the random eigenvalues. In
structural dynamics, it is known that random uncer-
tainties increase with frequency and consequenly, the
standard deviation has to increase with frequency. In
addition, this kind of quantities has to be a constant as
a function of∆f/f in which f is the frequency and∆f

the bandwith. Figure 7 which is related to variation
indexes j 7→ σΛj

/mΛj
and j 7→ σΞj

/mΞj
shows that this

fundamental property holds for random matrix [GAn
]

in all the frequency range, but is not true for random
matrix [Hn] (the GOE) in the low- and med-frequency
ranges.

4 NONPARAMETRICMODEL OF RANDOMUN-
CERTAINTIES FOR LINEAR AND NONLINEAR
DYNAMIC SYSTEMS

4.1 Introduction of the mean finite element model

We consider a nonlinear dynamic system constituted
of a three-dimensional damped fixed structure around
a static equilibrium configuration considered as a nat-
ural state without prestresses and subjected to an ex-
ternal load. The basic finite element model of this
nonlinear dynamic system is called the “mean finite
elementmodel” (the underlined quantities refer to this
“mean finite element model”) and leads to the follow-
ing nonlinear differential equation,

[ ] ÿ(t) + [ ] ẏ(t) + [! ] y(t) + fNL(y(t), ẏ(t)) = f(t) , (37)

inwhich y = (y
1
, . . . , y

m
) is the unknown time response

vector of the m DOFs (displacements and/or rota-
tions); ẏ and ÿ are the velocity and acceleration vec-
tors respectively; f(t) = (f1(t), . . . , fm(t)) is the known
external load vector of the m inputs (forces and/or
moments); [" ], [ ] and [! ] are the mass, damping
and stiffness matrices of the linear part of the model,
which are positive-definite symmetric (m×m) real ma-
trices; (y, z) 7→ fNL(y, z) is a nonlinear mapping from#m×#m into #m modeling additional nonlinear damp-
ing and restoring forces such that fNL(0, 0) = 0. The
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linear case can be derived from Eq. (37) in taking
fNL = 0.

4.2 Introduction of the mean reduced models

The generalized eigenvalue problem associated with
the mean mass and stiffness matrices of the mean
finite element model is written as [ ] = λ [! ] .
Since [ ] is a positive-definite matrix, we have 0 <

λ1 ≤ λ2 ≤ . . . ≤ λm and the associated elastic modes
{ 

1
, 

2
, . . .} are such that < [! ] 

α
, 

β
>= µ

α
δαβ and

< [ ] 
α
, 

β
>= µ

α
ω2

α δαβ in which ωα =
√

λα is the

eigenfrequency of elastic mode  
α
whose normaliza-

tion is defined by the generalized mass µ
α
. The mean

reduced models of the dynamic systems whose mean
finite element models are defined by Eq. (37) is ob-
tained by constructing the projection of themeanfinite
element models on the subspace Vn of "m spanned by
{ 

1
, . . . , 

n
} with n ≪ m. Let [ Φn] be the (m × n)

real matrix whose columns are vectors { 
1
, . . . , 

n
}.

The generalized force Fn(t) is an "n-vector such that
Fn(t) = [ Φn]T f(t). The generalized mass, damping
and stiffness matrices [ Mn], [ Dn] and [ Kn] are posit-
ive-definite symmetric (n× n) real matrices such that
[ Mn]αβ = µ

α
δαβ, [ Dn]αβ =< [# ] 

β
, 

α
> and [ Kn]αβ =

µ
α

ω2
α δαβ, in which, generally, [ Dn] is a full matrix.

Consequently, the mean reduced model of the nonlin-
ear dynamic system is written as the projection yn of
y on Vn can be written as yn(t) = [ Φn] qn(t) in which
the vector qn(t) ∈ "n of the generalized coordinates
verifies the mean nonlinear differential equation,

[ Mn] q̈
n(t) + [ Dn] q̇

n(t) + [ Kn] qn(t)

+ Fn
NL(q

n(t), q̇
n(t)) = Fn(t) , ∀t ≥ 0 , (38)

where, for all q and p in "n,

Fn
NL(q, p) = [ Φn]T fNL([ Φn] q, [ Φn] p) . (39)

4.3 Nonparametric model of random uncertainties

The principle of construction of the nonparametric
model of random uncertainties for the linear and non-
linear dynamic systems whose mean finite element
model is defined by Eq. (37), is given in Section 1.
It consists in modeling the generalized mass, damp-
ing and stiffness matrices of the reduced model (see
Eq. (38)) by random matrices [Mn], [Dn] and [Kn]. If
the nonlinear forces are uncertain, a usual parametric
model can be used for these nonlinear forces. In this
case, a nonparametric-parametric mixed formulation
can easily be constructed.

