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ON THE CONFORMAL GAUGE OF A COMPACT METRIC SPACE

MATIAS CARRASCO PIAGGIO

Abstract. In this article we study the Ahlfors regular conformal gauge of a compact
metric space (X, d), and its conformal dimension dimAR(X, d). Using a sequence of
finite coverings of (X, d), we construct distances in its Ahlfors regular conformal gauge
of controlled Hausdorff dimension. We obtain in this way a combinatorial description,
up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to
compute dimAR(X, d) using the critical exponent QN associated to the combinatorial
modulus.

Keywords: Ahlfors regular, conformal gauge, conformal dimension, combinatorial mod-
ulus, Gromov-hyperbolic.
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1. Introduction

The subject of this article is the study of quasisymmetric deformations of a compact
metric space. More precisely, let (X, d) be a compact metric space, we are interested in its
conformal gauge:

J (X, d) := {θ distance on X : θ ∼qs d} ,

where two distances in X, d and θ, are quasisymmetrically equivalent d ∼qs θ if the
identity map id : (X, d) → (X, θ) is a quasisymmetric homeomorphism. Recall that a
homeomorphism h : (X, d) → (Y, θ) between two metric spaces is quasisymmetric if there
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is an increasing homeomorphism η : R+ → R+ —called a distortion function— such that:

θ (h(x), h(z))

θ (h(y), h(z))
≤ η

(
d (x, z)

d (y, z)

)
,

for all x, y, z ∈ X with y 6= z. In other words, a homeomorphism is quasisymmetric if
it distorts relative distances in a uniform and scale invariant fashion. This class of maps
provides a natural substitute of quasiconformal homeomorphisms in the broader context
of metric spaces. Their precise definition was given by Tukia and Väisälä in [TV]. See
[Hei01] for a detailed exposition of these notions.

For example, if d is a distance in X, then dε is also a distance for all ε ∈ (0, 1], and
the identity map id : (X, d) → (X, dε) is η-quasisymmetric with η(t) = tε. In particular,
dimH(X, dε) = ε−1 dimH(X, d). Therefore, quasisymmetric homeomorphisms can distort
the Hausdorff dimension of the space, and one can always find distances in the gauge of
arbitrarily large dimension.

The conformal gauge encodes the quasisymmetric invariant properties of the space. A
fundamental quasisymmetry numerical invariant is the conformal dimension; introduced by
P.Pansu in [Pan89]. There are different related versions of this invariant, in this article we
are concerned with the Ahlfors regular conformal dimension, which is a variant introduced
by M.Bourdon and H.Pajot in [BP03].

A distance θ ∈ J (X, d) is Ahlfors regular of dimension α > 0 —AR for short— if there
exists a Radon measure µ on X and a constant K ≥ 1 such that:

K−1 ≤ µ (Br)

rα
≤ K,

for any ball Br of radius 0 < r ≤ diamθX. In that case, µ is comparable to the α-
dimensional Hausdorff measure and α = dimH(X, θ) is the Hausdorff dimension of (X, θ).
The collection of all AR distances in J (X, d) is the Ahlfors regular conformal gauge of
(X, d), and is denoted by JAR(X, d).

The AR conformal dimension measures the simplest representative of the gauge. It is
defined by

dimAR(X, d) := inf {dimH (X, θ) : θ ∈ JAR(X, d)} .
We write dimARX when there is no ambiguity on the metric d. Note that we always have
the estimate dimT X ≤ dimARX, where dimT X denotes the topological dimension of X.
Apart from this, the AR conformal dimension is generally difficult to estimate. However,
it was computed by P.Pansu for the boundaries of homogeneous spaces of negative cur-
vature [Pan89]. An exposition of the theory of conformal dimension, its variants and its
applications can be found in [LP04], [B06], [Kle06], [Haïss08] and [MT10].

The interest, in studying quasisymmetric invariants, comes from the strong relation-
ship between the geometric properties of a Gromov-hyperbolic space and the analytical
properties of its boundary at infinity. Quasi-isometries between hyperbolic spaces induce
quasisymmetric homeomorphisms between their boundaries, so any quasisymmetric invari-
ant gives a quasi-isometric one.

For hyperbolic groups, the understanding of the canonical conformal gauge of the bound-
ary at infinity —induced by the visual metrics— is an important step in the approach by
Bonk and Kleiner to the characterization problem of uniform lattices of PSL2(C), via their
boundaries —Cannon’s conjecture [BonK05]. They showed that Cannon’s conjecture is
equivalent to the following: if G is a hyperbolic group, whose boundary is homeomorphic
to the topological two-sphere S2, then the Ahlfors regular conformal dimension of ∂G
is attained. Motivated by Sullivan’s dictionary, Haïssinsky and Pilgrim translated these
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notions to the context of branched coverings [HP09]. In particular, the AR conformal
dimension characterizes rational maps between CXC branched coverings (see [HP09]).

Discretization has proved to be a useful tool in the study of conformal analytical objects
in metric spaces. Different versions of combinatorial modulus have been considered, by
several authors, in connection with Cannon’s conjecture (see [Can94, BonK02a, Haïss09]).
The combinatorial modulus is a discrete version of the analytical conformal modulus from
complex analysis, but unlike the latter, is independent of any analytical framework. It
is defined using coverings of X; therefore, it depends only on the combinatorics of such
coverings. In [BouK09], the authors proved several important properties of combinatorial
modulus for approximately self-similar sets. By defining a combinatorial modulus of a
metric space (X, d) that takes into account all the “annuli” of the space, with some fixed
radius ratio, we extend to a more general setting some of these properties.

The two main results of the present paper are Theorem 1.1 and Theorem 1.2. The first,
gives a combinatorial description of the AR conformal gauge from an appropriate sequence
of coverings of the space. The second, shows how to compute the AR conformal dimension
using a critical exponent associated to the combinatorial modulus. To state the theorems
we need some definitions.

Given an appropriate sequence of finite coverings {Sn}n of X, with

||Sn|| := max {diamB : B ∈ Sn} → 0, as n→ +∞, (1.1)

we adapt a construction of Elek, Bourdon and Pajot [BP03, Elek97], and construct a
geodesic hyperbolic metric graph Zd with boundary at infinity homeomorphic to X (see
Section 2 for precise definitions). With this identification the distance d becomes a visual
metric on ∂Zd. The vertices of the graph Zd are the elements of S :=

⋃
n Sn, and the edges

are of two types: vertical or horizontal. The vertical edges form a connected rooted tree T
—which is a spanning tree of Zd— and the horizontal ones describe the combinatorics of
intersections of the elements of S, i.e. two vertices B and B′ in the same Sn are connected
by an edge if λ ·B ∩ λ ·B′ 6= ∅, where λ is a large enough universal constant. We remark
that one of the assumptions involving the elements of S is that they are “almost balls” (see
(2.1),(2.2)). In particular, it makes sense to write λ ·B, and to talk about the center of B,
for an element B ∈ S (see Section 2).

The vertical edges connect an element of Sn with an element of Sm for |n − m| = 1.
All the edges of Zd are isometric to the unit interval [0, 1]. We denote by w the root of T ,
and B ∼ B′ means that B and B′ are connected by a horizontal edge. For each n ≥ 0, we
denote by Gn the subgraph of Zd consisting of all the vertices in Sn with all the horizontal
edges of Zd connecting two of them.

Consider a function ρ : S → (0, 1). This function can be interpreted as an assignment
of “new relative radius” of the elements of S, or as an assignment of “new lengths” for the
edges of Zd. For each element B ∈ S, there exists a unique geodesic segment in Zd which
joins the base point w and B; it consists of vertical edges and we denote it by [w,B]. The
“new radius” of an element B ∈ S is expressed by the function π : S → (0, 1) given by

π(B) :=
∏

ρ(B′),

where the product is taken over all elements B′ ∈ S ∩ [w,B]. Theorem 1.1 says that from
an appropriate function ρ : S → (0, 1) one can change the lengths of the edges of Zd, and
obtain a metric graph Zρ quasi-isometric to Zd. This graph admits a visual metric θρ,
automatically in JAR(X, d), of controlled Hausdorff dimension. When ρ goes through all
the possible choices we get all the gauge JAR(X, d) up to bi-Lipschitz homeomorphisms.
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To state the conditions on the function ρ we need the following notation (see Section 2).
For a path of edges in Zd, γ = {(Bi, Bi+1)}N−1

i=1 with Bi ∈ S, we define the ρ-length by

Lρ (γ) =
N∑
i=1

π (Bi) .

Let α > 1. For x, y ∈ X, by the assumption (1.1), there exists a maximal level m ∈ N
with the property that there exists an element B ∈ Sm with x, y ∈ α ·B. We let

cα(x, y) := {B ∈ Sm : x, y ∈ α ·B} ,

and we call it the center of x and y. We define π (cα(x, y)) as the maximum of π (B) for
B ∈ cα(x, y). We also define Γn(x, y) as the family of paths in Zd that join two elements
B and B′ of Sn, with x ∈ B and y ∈ B′. We remark that the paths in Γn(x, y) are not
constrained to be contained in Gn. Finally, for an element B ∈ Sm and n > m, we denote
by Dn(B) the set of elements B′ in Sn such that the geodesic segment [w,B′] contains B.

The conditions to be imposed to the wight function ρ are the following:
(H1) (Quasi-isometry) There exist 0 < η− ≤ η+ < 1 so that η− ≤ ρ(B) ≤ η+ for all

B ∈ S.
(H2) (Gromov product) There exists a constant K0 ≥ 1 such that for all B,B′ ∈ S with

B ∼ B′, we have
π(B)

π(B′)
≤ K0.