The construction of the probability model of random
matrices [Mn], [Dn] and [Kn] is based on the avail-
able information defined by constraints (C1), (C2) and
(C3) introduced in Section 1, that is to say by Eqs. (4),
(5) and (6)). Consequently, random matrices [Mn],
[Dn] and [Kn] are defined on probability space (A, T ,P),
with values in !+

n ("), whosemean values are such that
E{[Mn]} = [ Mn], E{[Dn]} = [ Dn] and E{[Kn]} = [ Kn]

and such that E
{
‖[Mn]−1‖2

F

}
< +∞, E

{
‖[Dn]−1‖2

F

}
<

+∞ and E
{
‖[Kn]−1‖2

F

}
< +∞. From Section 2.8, we

deduce that randommatrices [Mn], [Dn] and [Kn] are in-
dependent, each one being a randommatrix for which
the probability model in given in Section 2. Conse-
quently, we have [Mn] = [LMn

]T [GMn
] [LMn

], [Dn] =

[LDn
]T [GDn

] [LDn
] and [Kn] = [LKn

]T [GKn
] [LKn

]. The
parameters δM , δD and δK allowing the dispersion of
random matrices [Mn], [Dn] and [Kn] to be controlled
are defined by Eq. (10). The probability distribution
of each randommatrix [GMn

], [GDn
] or [GKn

] is defined
in Sections 2.2 and 2.3.

CASE 1: The stochastic frequency response of the
linear dynamic system with a nonparametric proba-
bilistic model of random uncertainties, whose mean
reduced model is defined by Eq. (37) with fNL = 0,
is the stochastic process Ŷn

LF(ω) indexed by ", with
valued in $m such that Ŷn

LF(ω) = [ Φn] Q̂n
LF(ω) in which,

for all ω fixed in ", the random variable Q̂n
LF(ω) with

values in $n is such that

(−ω2[Mn] + iω [Dn] + [Kn]) Q̂n
LF(ω) = F̂n(ω) . (40)

CASE 2: The stochastic transient response of the non-
linear dynamic system with a nonparametric proba-
bilistic model of random uncertainties, whose mean
reduced model is defined by Eq. (37), is the stochas-
tic process Yn(t), indexed by "+, with values "m, such
that Yn(t) = [ Φn] Qn(t) in which the stochastic process
Qn(t), indexed by "+, with values "n, is such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn] Qn(t)

+ Fn
NL(Q

n(t), Q̇n(t)) = Fn(t) , ∀t ≥ 0 , (41)

with the initial conditions, Qn(0) = 0 and Q̇n(0) = 0.

4.4 Stochastic solution as a second-order stochastic
process

CASE 1 of Section 4.3. Using the fundamental prop-
erty defined by Eq. (27) for each random matrix
[GMn

], [GDn
], [GKn

] and a development similar to the
proof given in Soize (2001a), it can be proved that, if∫ ‖f(t)‖2dt = 1

2π

∫ ‖̂f(ω)‖2dω < +∞, then, we have

E{
∫ ‖iωŶn

LF(ω)‖2dω} ≤ C0

∫ ‖̂f(ω)‖2dω < +∞ , (42)

in which C0 is a positive constant independent of n

and ω, and ‖ . ‖ denotes the Euclidean or the Hermitian
norm in "n or $n.

CASE 2 of Section 4.3. For any T > 0, it is proved
(see Soize (2001d)) that, under reasonable assump-
tions concerning the nonlinear damping and restoring
forces and if

∫ T

0 ‖f(t)‖2dt < +∞, then for all t in [0 , T ],
we have

E{‖Yn(t)‖2}≤ C3<+∞ , E{‖Ẏn(t)‖2}≤C4 <+∞ . (43)

in which C3 and C4 are positive constants that are
independent of n and t.

4.5 Construction of the stochastic solution

The stochastic solution of Eq. (40) or (41) can eas-
ily be constructed using the Monte Carlo numerical
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simulation, the samples of random matrix [An], in
which [An] represents random matrices [Mn], [Dn] or
[Kn], being constructed by using Eqs. (8) and (28). It
should be noted that the numerical cost is low with
such a method because Eq. (40) or (41) correspond to
a stochastic reduced model with n ≪ m.

5 EXAMPLES

5.1 CASE 1. Stochastic frequency response of a linear
dynamic system

We consider the stochastic frequency response of the
linear dynamic system studied in (Chebli & Soize
2001; Soize and Chebli 2002) and corresponding to
Eq. (40), for which the Craig-Bampton (1968) dy-
namic substructuring method is used. Such an ap-
proach allows the nonparametric model to be used
when random uncertainties are not homogeneous in
the structure. The system under consideration is a
nonhomogeneous structure constituted of a rectan-
gular, homogeneous, isotropic thin plate in bending
mode, simply supported with 2 point masses and
3 springs (see Figure 8). We consider the cross-
frequency response function whose input is the point
force and the output is the normal displacement de-
fined in Figure 8.

y

 0.6m.  0.4m.

3kg

x0

 0.5m.

.

.

+

+

+

4kg

Figure 8. Nonhomogeneousstructure: rectangular plate in bend-

ing mode with 2 point masses (•) and 3 springs (+). Excitation:

point force (⊙). Response: normal displacement (◦).

Two substructures are considered (see Figure 8). The
mean finite element model is constituted of four-
node square plate finite elements leading, respec-
tively, to 8840 degrees of freedom (DOFs) and 5860
DOFs for the two substructures, and to 149 DOFs
for the coupling interface. The eigenfrequencies of
the complete structure, calculated with the mean fi-
nite element model are such that ν1 = 2.6 Hz and
ν35 = 106.4 Hz. The dispersion parameters for the
random generalized mass, damping and stiffness ma-
trices are δM = δD = δK = 0.1. The Monte Carlo nu-
merical simulation is carried out with 500 samples.
Figure 9 shows the mean-square convergence of the
stochastic displacement field with respect to the di-
mension n of the reduced model of each substructure
(in this example, the dimension of the reduced model
is the same for the two substructures). It can be seen
that convergence is reached for n = 25.
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−5

0

5
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15

20

Figure 9. Mean-square convergence of the stochastic displace-

ment field (vertical axis) with respect to the dimension of the

reduced models (horizontal axis).

Figure 10 is related to the modulus in dB of the
stochastic cross-frequency response function defined
above. The thin dashed line represents the mean re-
ponse. The upper and lower thick solid lines represent
the confidence region for a probability level of 0.95.
The upper and lower thin solid lines represent the ex-
treme value statistics. It should be noted that the role
plays by the random uncertainties increases with the
frequency.
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−160

−140
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−40

Figure 10. Modulus in dB of the stochastic cross-frequency re-

sponse function in frequency band [1 , 100]Hz (horizontal axis).
Mean response (thin dashed line), confidence region correspond-

ing to a probabilty level of 0.95 (thick solid lines), extreme value

statistics (thin solid lines).

5.2 CASE 2. Stochastic transient response of a non-
linear dynamic system

In this section, we consider the stochastic transient
response of the nonlinear dynamic system studied in
Soize (2001d) and corresponding to Eq. (41). The
nonlinear dynamic system is composed of a linear
thin plane in bending mode with a nonlinearity due
to a nonlinear restoring force induced by two stops
modeled by high stiffness symmetric barriers which
limit the vibration amplitudes of the plate. The plate
is rectangular, homogeneous, isotropic, in bending
mode, with constant thickness 4×10−4 m, width 0.40 m,
length 0.50 m, mass density 7800 kg/m3, Young’s mod-
ulus 2.1×1011 N/m2 and Poisson ratio 0.29 . This plate
is simply supported on 3 edges and free on the fourth
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edge corresponding to x2 = 0 (see Figure 11). To
this plate are attached one point mass having a mass
of 4 kg and one spring having a stiffness coefficient
k = 2.388 × 107 N/m. Consequently, the dynamic sys-
tem is not homogeneous. The two stops are located
at the free edge. The plate is free between the stops
[−0.002 m 0.002 m] and the stiffness of the two symmet-
ric barriers is 25000 N/m.