(H3) (Visual parameter) There exist α ∈ [2, λ/4] and a constant K1 ≥ 1 such that for
any pair of points x, y ∈ X, there exists n0 ≥ 1 such that if n ≥ n0 and γ is a path
in Γn(x, y), then

Lρ (γ) ≥ K−1
1 · π (cα(x, y)) .

(H4) (Ahlfors regularity) There exist p > 0 and a constant K2 ≥ 1 such that for all
B ∈ Sm and n > m, we have

K−1
2 · π(B)p ≤

∑
B′∈Dn(B)

π
(
B′
)p ≤ K2 · π(B)p.

We obtain the following results.

Theorem 1.1 (Combinatorial description of the gauge). Let (X, d) be a compact metric
space such that JAR(X, d) 6= ∅. Suppose the function ρ : S → (0, 1) verifies the conditions
(H1), (H2), (H3) and (H4). Then there exists a distance θρ on X quasisymmetrically
equivalent to d and Ahlfors regular of dimension p. Furthermore, the distortion function
of id : (X, d)→ (X, θρ) depends only on the constants η−, η+,K0 and K1, and

θ(x, y) � π (cα(x, y)) ,

for all points x, y ∈ X. Conversely, any distance in the AR conformal gauge of (X, d) is
bi-Lipschitz equivalent to a distance built in that way.

The terminology used in naming the hypotheses of the theorem will be explained in
Section 2. For instance, the condition stated in the hypothesis (H1) serves to prove that
Zd, with the new distance induced by ρ, is quasi-isometric to G. The other hypotheses are
interpreted in the same way. We remark that this approach, construction of Ahlfors regular
distances using the combinatorial modulus, had already been considered by J. Cannon in
[Can94].
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This combinatorial description is particularly adapted to work with the combinatorial
modulus. Let B be a ball in X, for n large enough we define Γn(B) to be the set of paths
γ of Gn, with vertices {Bi}Ni=1, such that the center of B1 belongs to B and that of BN
belongs to X \ 2 ·B (see Section 3 for a precise definition). We consider the set Rn(B) of
all admissible weight functions ρ : Sn → R+; i.e. ∀ γ ∈ Γn(B) we have

`ρ(γ) :=

N∑
i=1

ρ(Bi) ≥ 1.

Let p > 0. We define the p-combinatorial modulus associated to the ball B ⊂ X at scale n
as

Modp(B,n) := inf
ρ∈Rn(B)

 ∑
B′∈Sn

ρ(B′)p

 .

That is, one minimizes the p-volume among all the admissible weight functions. From this
combinatorial modulus, defined for the annuli associated to the balls of X, we define in
Section 3 a combinatorial modulus Mp,n that takes into account all these annuli. We are
interested in the asymptotic behavior of Mp,n as n tends to infinity, and its dependence
on p. We set Mp := lim infnMp,n. For fixed p > 0, the sequence {Mp,n}n verifies a sub-
multiplicative inequality (see Lemma 3.7). This allows us to define the critical exponent
QN := inf{p > 0 : Mp = 0}.

Theorem 1.2. Let (X, d) be a compact metric space such that JAR(X, d) 6= ∅. Then the
AR conformal dimension of (X, d) is equal to the critical exponent QN .

Bruce Kleiner informed me in May 2009 that, inspired by the work of Keith and Laakso,
he and Stephen Keith proved a similar (unpublished) result. In [BouK09] it is stated and
used in the self-similar case, see the Remark 1 after Corollary 3.13 therein. This was part
of the motivation for working on these questions and they led me to a proof of Theorem
1.2 in this general setting.

We derive Theorem 1.2 from Theorem 1.1. The idea of the proof is the following: by
definition, the combinatorial moduli Mp,n tend to zero as n tends to infinity for p > QN .
Therefore, one can choose n large enough, depending on the difference p − QN , so that
Modp(B,n) is small for all the “balls” B ∈ S. This gives some flexibility to change the
optimal weight functions, so as to obtain a function ρ : S → (0, 1) which satisfies the
conditions of the combinatorial description of the gauge given in Theorem 1.1. This gives
an AR metric θρ in J (X, d) of dimension p. The distortion of id : (X, d)→ (X, θρ) depends
on n, and thus on the difference p−QN .

This result confirms that the combinatorics of the graph Zd contains all the information
of the AR conformal gauge of X. It should be noted that it is true regardless of the
topology of X, it just requires JAR(X, d) to be non empty.

Let us discuss some important aspects of Theorem 1.2. First, it relates the two a priori
different definitions of conformal dimension. The definition given here is due to Bourdon
and Pajot [BP03], and is better suited for analytical issues. Nevertheless, the original
definition given in [Pan89] is closer to that of the critical exponent QN . For example, if
Z is a geodesic proper hyperbolic space, then βn := {0(x,R), x ∈ Z \ Bn} —where Bn is
the ball of radius n centered at a base point w ∈ Z, and 0(x,R) is the shadow of the ball
B(x,R) projected from the point w— defines a quasiconformal structure, in the sense of
Pansu, on ∂Z. Pansu associates a p-module grossier to such a quasiconformal structure,
and defines the conformal dimension as the infimum of p > 1 such that the p-module
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grossier of all —non trivial— connected subsets of ∂Z is zero. From the theoretical point
of view, Theorem 1.2 shows that these two approaches are actually equivalent. In relation
to Pansu’s definition, one advantage of the critical exponent QN is its discrete nature, and
the fact that QN is computed only from the horizontal curves of Zd.

Second, Theorem 1.2 enables to compute the AR conformal dimension when the com-
binatorics of the coverings S is not too complicated. Hopefully, this is the case in general
when the space X has good symmetry properties, such as the Sierpiński carpet. Also, for
this important fractal, the discrete nature of QN could provide a numerical estimate of the
AR conformal dimension. Theorem 1.2 also relates the AR conformal dimension to other
quasisymmetric invariants, like the `p-equivalence classes defined using the `p-cohomology
of the conformal gauge J (X, d) (see [BouK12]). In a forthcoming paper [Ca12] we give
some applications of Theorem 1.2 to the boundary of hyperbolic groups.

The existence of curve families of positive analytical modulus is strongly related to the
AR conformal dimension. This was already showed by J. Tyson [Tys98] who proved that
if (X, d) is AR of dimension Q > 1 and admits a family of curves of positive Q-analytical
modulus, then (X, d) attains its AR conformal dimension. Certainly more surprising, S.
Keith and T. Laakso [KL04] showed that this condition is almost necessary in the following
sense: if (X, d) is AR of dimension Q > 1 and if dimAR(X, d) = Q, then there exists a weak
tangent space of X that admits a family of curves of positive Q-analytical modulus (see
Section 3.3 for a definition of tangent space of a metric space). We note the importance of
this fact in the proof of the theorem of Bonk and Kleiner [BonK05].

We show in Corollary 3.10 how Theorem 1.2 clarifies the reasons for the existence of
curve families of positive analytical modulus when the AR conformal dimension is attained:
this is a consequence of the sub-multiplicative inequality of the combinatorial modulus and
the fact that the latter is bounded from above by the analytical modulus on weak tangent
spaces.

The proofs of Theorem 1.1 and Theorem 1.2 are rather technical and involve a careful
study of the dependence of some constants on the parameters used in the constructions.
For this reason, at risk of being repetitive, we include in the proofs detailed computations.

Acknowledgments. The author would like to thank Peter Haïssinsky for all his help
and advice. He also thanks Marc Bourdon and Bruce Kleiner for comments and suggestions.

1.1. Outline of the paper. The paper is mainly divided into two parts. In Section 2
we construct the graph Zd and we prove Theorem 1.1. In Section 2.4 we give sufficient
conditions that will allow us to construct regular distances, of given dimension, in the
conformal gauge (Proposition 2.10), and we simplify the hypothesis of Theorem 1.1 to
work with the combinatorial modulus (Proposition 2.9).

The purpose of Section 3.1 is to show how to compute the AR conformal dimension of
a compact metric space using the combinatorial modulus. We define the combinatorial
modulus associated to a sequence of graphs, the nerves of a sequence of coverings of X,
and its critical exponent QN . In Section 3.2 we complete the proof that QN is equal to
the AR conformal dimension of X (Theorem 1.2).

In Section 3.3, inspired by [BouK09], we show that the combinatorial modulus satisfies
some kind of sub-multiplicative inequality giving the positiveness of the combinatorial
modulus at the critical exponent (Corollary 3.9). We adapt to our situation arguments from
[KL04] and [Haïss09] to bound from above the combinatorial modulus by the analytical
moduli defined in the tangent spaces. Finally, these two facts with the equality QN =
dimARX give a more conceptual proof of Keith and Laakso’s theorem (Corollary 3.10).



ON THE CONFORMAL GAUGE OF A COMPACT METRIC SPACE 7

In Section 3.5 we treat different definitions of combinatorial modulus. In Theorem 3.12,
we give metric conditions on X that allow us to compute its AR conformal dimension
using another critical exponent QX , defined from “genuine” curves of X. In Corollary
3.14, we give a proof of the result of Keith and Kleiner mentioned earlier (Remark 1 after
Corollary 3.13 in [BouK09]), i.e. when X is approximately self-similar, it suffices to work
with the modulus of curves with definite diameter. This allows us to give, in Corollary
3.15, conditions under which the AR conformal dimension of X is equal to the supremum
of the AR conformal dimensions of its connected components.

1.2. Notations and some useful properties. Two quantities f(r) and g(r) are said
to be comparable, which will be denoted by f(r) � g(r), if there exists a constant K
which does not depends on r, such that K−1f(r) ≤ g(r) ≤ Kf(r). If only the second
inequality holds, we write g(r) . f(r). Similarly, we say that f(r) and g(r) differ by an
additive constant, denoted by g(r) = f(r) + O(1), if there exists a constant K such that
|g(r)− f(r)| ≤ K. For a finite set A we denote by #A its cardinal number.