0.50

0.40

O

Spring

Stop

Point mass

1
Stop

impulsive
load

External

Simply supported edge

supported
Simply

edge

Free edge x
0.06

0.15

0.23edge
supported

Simply

x
3

x
2

0.31

0.21

0.15

Figure 11. Geometry of the structure

The mean finite element model of the plate is com-
posed of 2000 four-node square plate finite elements
and there are m = 6009 degrees of freedom. The
eigenfrequencies calculated with the mean finite el-
ement model of the linear plate without the stops
are such that ν1 = 1.94, ν2 = 10.28, ν3 = 15.47, . . .,
ν8 = 53.5, ν9 = 66.1, ν10 = 68.9, . . ., ν30 = 198.3,
ν31 = 206.0, ν32 = 208.9, . . ., ν50 = 330.9, ν51 = 336.3,
. . ., ν100 = 670.8, ν120 = 817.6 Hz.
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Figure 12. Graph of wave impulse function as a function of time

The excitation is an impulsive load defined in Fig-
ure 11 whose impulse function is defined in Figure
12. The main part of the energy of this impulse
function is distributed over the [0 , 60] Hz frequency
band in which there are 8 elastic modes of the mean
linearized dynamic system. The damping matrix
[ ] of the mean finite element model is written as
[ ] = a [! ] + b [" ] in which a and b are defined by
a = 2 ξ Ωmax Ωmin/(Ωmax + Ωmin), b = 2 ξ/(Ωmax + Ωmin) in
which ξ = 0.04, Ωmin = 2π×2 rad/s and Ωmax = 2π×
100 rad/s. Below, we are interested in the normalized
response spectrum with respect to g = 9.81 m/s2, over
the [1 , 200] Hz frequency band and for the DOF corre-
sponding to the normal displacement of themesh node
located at coordinates x1 = 0.37, x2 = 0.15. The dis-
persion parameters for the random generalized mass,
damping and stiffness matrices are δM = δD = δK =0.2.

The nonlinear transient response of the structure with
random uncertainties is calculated by using theMonte
Carlo numerical simulation method with a maximum
of 500 samples. For given generalized mass, damping
and stiffness matrices , the nonlinear evolution prob-
lem defined by Eq. (41) is solved by using the New-
mark implicit step-by-step integration scheme and an
additional numerical iteration procedure for solving
the nonlinear algebraic equations at each time step.
The value of the time-step size is ∆t = 1/2000 s and
the number of time steps is 8000. Convergence with
respect to the dimension n of the reduced model and
the number ns of samples used in the Monte Carlo
numerical method, is studied by constructing the fol-
lowing function,

Conv(ns, n) =

{
1

ns

ns∑

k=1

∫ T

0

‖Qn(t, θk)‖2 dt

}1/2

.

Figure 13 displays the graphs of functions ns 7→ log10{
Conv(ns, n)} from {1, 2, . . . , 500} into #, for n = 10, 20,
30, 50, 100. Convergence with respect to n and ns is
obtained for n = 50 and ns = 300.
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Figure 13. Convergence in the nonlinear case. Graphs of func-

tions ns 7→ log10{Conv(ns, n)} for n = 10, 20 and 30 (three

upper thin solid lines, for n = 50 (lower thin solid line) and for
n = 100 (lower thick solid line).