A global distortion property of quasisymmetric homeomorphisms, which we will use
repeatedly throughout this article, is the following (see [Hei01] Proposition 10.8): let h :
X1 → X2 be a η-quasisymmetric homeomorphism. If A ⊂ B ⊂ X1 and diam1B < +∞,
then diam2f(B) < +∞ and

1

2
η

(
diam1B

diam1A

)−1

≤ diam2h(A)

diam2h(B)
≤ η

(
2diam1A

diam1B

)
. (1.2)

Let (X, d) be a compact metric space. We say that X is a doubling space if there exists
a constant KD ≥ 1 such that any ball of X can be covered by at most KD balls of half the
radius. This is equivalent to the existence of a function KD : (0, 1/2)→ R+ such that the
cardinal number of any εr-separated subset contained in a ball of radius r > 0, is bounded
from above by KD(ε). We recall that a subset S of X is called ε-separated, where ε > 0,
if for any two different points x and y of S we have d(x, y) ≥ ε.

We say that X is uniformly perfect if there exists a constant KP > 1 such that for
any ball B (x, r) of X, with 0 < r ≤ diamX, we have B (x, r) \B

(
x,K−1

P r
)
6= ∅. This is

equivalent to the fact that the diameter of any ball in X is comparable to the radius of
the ball. These two properties are quasisymmetric invariant and in fact we have: (X, d) is
doubling and uniformly perfect if and only if JAR(X, d) 6= ∅ (see [Hei01] Corollary 14.15).

Throughout the text, unless explicitly mentioned, X denotes a compact, doubling and
uniformly perfect metric space. We denote by dimH X its Hausdorff dimension and by
dimT X its topological dimension. We reserve the letter Z for a geodesic proper Gromov-
hyperbolic metric space.

The distance between two subsets A and B of a metric space is denoted by

dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
We denote the ball centered at x ∈ X and radius r > 0 by B(x, r) = {y ∈ X : d(x, y) < r}.
The r-neighborhood Vr(A) of A is defined as the union of all balls centered at A of radius
r. The diameter of A is denoted by diamA. The Hausdorff distance between A and B is

distH(A,B) := min{∂(A,B), ∂(B,A)},
where ∂(A,B) = inf{r > 0 : A ⊂ Vr(B)}.

We use in general the letters A,B,C, . . . to denote subsets of the space X and the letters
x, y, z, . . . to denote its points. The letters K, L and M , eventually with indices, denote
constants bigger or equal to 1, and the letter c, eventually with an index, denotes a positive
constant.
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2. Combinatorial description of the AR conformal gauge

2.1. Hyperbolic structure of the snapshots of a compact metric space. To con-
struct distances in the gauge we use tools and techniques from hyperbolic geometry. This
approach is based on the hyperbolicity of the snapshots of a compact metric space. By
the snapshots we mean the balls of the space, in the sense that a ball is a snapshot of the
space at a certain point and at a certain scale. This terminology comes from S. Semmes
[S01].

We adapt a construction of Bourdon and Pajot, based on a nearby construction due to
G. Elek (see [BP03] Section 2.1 and [Elek97]). This allows us to see the conformal gauge
of a compact metric space (X, d) as the canonical gauge of the boundary at infinity of
a hyperbolic space (Proposition 2.1). This hyperbolic space is a graph that reflects the
combinatorics of the balls of (X, d).

It is assumed in the following that X is doubling and uniformly perfect. Let κ ≥ 1,
a > 1 and λ ≥ 3, the following constructions depend on these parameters. For n ≥ 1, let
Sn be a finite covering of X such that for all B ∈ Sn, there exists xB ∈ X with

B
(
xB, κ

−1rn
)
⊂ B ⊂ B (xB, κrn) , (2.1)

where rn := a−n. We also suppose that for all B 6= B′ in Sn, we have

B
(
xB, κ

−1rn
)
∩B

(
xB′ , κ

−1rn
)

= ∅. (2.2)

We define S0 to be a one point subset of X, which we denote by w := {x0}, and represents
the covering consisting of X itself. We set S :=

⋃
n Sn. Also denote Xn the subset of X

consisting of the centers xB, with B ∈ Sn, defined in 2.1. We write |B| = n if B ∈ Sn. For
µ ∈ R+ and B ∈ Sn we denote by µ ·B the ball centered at xB and of radius µκrn.

We define a metric graph Gd as follows. Its vertices are the elements of S, and two
distinct vertices B and B′ are connected by an edge if∣∣|B| − |B′|∣∣ ≤ 1 and λ ·B ∩ λ ·B 6= ∅.

We say that B,B′ ∈ Sn are neighbors, and we write B ∼ B′, if B = B′ or if they are
connected by an edge of Gd. We equip Gd with the length metric obtained by identifying
each edge isometrically to the interval [0, 1]; we denote this distance by |B −B′|. So Sn is
the sphere of Gd centered at w and of radius n. See Figure 2.1.

Before proceeding, we recall some notions from the theory of Gromov-hyperbolic spaces.
We refer to [CDP90] and [GH90] for a detailed exposition. Let Z be a metric space, we say
that Z is proper if all closed balls are compact. A geodesic is an isometric embedding of an
interval of R in Z. We say that Z is a geodesic space if for any pair of points there exists
a geodesic joining them. In general, we use the notation |x − y| for the distance between
points, when the space Z is geodesic, proper and unbounded. We fix w ∈ Z a base point
and we denote |x| := |x−w| for x ∈ Z. The Gromov product of two points x, y ∈ Z, seen
from the base point w, is defined by

(x|y) :=
1

2
(|x|+ |y| − |x− y|) .

We say that Z is Gromov-hyperbolic (with hyperbolicity constant δ ≥ 0) if

(x|y) ≥ min {(x|z), (z|y)} − δ,

for all x, y, z ∈ Z. A ray from w is a geodesic γ : R+ → Z such that γ(0) = w. Let R∞
be the set of rays from w. The Gromov-boundary of Z, denoted by ∂Z, is defined as the
quotient of R∞ by the following equivalence relation: two rays γ1 and γ2 are said to be
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0

1

Xw

S0 S1 S2 S3 . . .

Figure 2.1. Let X be the interval [0, 1] in R. We choose a = 2 and λ = 3.
For each n ≥ 0, let Xn be the set of all mid points of the dyadic intervals{[

j
2n

j+1
2n

]
: j = 0, . . . , 2n

}
. Then Xn is a maximal 2−n-separated set. The

figure shows a sketch of the graph Gd. The edge length is equal to 1 and
the reader can see the hyperbolic nature of Gd.

equivalent if distH(γ1, γ2) < +∞. The space Z ∪ ∂Z has a canonical topology so that it is
a compactification of Z. This topology is in fact metrizable.

Let ε > 0, denote by φε : Z → (0,+∞) the application φε(x) = exp(−ε|x|). We define
a new metric on Z by setting

dε(x, y) = inf
γ
`ε(γ), where `ε(γ) =

∫
γ
φε, (2.3)

and where the infimum is taken over all rectifiable curves γ of Z joining x and y. The
space (Z, dε) is bounded and not complete. Let Zε be the completion of (Z, dε) and denote
∂εZ = Zε\Z. When Z is a Gromov-hyperbolic space, there exists ε0 = ε0(δ) > 0 such
that for all 0 < ε ≤ ε0, the space ∂εZ coincides with the Gromov-boundary of Z and dε is
a visual metric of parameter ε. That is to say, we can extend the Gromov product to the
boundary ∂Z, and for all x, y ∈ ∂Z we have

dε(x, y) � exp (−ε(x|y)) . (2.4)

We can interpret (2.4) as follows: if γ1 and γ2 are two geodesic rays which represent
the points x and y of ∂Z respectively, then the Gromov product (x|y) measures the length
over which these two geodesics are at a distance comparable to δ. So these two points of
the boundary are close for the visual metric if the two geodesic rays are at a distance com-
parable to δ, for a long period of time. Since visual metrics are always quasisymmetrically
equivalent, they define a canonical conformal gauge on the boundary ∂Z.

Since X is doubling, the graph Gd is of finite valence and hence it is a proper space.
It is also geodesic, because it is a complete length space. The vertices of a ray γ from w
determine a sequence of elements Bn ∈ Sn with λ · Bn ∩ λ · Bn+1 6= ∅. Such a sequence
has a unique limit point in X denoted p(γ). If γ1 and γ2 are two rays at finite Hausdorff
distance, then p (γ1) = p (γ2). Also the map p : R∞ → X is surjective, because {Sn} is a
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o

(∂Z, {dε})

Z

(x|y)

δ

x

y

Figure 2.2. The canonical conformal gauge of the boundary of a Gromov-
hyperbolic space.

sequence of coverings. The following proposition, due to Bourdon and Pajot, allows us to
use the tools of hyperbolic geometry to study the conformal gauge of X.

Proposition 2.1 ([BP03] Proposition 2.1). The metric graph Gd is a Gromov-hyperbolic
space. The map p induces a homeomorphism between ∂Gd and X, and the metric d of X
is a visual metric of visual parameter log a. That is, for all ξ, η ∈ ∂Gd, we have

d (p(ξ), p(η)) � a−(ξ|η).

In particular, with this identification, the conformal gauge of X coincides with the canonical
conformal gauge of ∂Gd.

Remark. From the proof of the proposition, we know that the comparison constants
depend on λ, KP , κ and a: indeed, for any pair of vertices B and B′ of Gd, we have

1

a2KPκ
· a−(B|B′) ≤ diam

(
B ∪B′

)
≤ 4λκa

a− 1
· a−(B|B′).

This shows that the distortion of p tends to infinity when a → ∞. Nevertheless, the
hyperbolicity constant of Gd is given by

δ = loga

(
8λKPκ

2a3

a− 1

)
,

which remains bounded when a→∞.
We start by simplifying the space Gd, by taking a subgraph with less vertical edges on

which it will be easier to control the length of vertical curves, while remaining within the
same quasi-isometry class. To do this, we need the notion of a genealogy on S. Let V :=
{Vn}n≥0 be a sequence of “almost partitions” of X, defined by Vn := {Vn(B) : B ∈ Sn},
where for each n ≥ 0 and B ∈ Sn, Vn(B) is the subset of X defined by

Vn(B) := {y ∈ X : d(y, xB) = dist(y,Xn)} . (2.5)

The sets in Vn satisfy the following properties:
(1) X =

⋃
B∈Sn

Vn(B) for each n ≥ 0,
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(2) for each n ≥ 0 and B ∈ Sn, the set Vn(B) is compact and from (2.1) and (2.2), we
have

B
(
xB, κ

−1rn
)
⊂ Vn(B) ⊂ B (xB, κrn) . (2.6)

The second inclusion is a consequence of the fact that Sn is a covering of X. From V
we can define for each n ≥ 0, a partition {Tn(B)}B∈Sn of Sn+1 as follows: associate to
B′ ∈ Sn+1 an element B ∈ Sn which verifies xB′ ∈ Vn(B). Choose any one of them if there
are several such elements.

If B ∈ Sn and r > 0, we denote by Nr(B) the set of B′ ∈
⋃
l≥n+1 Sl such that xB′ ∈

B (xB, r). We also set Ar(B) := Nr(B) ∩ Sn+1. With this notation, according to (2.6)
above, we have

Aκ−1rn(B) ⊂ Tn(B) ⊂ Aκrn(B). (2.7)

We say that the elements of Tn(B) are descendants of B ∈ Sn, and that B is their common
parent. This is reminiscent of the construction of dyadic decompositions, see for example
[Chr90].

Note that for all n ≥ 0 and B ∈ Sn, the cardinal number of Tn(B) is less than or equal
to KD (κ, a) a constant which depends only on κ, a and the doubling constant of X. Also
since X is uniformly perfect, for any constant N ∈ N, we can choose a large enough which
depends only on the constants KP and κ, such that #Aκ−1rn(B) ≥ N for all n and B ∈ Sn.

We define the genealogy of an element B ∈ S as

g(x) =

{
B if B ∈ S0

(B0, B1, . . . , Bn+1) if B ∈ Sn+1, n ≥ 0
,

where Bn+1 = B and Bj ∈ Sj is the parent of Bj+1 ∈ Sj+1 for j = 0, . . . , n. Let B ∈ Sn,
denote by D(B) the elements of S which are descendants of B. That is,

D(B) =
{
B′ ∈ Sl : l ≥ n+ 1, g(B′)n = B

}
.

We also set Dl(B) := D(B) ∩ Sl, l > n, the descendants of B in the generation l. The
genealogy V determines a spanning tree T of Gd, where e = (B,B′) is an edge of T if and
only if B or B′ is the parent of the other.

Let Zd be the subgraph of Gd such that it has the same vertices that Gd, and the edge
e = (B,B′) of Gd is also an edge of Zd if and only if either e is a horizontal edge (i.e. B
and B′ belong to the same Sn), or e belongs to the spanning tree T given by the genealogy
{Vn}. In this way, Zd is a connected graph, and we equip it with the length distance that
makes all edges isometric to the interval [0, 1]. Thus, we obtain a geodesic distance which
we will denote by | · |1. The inclusion Zd ↪→ Gd is co-bounded, because all vertices belong
to Zd, and we have | · | ≤ | · |1.

Recall that a quasi-isometry between two metric spaces is a map f : (Z1, | · |1) →
(Z2, | · |2) which satisfies the following properties: there exist constants Λ ≥ 1 and c ≥ 0
such that

(i) for all x, y ∈ Z1, we have

1

Λ
|x− y|1 − c ≤ |f(x)− f(y)|2 ≤ Λ|x− y|1 + c,

(ii) and for all z ∈ Z2, dist2 (z, f(Z1)) ≤ c, i.e. f has co-bounded image.
See for example [CDP90] and [GH90]. More important for us, is the fact that a quasi-
isometry f : (Z1, | · |1)→ (Z2, | · |2) induces a quasisymmetric homeomorphism f̂ : ∂Z1 →
∂Z2 between the boundaries, when they are endowed with visual metrics. Therefore, it
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preserves the canonical conformal gauge of the boundary. See Section 3 of [Haïss08] for a
more precise statement of this property.

Now let e = (B,B′) be an edge of Gd which does not belongs to Zd. We can assume,
without loss of generality, that B ∈ Sn+1 and B′ ∈ Sn. According to item (v) of Lemma
2.2 below, if B′′ ∈ Sn is the parent of B, then e′ = (B′′, B′) is a horizontal edge of Gd,
and hence of Zd. This implies that for any edge-path γ in Gd, there exists an edge-path
γ1 ∈ Zd with `1 (γ1) ≤ 2` (γ). This implies that | · |1 ≤ 2| · | + 2, so Zd is quasi-isometric
to Gd.

This completes the construction of the geodesic hyperbolic metric graph Zd with bound-
ary at infinity homeomorphic to X. With this identification, the distance d is quasisym-
metrically equivalent to any visual metric on ∂Zd. The vertices of the graph Zd are the
elements of S =

⋃
n Sn, and the edges are of two types: vertical or horizontal. The vertical

edges form a connected rooted tree T and the horizontal ones describe the combinatorics
of intersections of the elements in S.

2.2. Some properties of the graph Zd. For some technical reasons, the parameters a
and λ must be large enough. We fix λ ≥ 32, and it is thought to be an additional constant.
Once λ is fixed, we can choose the parameter a freely, with the sole condition that

a ≥ K := 6κ2 max{λ,KP }. (2.8)

This inequality ensures that certain conditions, which occur naturally in subsequent com-
putations, are verified, and guarantees some geometric properties of the graph Zd. In the
following lemma we list some of these properties which will be useful in the sequel, and
which show how the relation (2.8) is involved in the geometry of the graph. The reader may
skip this lemma and consult the required points at the time these properties are quoted.

Lemma 2.2 (Properties of the graph). Write τ = a
a−1 and εn = a−n+1

a−1 = τrn.
(i) Let n ≥ 0 and B ∈ Sn. Then

Nκ−1rn (B) ⊂ D(B) ⊂ Nτεn(B). (2.9)

Recall the notation adopted in (2.7).
(ii) Let z be a point of X, r > 0 and n ≥ 1 such that rn ≤ r. If B is an element of
Sn+1 which verifies d(z, xB) < rn+1, then

X(B) :=
{
xB′ : B′ ∈ D(B)

}
⊂ B

(
z,
r

2

)
. (2.10)

(iii) If B is an element of Sn and z is a point of X such that d(z, xB) ≥ r+ 2κrn, then

X(B) ∩B(z, r) = ∅. (2.11)

(iv) Let B and B′ be two elements of Sn+1 such that d(xB, xB′) ≤ 4rn. If C and C ′ are
elements of Sn such that d (xC , xB) ≤ 2rn and d (xC′ , xB′) ≤ 2rn, then C and C ′
are neighbors.

(v) Let B be an element of Sn+1 and C,B′ ∈ Sn be such that there exists an edge in
Gd joining B and C, and B′ is the parent of B. Then B′ and C are neighbors.

(vi) For all n ≥ 0 and B ∈ Sn, the cardinal number of the set Aκ−1rn(B), defined in
(2.7) above, is at least two.

(vii) Let B be an element of Sn and B′ an element of Sn+1 such that xB belongs to the
ball B (xB′ , κrn+1). Then, all the neighbors of B′ in Sn+1 are descendants of B,
i.e. they belong to Tn(B).

Proof.
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(i) If B ∈ Sn and B′ ∈ D(B) ∩ Sl with l ≥ n+ 1, then

d(xB, xB′) ≤
l−1∑
i=n

d(xi, xi+1) ≤
l−1∑
i=n

κa−i ≤ a−n+1

a− 1
= κεn,

where xi is the center of g(B)i. ThusD(B) ⊂ Nκεn(B). Analogously, if d(xB, xB′) <
rn
2κ , with B

′ ∈ Sl, B ∈ Sn and l > n, then B′ ∈ D(B). In fact, let B′′ = g(B′)n+1,
then

d(xB′′ , xB) ≤ d(xB′′ , xB′) + d(xB′ , xB) < κεn+1 +
a−n

2κ
= a−n

(
κτ

a
+

1

2κ

)
<
a−n

κ
,

according to (2.8). Thus B′′ ∈ D(B) ∩ Sn+1, which implies B′ ∈ D(B).
(ii) We see that if B′ ∈ D(B), then

d(z, xB′) ≤ d(z, xB) + d(xB, xB′′) < a−(n+1) + κεn+1

= a−n
(

1

a
+
κτ

a

)
< r

(
1 + κτ

a

)
<
r

2
,

according to (2.8).
(iii) Since D(B) ⊂ Nκεn(B), for all B′ ∈ D(B), we have

d(z, xB′) ≥ r + 2κa−n − κεn > r,

because after the choice of a, we have τ < 2 (see (2.8)).
(iv) Since d (xB, xB′) ≤ 4a−n we have

d (xC , xC′) ≤ a−n(4 + 2κ) ≤ λκa−n,

where the last inequality is true because λ > 6. Therefore C ∼ C ′.
(v) Let w ∈ λ ·B. Then

d (w, xB′) ≤ d (w, xB) + d (xB′ , xB) ≤ κλa−(n+1) + κa−n =

(
λ

a
+ 1

)
κa−n < λκa−n,

according to (2.8). Thus λ · B ⊂ λ · B′, which implies λ · C ∩ λ · B′ 6= ∅ and that
B′ ∼ C.