Figure 14 corresponds to the transient response of the
nonlinear dynamic systemwith random uncertainties.
This figure corresponds to the base 10 logarithm of
the random normalized response spectrum for the ob-
servation defined above (vertical axis) as a function
of the base 10 logarithm of the frequency in Hertz
for the [1 , 200] Hz frequency band. The mid irregular
thin solid line represents the deterministic response
of the mean finite element model. The mid smoothed
thin solid line represents the mean value of the model
with random uncertainties. The lower and upper thick
solid lines represent the lower and upper envelopes of
the confidence region corresponding to a probability
level of 0.95; this confidence region is estimated by
using the Chebychev inequality. The lower and up-
per thin solid lines correspond to the extreme value
statistics. It can be seen that the confidence region
gives a good estimation of the extreme value statis-
tics. Figure 15 is similar to Figure 14 but for the
transient response of the linearized dynamic system
(without the stops). The comparison of Figure 14
with Figure 15 allows the following conclusions to be
obtained. For the linearized dynamic system (Figure
15), since the energy of the impulse input is con-
centrated in the [0, 60]Hz frequency band and since
there are 8 eigenfrequencies in this frequency band,
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then the dynamics of the transient output is modal
type and is concentrated in the same [0, 60]Hz fre-
quency band. For this linear case, the size of the
confidence region does not increase in the [60, 200]Hz
frequency band when frequency is increasing. In op-
posite, for the nonlinear dynamic system, the energy
of the impulse input, which is always concentrated in
the [0, 60]Hz frequency band, is spread out over the
[0, 200]Hz broad frequency band due to the nonlinear-
ity in the dynamic system. This energy is sufficient for
exciting the eigenmodes whose eigenfrequencies be-
long to the [60, 200]Hz frequency band. These modes
are sensitive to random uncertainties and it should be
noted that the size of the confidence region increases
in the [60, 200]Hz frequency band when frequency is
increasing. This means that, for the nonlinear dy-
namic system studied in the example presented, the
role plays by random uncertainties increases in the
upper part of the frequency band which is not directly
excited by the impulse input.
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Figure 14. Nonlinear case: log 10 of the random normalized

response spectrum (vertical axis) as a function of log 10 of the

frequency for the [1 , 200] Hz frequency band. Deterministic

response of the meanmodel (mid irregular thin solid line). Mean

value of themodelwith randomuncertainties (mid smoothed thin

solid line). Lower and upper envelopes of the confidence region

(lower and upper thick solid lines). Extreme value statistics

(lower and upper thin solid lines).
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Figure 15. Linear case: similar to Figure 14 for the linear

dynamic system (without the stops).

6 CONCLUSIONS

The nonparametric probabilistic model of random
uncertainties recently introduced by the author al-
lows linear and nonlinear dynamic systems to be an-
alyzed. Nonhomogeneous uncertainties can be mod-
eled with such a nonparametric approach using dy-

namic substructuring methods. For this nonparamet-
ric approach, the information used does not require the
description of the local parameters of the mechanical
model. The parametric approaches existing in liter-
ature are very useful when the number of uncertain
parameters is small and when the probabilistic model
can be constructed for the set of parameters consid-
ered. The nonparametric approach proposed is useful
when the number of uncertain parameters is high or
when the probabilistic model is difficult to construct
for the set of parameters considered. In addition, the
parametric approaches do not allow the model uncer-
tainties to be taken into account (because a parametric
approach is associated with a fixed model exhibit-
ing some parameters), whereas the nonparametric ap-
proach proposed allows the model uncertainties to be
taken into account. For nonlinear dynamic systems,
the nonparametric model is only applied to the linear
part of the reduced model. This nonparametric model
of random uncertainties can simultaneously be used
with the usual parametric model of random uncertain-
ties which allows random uncertainties on nonlinear
damping and restoring forces to be taken into account.
In this case, a nonparametric-parametricmodel of ran-
dom uncertianties has to be considered. Concerning
this nonparametric model, the probability distribution
of each random generalized matrix of the linear part
of the random reduced model depends only on two
parameters: the mean generalized matrix associated
with the mean finite element model and correspond-
ing to the design model, and a scalar parameter δ
whose values has to be fixed by the designer in the
interval [0 , 1[ in order to give the dispersion level at-
tached to the random generalized matrix. It seems
clear that parameter δ is a global parameter result-
ing from expertise or identification. Concerning the
construction of the confidence region by using the
Chebychev inequality, this method seems to give a
good approximation for the extreme value statistics.
This result, which is not theoretically proved, is inter-
esting because the convergence speed of the variance
estimator is faster than the convergence speed of the
extreme value statistics (with respect to the number
of samples required in the Monte Carlo numerical
simulation).
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