(vi) Let B be an element of Sn with n ≥ 0. Since X is uniformly perfect, there exists
a point y in the ball B

(
xB, (2κ)−1rn

)
such that d(y, xB) ≥ (2κKP )−1rn. So if B′

is an element of Sn+1 such that y ∈ B (xB′ , κrn+1), we have

κrn+1 <
rn

2κKP
− κrn+1 ≤ d (xB′ , xB) ≤

(
κ

a
+

1

2κ

)
a−n ≤ 1

κ
rn.

The first and the last inequalities are consequence of (2.8). Let B′′ be an element
of Sn+1 such that xB belongs to the ball B (xB′′ , κrn+1). Then B′ and B′′ are two
different elements of Aκ−1rn(B).

(vii) Indeed, if B′′ ∼ B′ in Sn+1, then d(xB′′ , xB) ≤ 2λκrn+1 ≤ κ−1rn, so all neighbors
of B′ in Sn+1 belong to the set Aκ−1rn(B).

�
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2.3. Proof of Theorem 1.1. We start by recalling the notation, given in the Introduction,
involved in the statement of the theorem. For each element B ∈ S, there exists a unique
geodesic segment in Zd which joins the base point w and B; it consists of vertical edges
that join the parents of B. Denote it by [w,B]. Given a function ρ : S → (0, 1), which can
be interpreted as an assignment of “new relative radius” of the elements of S —or, as we
will see later, an assignment of “new lengths” for the edges of Zd— the “new radius” of an
element B ∈ S, is expressed by the function π : S → (0, 1) given by

π(B) :=
∏

ρ(B′),

where the product is taken over all the balls B′ ∈ S ∩ [w,B].
If γ = {(Bi, Bi+1)}N−1

i=1 is a path of edges in Zd with Bi ∈ S, we define the ρ-length of
γ by

Lρ (γ) =
N∑
i=1

π (Bi) .

Let α > 1. For x, y ∈ X, let m ∈ N be maximal such that there exists B ∈ Sm with
x, y ∈ α ·B. We let

cα(x, y) := {B ∈ Sm : x, y ∈ α ·B} ,
and call it the center of x and y. Note that if m = |cα(x, y)| —distance to the base point
w— then by maximality of m, and the fact that Sm+1 is a covering of X, we have

(α− 1)κrm+1 ≤ d(x, y) ≤ 2καrm.

Define π (cα(x, y)) as the maximum of π (B) for B ∈ cα(x, y). We also let Γn(x, y) be the
family of paths in Zd that join two elements B and B′ of Sn, with x ∈ B and y ∈ B′.
Finally, for an element B ∈ Sm and n > m, we denote by Dn(B) the set of its descendants
B′ in Sn.

Suppose the parameters a and λ verify (2.8), and the function ρ satisfies the following
conditions.
(H1) (Quasi-isometry) There exist 0 < η− ≤ η+ < 1 so that η− ≤ ρ(B) ≤ η+ for all

B ∈ S.
(H2) (Gromov product) There exists a constant K0 ≥ 1 such that for all B,B′ ∈ S with

B ∼ B′, we have
π(B)

π(B′)
≤ K0.

(H3) (Visual parameter) There exist α ∈ [2, λ/4] and a constant K1 ≥ 1 such that for
any pair of points x, y ∈ X, there exists n0 ≥ 1 such that if n ≥ n0 and γ is a path
in Γn(x, y), then

Lρ (γ) ≥ K−1
1 · π (cα(x, y)) .

(H4) (Ahlfors regularity) There exist p > 0 and a constant K2 ≥ 1 such that for all
B ∈ Sm and n > m, we have

K−1
2 · π(B)p ≤

∑
B′∈Dn(B)

π
(
B′
)p ≤ K2 · π(B)p.

We must show that there exists a distance θρ on X, quasisymmetrically equivalent to
d and Ahlfors regular of dimension p. Moreover, from the proof we will obtain θρ(x, y) �
π (cα(x, y)) for all x, y ∈ X. Conversely, any distance in the gauge is bi-Lipschitz equivalent
to a distance built in that way.
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The proof of the direct implication is made in several steps. The first one (Lemma 2.3), is
to find a distance |·|ρ in Zd, so that (Zd, |·|ρ) is quasi-isometric to Zd and |B|ρ = log π(B)−1

for all B ∈ S. This is where the hypotheses (H1) and (H2) are used, they give us a control
of the length of vertical curves in Zd and of the Gromov product in this new metric.

The second step is to show the existence of a visual metric θρ in the boundary of (Zd, |·|ρ),
of large enough visual parameter (Proposition 2.4). It is mainly here where we use the
assumption (H3). We automatically have θρ ∈ J (X, d), because it is a visual metric.
Finally, the control of the visual parameter and hypothesis (H4), will enable us to show
that the p-dimensional Hausdorff measure is Ahlfors regular (Proposition 2.8).

2.3.1. Proof of the converse. We start by proving the converse of the theorem, because it
helps understanding the significance of the hypotheses.

Let θ ∈ J (X, d) be Ahlfors regular of dimension p > 0, and let η : [0,∞) → [0,∞)
be the distortion function of id : (X, d) → (X, θ). We write diamθ for the diameter in
the distance θ, and µ its p-dimensional Hausdorff measure. For n ≥ 1 and B ∈ Sn, if we
denote the parent of B by B′ = gn−1(B), we define

ρ (B) :=

(
µ (λ ·B)

µ (λ ·B′)

)1/p

.

With this definition, π(B) = µ (λ ·B)1/p. We begin with some general remarks. Let
β ≥ 1, r > 0 and x ∈ X, then there exists s > 0 such that if we denote Bθ(s) the ball in
the distance θ centered at x and of radius s, then Bθ(s) ⊂ B(x, r) ⊂ B(x, βr) ⊂ Bθ(Hβs),
where Hβ = η(β). Therefore, there exists a constant Kβ , which depends only on Hβ and
the constant KP , such that

1 ≤ diamθB(x, βr)

diamθB(x, r)
≤ Kβ.

In particular, this implies —by taking β = 1— that there exists a constant K, depending
only on p, H1 and the regularity constant of µ, such that

K−1 · diamθB(x, r)p ≤ µ (B(x, r)) ≤ K · diamθB(x, r)p.

First we check (H1): let n ≥ 1 and B ∈ Sn, denote B′ the parent of B in Sn−1.
We have λ · B ⊂ 2 · B′. Since X is uniformly perfect of constant KP , we know that
An−1 := (2KP ·B′)\2·B′ 6= ∅. Hence, there exists C ∈ Sn such that C∩An−1 6= ∅. We have
λ ·B∩C = ∅, because by the triangle inequality d(C, λ ·B) ≥ κ(2rn−1−(λ+3)rn) > 0, and
by the choice of a and λ, we have C ⊂ λ ·B′ (see (2.8)). Since µ (λ ·B) +µ (C) ≤ µ (λB′),
we obtain

µ (λ ·B)

µ (λ ·B′)
≤ 1− µ (C)

µ (λB′)
.

On the other hand,

µ (C)

µ (λ ·B′)
≥ 1

K2

(diamθC)p

(diamθλ ·B′)p
≥ 1

2K2 · η (2λKPa)p
:= δ.

So it suffies to take η+ = 1− δ1/p. Similarly, we have

ρ(B) ≥ 1

2K2/p
· η
(

diamλ ·B′

diamλ ·B

)−1

≥ 1

2K2/p
· η
(

2a

KP

)−1

:= η−.
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For (H2), we see that if B,B′ ∈ Sn are neighbors, then λ · B′ ⊂ 3λ · B. Thus, there
exists a constant K0 that depends only on η, K and p, such that

π(B)

π(B′)
=

(
µ (λ ·B)

µ (λ ·B′)

)1/p

≤ K2/p diamθλ ·B
diamθλ ·B′

≤ K0.

We take α = 2 and we now look at (H3). Let x, y ∈ X, m = |c2(x, y)| and C ∈ c2(x, y).
We have

θ(x, y)

diamθλ · C
≥ 1

2
· η
(

diamλ · C
d(x, y)

)−1

≥ 1

2
· η (2λa)−1 .

Therefore, there exists a constant K ′ which depends only on K and a, such that

θ(x, y) ≥ 1

K ′
· π(C).

On the other hand, if B,B′ ∈ Sn are such that x ∈ B and y ∈ B′, with n ≥ m, and if
γ = {(Bi, Bi+1)}Ni=1 is a path of the graph Zd with B1 = B and BN = B′, we have

θ(x, y) ≤
N∑
i=1

diamθλ ·Bi ≤ K1/p
N∑
i=1

π (Bi) .

Thus, we obtain (H3) with K1 =
(
K ′K1/p

)−1.
Finally, we look at (H4). Let m ≥ 0, n ≥ m + 1 and B ∈ Sm. Since the union of the

balls λ ·B′, with B′ ∈ Dn(B), contains the ball centered at xB and of radius (2κ)−1rm, we
have

µ
(
B(xB, (2κ)−1rm)

)
≤

∑
B′∈Dn(B)

π(B′)p.

Remember that the balls
{
B
(
xB′ , κ

−1rn
)

: B′ ∈ Dn(B)
}
are pairwise disjoint. Therefore,

there exists a constant K ′′ which depends only on the function H and the constants λ, κ
and K, such that∑

B′∈Dn(B)

π(B′)p ≤ K ′′
∑

B′∈Dn(B)

µ
(
B
(
xB′ , κ

−1rn
))
≤ µ (λ ·B) .

This proves (H4) with a constant K2 which depends on λ. Moreover, the proof of (H3)
shows that for all x, y ∈ X, we have

π (c2(x, y)) � θ(x, y),

where the constants of comparison depend on a and λ. The distance θρ constructed using
the function ρ is also bi-Lipschitz to π (c2(x, y)), so θ is bi-Lipschitz equivalent to θρ. This
ends the proof of the converse.

2.3.2. Proof of the direct implication. We start with the following lemma.

Lemma 2.3. There exists a distance | · |ρ on the graph Zd bi-Lipschitz equivalent to | · |,
with the property that any vertical path of edges γ in Zd, joining B ∈ Sn and B′ ∈ Sm, is
a geodesic segment for the distance | · |ρ and its length is

`ρ(γ) =

∣∣∣∣log
1

π(B)
− log

1

π(B′)

∣∣∣∣ .
In particular, for all B ∈ S, we have |x − w|ρ = log 1

π(B) . We denote by Zρ the graph Zd
with the distance | · |ρ.
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BB′
ek+1

w

gγ′

B

B′

log 1
ρ(B)

B′B

K3

Figure 2.3. Proof of the Lemma 2.3.

Proof. By (H2), there exists a constant K0 ≥ 1 such that if B and B′ belong to Sn and
B ∼ B′, then

1

K0
≤ π(B)

π(B′)
≤ K0. (2.12)

Set K3 := 2 max
{
− log η−,− (log η+)−1 , logK0

}
> 0. Let | · |ρ be the length distance in

Zd such that the length of an edge e = (B,B′) is given by

`ρ(e) =

{
K3 if e is horizontal
log 1

ρ(B) if B ∈ Sn+1 and B′ = g(B)n.

Since 1
K3
≤ `ρ(e) ≤ K3 for any edge e of Zd (by (H1)), the distance | · |ρ is bi-Lipschitz

equivalent to | · |. Finally, it suffices to show that if γ is a geodesic for | · |ρ which joins w
and B ∈ Sn, then γ is a path of vertical edges.

Suppose γ = {ei}Ni=1, and that there is a first k ≥ 1 such that ek+1 = (B′, B) is a
horizontal edge. Denote by γ′ = {ei}k+1

i=1 and remark that B′, B ∈ Sk. Let g = {gi}ki=1 be
the path of vertical edges joining w and B, where gi = (g(B)i−1, g(B)i) for all i = 1, . . . , k.
Then `ρ(g) = log 1

π(B) and `ρ(γ′) = log 1
π(B′) +K3. Since B′ ∼ B, we have by (2.12)

`ρ(g) = log
1

π(B)
≤ log

1

π(B′)
+
K3

2
< `ρ(γ

′),

which is a contradiction, since γ′ is also a geodesic for | · |ρ. �

Since Zρ is a geodesic space quasi-isometric to Zd, Zρ is Gromov hyperbolic, its boundary
at infinity ∂Zρ is homeomorphic to X and any visual metric on ∂Zρ is quasisymmetrically
equivalent to the original distance d of X. We identify ∂Zρ with X.

The following proposition allows us to control the visual parameter that guarantees the
existence of visual metrics on ∂Zρ. For B,B′ ∈ Zρ, we denote the Gromov product of B
and B′ in the distance | · |ρ by (B|B′)ρ. To simplify the notation, we write c(x, y) instead
of cα(x, y) for x, y ∈ X.

Proposition 2.4 (Visual parameter control). There exists a visual metric θρ on ∂Zρ of
visual parameter equal to 1. Moreover, for all x, y ∈ X, we have

e−(x|y)ρ � π(c(x, y)). (2.13)

The proof of Proposition 2.4 is divided into several lemmas. Recall that for ε > 0, we
denote by φε : Zd → (0,+∞) the function given by φε(x) = exp (−ε|x− w|ρ) (see (2.4)).
We have the metric dε on Zd defined in (2.3). Also recall that (Zd, dε) is a non complete
bounded metric space. Denote by ρε(B) := ρ(B)ε and πε(B) := π(B)ε.

Note that for all ε ∈ (0, 1], the function ρε satisfies the hypotheses (H1), (H2) and (H3)
of Theorem 1.1, with the constants to the power ε, and the hypothesis (H4) holds with
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pε := p/ε. In the sequel we will always assume ε ∈ (0, 1]. We first need to estimate the
ρε-length of an edge e of the graph Zd.

Lemma 2.5. There exists a constant K4 such that for any edge e = (B,B′) of the graph
Zd, we have

1

K4

πε(B) + πε(B
′)

2
≤ `ε(e) ≤ K4

πε(B) + πε(B
′)

2
. (2.14)

Proof. Let e = (B,B′) be an edge of Zd. Since 1/K3 ≤ `ρ(e) ≤ K3 and ||z|ρ − |B|ρ| ≤ K3

for all z ∈ e, we have

πε(B)
1

K3
exp(−εK3) ≤

∫
e

exp (−ε|z|ρ) ds ≤ πε(B)K3 exp(εK3).

Thus K−1
4 πε(B) ≤ `ε(e) ≤ K4πε(B), where K4 is a constant which depends only on K3

and ε. In the same way we obtain `ε(e) � πε(B′). This show (2.14). �

Lemma 2.6. Let x and y be two points in X and let m = |c(x, y)|. Then for all n ≥ m,
we have

dε(B,B
′) . πε (c(x, y)) , (2.15)

where B and B′ are elements in Sn that contain x and y respectively.

Proof. Let B and B′ be as in the statement of the lemma and let C ∈ c(x, y). Consider
the geodesic segments g1 = [Bm, B] and g2 = [B′m, B

′], where we write Bm = g(B)m ∈ Sm
and B′m = g(B′)m ∈ Sm. To simplify the notation, we write xm and ym for the centers of
Bm and B′m respectively. Then

d(xm, xC) ≤ d(xm, xB) + d(xB, x) + d(x, xC)

≤ κ (τ + 1 + α) a−m ≤ κ (3 + λ/4) a−m ≤ λκa−m,
where the last inequality follows from the fact that λ > 4. So e = (Bm, C) is a horizontal
edge of Zd. Similarly (B′m, C) is an edge of Zd.

Set γ to be the curve of Zd, which joins B and B′, given by

γ := [B,Bm] ∗ (Bm, C) ∗ (C,Bm) ∗
[
B′m, B

′] . (2.16)

We also write Bi = g(B)i and B′i = g(B′)i for i = m+ 1, . . . , n− 1. Then, by Lemma 2.5,
we can bound from above the ρε-length of γ by

`ε (γ) ≤ `ε (g1) + `ε ((Bm, C)) + `ε
(
(C,B′m)

)
+ `ε (g2)

≤ K4 ·

(
n−1∑
i=m

π(Bi)
ε + 2π(C)ε +

n−1∑
i=m

π(B′i)
ε

)

≤ K4 ·

(
π(Bm)ε ·

n−1∑
i=m

(ηε+)i + 2π(C)ε + π(B′m)ε
n−1∑
i=m

(ηε+)i

)
. π(C)ε,

where the last inequality follows from (2.12). This implies (2.15). �

Proof of Proposition 2.4. Let x and y be two points in X, from (H3) and Lemma 2.5,
there exists n0 such that if n ≥ n0 and if γ = {(Bi, Bi+1)}N−1

i=1 is a curve with B1 = B and
BN = B′, where B and B′ are elements in Sn such that x ∈ B and y ∈ B′, then

`ε (γ) &
N−1∑
i=1

πε(Bi) + πε(Bi+1)

2
≥ 1

2
Lρε (γ) ≥ 1

2Cε1
· πε (c(x, y)) .
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n

m
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α · C X

cα(x, y)Bm B′m

γ

B B′

x y

Figure 2.4. The curve γ of Zρ is minimizing, up to a multiplicative
constant, for the length `ε.

This and Lemma 2.6 imply that for any ε ∈ (0, 1], the boundary at infinity ∂εZd is home-
omorphic to X. Moreover, for all x, y ∈ X, we have

dε(x, y) � π(c(x, y))ε,

where c(x, y) is the center of x and y in Zd. On the other hand, we know that there exists
ε0 > 0 small enough, depending only on the hyperbolicity constant of Zρ, such that for all
x, y ∈ X, we have

dε0(x, y) � e−ε0(x|y)ρ .

But then, for ε = 1, we obtain

d1(x, y)ε0 � π(c(x, y))ε0 � dε0(x, y) � e−ε0(x|y)ρ .

That is, θρ = d1 is a visual metric and in addition π(c(x, y)) � e−(x|y)ρ . This finish the
proof of the proposition. �

Remark. This proposition can be interpreted as an analogue of the Gehring-Hayman
theorem for Gromov-hyperbolic spaces (see Theorem 5.1 of [BHK01]). The assumption
(H2) is equivalent to a Harnack type inequality. The proposition says that geodesics of Zρ
are minimizers, up to a multiplicative constant, for the length `ε. Indeed, given two points
x, y ∈ X, if n ≥ m = |c(x, y)| and B,B′ ∈ Sn are such that x ∈ B and y ∈ B′, then the
curve γ = [B,Bm] ∗ (Bm, C) ∗ (C,B′m) ∗ [B′m, B

′], where C ∈ c(x, y) and Bm, B′m ∈ Sm are
the parents of B and B′ respectively, has an ε-length comparable to πε (c(x, y)). Therefore,
this curve is minimizing up to a multiplicative constant —for n ≥ n0. The important point
here is the fact that one can control the visual parameter ε using the hypothesis (H3). See
Figure 2.4.
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The third step is to show that for the distance θρ, the p-dimensional Hausdorff measure
is Ahlfors regular. We will use the assumption (H4) to construct a measure µ on X which
is comparable to the p-dimensional Hausdorff measure.

Let ω : S → (0,+∞) be given by ω(B) = ρ(B)p. We can define by induction a sequence
of purely atomic measures µn, with atoms on Xn the centers of the elements in Sn, by
setting µ0(xw) = 1 for the sole point w ∈ S0, and

µn+1(xB) = ω(B)µn(xB′),

for B ∈ Tn(B′) and B′ ∈ Sn. That is, µn(xB) = π(B)p if B ∈ S, and if we denote δx the
Dirac measure at x, we can write

µn =
∑
B∈Sn

π(B)pδxB .

Recall that we write X(B) for the set of centers of the elements B′ ∈ D(B). Note that
according to (H4), for all n ≥ 0, B ∈ Sn and l ≥ n, we have

1

K2
µn(xB) ≤ µl (X(B)) ≤ K2µn(xB).

In particular, we have K−1
2 ≤ µn(X) ≤ K2 for all n ≥ 0. Moreover, according to (H1) and

(H2):
(i) There exists a constant c ∈ (0, 1) such that c ≤ ω(B) ≤ 1 for all B ∈ S.
(ii) There exists a constant K ′0 = Kp

0 ≥ 1 such that if B,B′ ∈ Sn satisfy B ∼ B′, then
µn(xB)

µn(xB′)
≤ K ′0. (2.17)

Let µ be any weak limit of the sequence µn. More precisely, there exists a subsequence
µni which weakly converges to the measure µ on X. To simplify notation, we remove the
sub-index i.

Lemma 2.7. Let x and y be two points in X and let r = d(x, y). Then

µ (B(x, r)) � π (c(x, y))p . (2.18)

Proof. Let m = |c(x, y)| so that (α − 1)κrm+1 < r ≤ 2ακrm holds. Let’s start with the
lower bound. There exists B1 ∈ Sm+2 such that d(x, xB1) < κrm+2. Indeed, the balls
B (xB, κrm+2), with B ∈ Sm+2, form a covering of X. For simplicity, write x1 := xB1 .
According to the inclusion (2.10), we haveX(B1) ⊂ B

(
x, r2

)
, because rm+2 = a−(m+2) < r.

Therefore, for all n ≥ m+ 2, we obtain

µn

(
B
(
x,
r

2

))
≥ µn(X(B1)) ≥ K−1

2 µm+2(z1). (2.19)

Take B ∈ Sm such that d(x, xB) ≥ r + 2κrm. By property (2.11), we know that X(B) ∩
B(x, r) = ∅. This implies that for all n ≥ m, if an element B of Sn is such that xB ∈
B(x, r), then its m-generation parent g(B)m belongs to B(x, r + 2κrm). Thus,

µn (B(x, r)) ≤ K2µm (B(x, r + 2κrm)) . (2.20)

Making n→ +∞ (in the subsequence ni), from (2.19) and (2.20), one concludes that

µ (B(x, r)) ≤ lim inf µn (B(x, r)) ≤ K2µm (B(x, r + 2κrm)) and (2.21)

µ(B(x, r)) ≥ µ
(
B
(
x,
r

2

))
≥ lim supµn

(
B
(
x,
r

2

))
≥ K−1

2 µm+2(x1). (2.22)

Let Y = Xm ∩ B(x, r + 2κrm) and let B2 = g(B1)m; we denote x2 the center of B2. On
the one hand, recall that from (i) ω ≥ c, so we have µm+2(z1) ≥ c2µm(z2). Moreover, the
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cardinal number of Y is uniformly bounded by a constant M , which depends only on the
doubling constant of X, so

µm (B(x, r + 2κrm)) =
∑
z∈Y

µm(z) ≤M max {µm(z) : z ∈ Y } .

It remains to compare µm(z) with µm(x2) for all z ∈ Y . If z ∈ Y , then

d(z, x2) ≤ d(z, x) + d(x, x1) + d(x1, x2) ≤ r + 2κa−m + κa−(m+2) + κεm

≤ κ (2α+ 3 + τ) a−m ≤ λκa−m,
where the last two inequalities are true by (2.8) and the choice of λ. Thus, according to
item (ii), there exists a constant K ′0 ≥ 1 such that µm(z) ≤ K ′0µm(x2) for all z ∈ Y .
Therefore, we obtain

c2K−1
2 µm(x2) ≤ K−1

2 µm+2(x1) ≤ µ (B(x, r)) ≤M ·K ′0 ·K2 · µm(x2). (2.23)

Let z0 be the center of an element C ∈ c(x, y), then

d(x2, z0) ≤ d(x2, x1) + d(x1, x) + d(x, z0) ≤ εm + a−(m+2) + αa−m ≤ λa−m,

so B2 ∼ C; recall that B2 ∼ C means that B2 and C are the ends of a horizontal edge.
According to (H2), we have

π(B2)p � π(C)p � π (c(x, y))p . (2.24)

Finally, (2.23) and (2.24) imply (2.18). �

Proposition 2.8 (Ahlfors regularity). The p-dimensional Hausdorff measure of the dis-
tance θρ of Proposition 2.4 is regular.

Proof. We show that (X, θ, µ) is p-regular. Write Bd and Bθ for the balls in the metric d
and θρ respectively. Let x ∈ X and 0 < r < 1, we take y0 and y1 in X such that

r0 = d(y0, x) = min {d(w, x) : θρ(w, x) ≥ r} ,
r1 = d(y1, x) = max {d(w, x) : θρ(w, x) ≤ r} .

So we have
Bd(x, r0) ⊂ Bθ(x, r) ⊂ Bd(x, r1).

Since θρ(yi, x)p � π (c(x, yi))
p � µ (Bd(x, ri)) by (2.18) and θρ(y1, x) ≤ r ≤ θρ(y0, x), we

obtain

rp . π (c(x, y0))p � µ (Bd(x, r0)) ≤ µ (Bθ(x, r)) ≤ µ (Bd(x, r1)) � π (c(x, y1))p . rp.

Then µ (Bθ(x, r)) � rp. This proves the proposition. �

2.4. Dimension control and simplification of the hypotheses. We end this section
by simplifying the hypothesis of Theorem 1.1 to facilitate its application in concrete situa-
tions, like in the following sections. We always assume that X is a compact, doubling and
uniformly perfect metric space. We continue to assume that a and λ verify (2.8).

We need some notation. Let γ = {(Bi, Bi+1)}N−1
i=1 be a path of edges in Zd, we say that

γ is a horizontal path of level k ≥ 1 if Bi ∈ Sk for all i = 1, . . . , N . We adopt the convention
that for such a path γ the point zi ∈ X denotes the center of Bi for i = 1, . . . , N . Denote
by Γk+1 (B), where B ∈ Sk and k ≥ 0, the family of horizontal paths γ = {(Bi, Bi+1)}N−1

i=1
of level k+ 1 such that z1 ∈ B, zi ∈ 2 ·B for i = 2, . . . , N − 1 and zN ∈ X \ 2 ·B. The aim
is to show the following theorem.
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Theorem 2.9 (Dimension control). Let p > 0. There exists η0 ∈ (0, 1), which depends only
on p, λ, κ and the doubling constant of X, such that if there exists a function σ : S → R+

which verifies:
(S1) for all B ∈ Sk and k ≥ 0, if γ = {Bi}Ni=1 is a path in Γk+1(B), then

N∑
i=1

σ (Bi) ≥ 1, (2.25)

(S2) and for all k ≥ 0 and all B ∈ Sk, we have∑
B′∈Tk(B)

σ(B′)p ≤ η0, (2.26)

then there exists an Ahlfors regular distance θ ∈ J (X, d) of dimension p. Therefore, the
Ahlfors regular conformal dimension of X is smaller than or equal to p.

The important point of the proposition is that we can get rid of the condition (H2), as
long as the sum (2.26) is sufficiently small. We remark that even if η0 depends on p, we
can take η0 to be uniform if p varies in a bounded interval of (0,+∞). We derive Theorem
2.9 from Proposition 2.10 below. We start by modifying the hypothesis (H3) of Theorem
1.1. The purpose is to state a condition on the lengths of horizontal curves which implies
(H3).

Let ρ : S → R+ be a function, we define ρ∗ : S → R+ by

ρ∗(B) = min
B′∼B∈S

ρ(B), for B ∈ S.

If γ is a horizontal path of level k, we define

Lh(γ, ρ) =

N−1∑
j=1

ρ∗(Bj) ∧ ρ∗(Bj+1).

The h stands for horizontal. We have the following result.

Proposition 2.10. Let (X, d) be a compact, doubling and uniformly perfect metric space.
Consider the graph Zd constructed in the previous section with a and λ satisfying (2.8).
Assume there exist p > 0 and a function ρ : S → (0,+∞), which satisfy the hypothesis
(H1), (H2), (H4) of Theorem 1.1, and also
(H3’) for all k ≥ 0 and all B ∈ Sk, if γ ∈ Γk+1 (B), then Lh(γ, ρ) ≥ 1.
Then the function ρ also verifies the hypothesis (H3).

We first prove Proposition 2.10. We divide the proof into several lemmas. We start with
the following remark: by Lemma 2.5, we have `1(γ) � Lρ(γ); recall that we denote by `1
the length `ε for ε = 1. Thus, to control the length Lρ(γ) of curves in Zd, in order to show
(H3), it is enough to work with the length function `1. For technical reasons, we modify
the length function `1 by replacing it with another bi-Lipschitz equivalent one. For k ≥ 0,
we define π∗ : S → (0,+∞) by setting

π∗(B) = min
B′∼B∈S

π(B′).

From (2.12), one has

π(B) ≥ π∗(B) ≥ 1

K0
π(B) for all B ∈ S. (2.27)
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This and (H1), imply that if B ∈ Sk+1 and if B′ = g(B)k, then

1

K0
π∗(B) ≤ 1

K0
π(B) ≤ 1

K0
π(B′) ≤ π∗(B′), (2.28)

and

π∗(B′) ≤ π(B′) ≤ 1

η−
π(B) ≤ K0

η−
π∗(B). (2.29)

Let e = (B,B′) be an edge of Zd, by Lemma 2.5 and the inequalities (2.28) and (2.29), we
have:

(1) if e is horizontal with B,B′ ∈ Sk, then

`1(e) � π(B) + π(B′)

2
� π∗(B) ∧ π∗(B′). (2.30)

(2) and if e is vertical with B′ ∈ Sk and B = g(B′)k−1, then

`1(e) � π(B′) � π∗(B′). (2.31)

Let K5 = K0/η−. We simply change the length of an edge in Zd by setting

ˆ̀
1(e) =

{
π∗(B) ∧ π∗(B′), if e = (B,B′) is a horizontal edge.
K5π

∗(B′), if e = (B,B′) is a vertical edge.

This definition is inspired by a similar one used in [KL04]. From (2.30) and (2.31), the
length functions `1 and ˆ̀

1 are bi-Lipschitz equivalent. We note in particular that the length
distance induced by ˆ̀

1 is bi-Lipschitz equivalent to d1 (dε with ε = 1).
The first step is to estimate the length ˆ̀

1(γ) of certain curves in Zd. The first type of
curves, discussed in the following lemma, are horizontal curves which have a large enough,
relative to the scale, “diameter”, i.e. curves which verify the statement of (H3’).

Lemma 2.11. Let k ≥ 0 and B ∈ Sk. Consider γ = {(Bi, Bi+1)}N−1
i=1 a horizontal path of

level k + 1, such that zi ∈ 3 · B for all i, z1 ∈ B and zN /∈ 2 · B. We denote B′ ∈ Sk the
parent of z1. Then

ˆ̀
1(γ) =

N−1∑
i=1

π∗(Bi) ∧ π∗(Bi+1) ≥ max
{
π∗(B′), π∗(B)

}
. (2.32)

Proof. First we show that for all j = 1, . . . , N , we have

π∗(Bj) ≥ max
{
π∗(B′), π∗(B)

}
ρ∗(Bj). (2.33)

Let A ∼ Bj ∈ Sk+1 be such that π∗(Bj) = π(A) and let A′ = g(A)k. Then

d(xB, xA′) ≤ d(xB, zj) + d(zj , xA) + d(xA, xA′) ≤ 3κrk + 2λκrk+1 + κrk

= κ

(
4 +

2λ

a

)
rk < λκrk.

The last inequality follows from the choice made in (2.8). Since d(xB′ , xB) ≤ 2κrk ≤
λκrk, we also have xB ∈ λ · B′ ∩ λ · A′. This implies A′ ∼ B and A′ ∼ B′. Therefore,
max {π∗(B′), π∗(B)} ≤ π(A′) and

π∗(Bj) = π(A) = π(A′) · ρ(A) ≥ max
{
π∗(B′), π∗(B)

}
min

C∼Bj∈Sk+1

ρ(C).



24 MATIAS CARRASCO PIAGGIO

k + 1
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k − 1

t3s1

t1 s2 t2 s3

Figure 2.5. Proof of Lemma 2.12: decomposing the path in sub-paths γi.

This shows (2.33). By (H3’), we know that Lh(γ, ρ) ≥ 1 so
N−1∑
j=1

π∗(Bj) ∧ π∗(Bj+1) ≥
N−1∑
j=1

max
{
π∗(B′), π∗(B)

}
(ρ∗(Bj) ∧ ρ∗(Bj+1))

= max
{
π∗(B′), π∗(B)

}
L(γ, ρ) ≥ max

{
π∗(B′), π∗(B)

}
.

This ends the proof of the lemma. �

The second type of curves is the set of curves which possess a vertical edge, despite a
small “diameter”. The definition of ˆ̀

1(ev) for ev a vertical edge, can be used to estimate
their length from below. More precisely: if ev = (x, y) is a vertical edge, with B ∈ Sk+1

and B′ = g(B)k, and if eh = (B′, C) is a horizontal edge, then
ˆ̀
1(eh) ≤ ˆ̀

1(ev). (2.34)

In fact, by definition and from (2.29), we have ˆ̀
1(eh) ≤ π∗(B′) ≤ C1π

∗(B) = ˆ̀
1(ev).

Let γ = {ei = (Bi, Bi+1)}N−1
i=1 be an edge-path in Zd, we say that γ is of level at most

k if |Bi| ≤ k for all i.

Lemma 2.12. Let A1 and A2 be two elements of Sk+1 such that 4κrk < d(y1, y2), where
we write yi := xAi . Let γ = {(Bj , Bj+1)}N−1

j=1 be a path of level at most k + 1 joining A1

and A2. Then there exists a path of level at most k, γ′ = {(Ci, Ci+1)}N ′−1
i=1 , such that:

(1) C1, CN ′ ∈ Sk are the parents of A1 and A2 respectively, and
(2) ˆ̀

1(γ′) ≤ ˆ̀
1(γ).

Proof. Let γ be such a path of level at most k + 1 with B1, BN ∈ Sk+1. We denote xj the
center of the ball Bj . We can decompose γ in sub-paths of level at most k, or level equal
to k + 1. Let s1 = 1, define inductively positive integers si and ti as follows:

ti = min {j > si : |Bj | ≤ k or j = N} ,
si+1 = min {j ≥ ti : |Bj+1| = k + 1} .

We stop when ti = N for some i := M . Note that |Bs1 | = |BtM | = k+1, and for the others
|Bsi | = |Bti | = k (see Figure 2.5). Since we are trying to bound from below the length
of γ, we can assume without loss of generality that γ is a path without self-intersections;
thus Bsi 6= Bti for all i.

For each i ∈ {1, . . . ,M}, set γi = {(Bj , Bj+1)}ti−1
j=si

; we will construct γ′i of level at most
k such that ˆ̀

1 (γ′i) ≤ ˆ̀
1 (γi). We let the cases i = 1 and i = M to the end.

Fix i ∈ {2, . . . ,M − 1} and we write C = Bsi . We divide the construction into two
cases.
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First case: xj ∈ B (xC , 2κrk) for all j ∈ {si + 1, . . . , ti − 1}.

In this case, Bsi and Bti in Sk are the parents of Bsi+1 and Bti−1 respectively. Since
d (xsi+1, xti−1) ≤ 4κrk, by item (iv) of Lemma 2.2, we know that e = (Bsi , Bti) is an edge
of Zd. So we set γ′i = e. Since e′ = (Bti−1, Bti) is a vertical edge, from (2.34), we obtain

ˆ̀
1

(
γ′i
)

= ˆ̀
1(e) ≤ ˆ̀

1(e′) ≤ ˆ̀
1 (γi) .

Second case: There exists j1 ∈ {si + 1, . . . , ti − 1} such that xj1 /∈ B (xC , 2κrk).

We can assume that j1 is the first index with this property. The path {(Bj , Bj+1)}ti−2
j=si+1

is of level equal to k + 1. We decompose this path again to use the estimate (2.32). We
denote j0 = si + 1 and C0 = C. Suppose jl and Cl defined, we denote zl the center of Cl,
and if jl < ti − 1, we define

jl+1 = min {jl < j ≤ ti − 1 : xj /∈ B (zl, 2κrk) or j = ti − 1} ,
and let Cl+1 ∈ Sk be the parent of Bjl+1

; we also denote zl+1 the center of Cl+1. In
particular, we have xjl+1

∈ B (zl+1, κrk). Thus, we obtain a sequence {j0, . . . , jLi} ⊂
{si + 1, . . . , ti − 1} with j0 = si + 1 and jLi = ti − 1. Write σl := {(Bj , Bj+1)}jl+1−1

j=jl
.

Let us show that σl and zl satisfy the hypotheses of Lemma 2.11 for each l ∈ {0, . . . , Li−
2}. We know by construction that xjl+1

/∈ B (zl, 2κrk) and that xj ∈ B (zl, 2κrk) for all
jl ≤ j < jl+1. Moreover, since

d
(
zl, xjl+1

)
≤ d

(
zl, xjl+1−1

)
+ d

(
xjl+1−1, xjl+1

)
≤ 2κa−k + 2λκa−(k+1) = κ

(
2 +

2λ

a

)
a−k ≤ 3κrk, (2.35)

—the last inequality follows from the choice made in (2.8)— we have

{xj}
jl+1

j=jl
⊂ B (zl, 3κrk) .

So, from (2.32), we know that

π∗(Cl) ≤ ˆ̀
1 (σl) for l ∈ {0, . . . , Li − 2}. (2.36)

By item (v) of Lemma 2.2, el = (Cl, Cl+1) is an edge of Zd. In fact, the edge
(
Cl, Bjl+1

)
∈

Gd, and Cl+1 is the parent of Bjl+1
. Since for l = Li − 1, we have xti−1 = xjLi ∈

B (zLi−1, 2κrk), similarly the existence of the edge eti = (CLi−1, Bti) holds. Moreover,
since (Bti−1, Bti) is a vertical edge, from (2.34), we have

ˆ̀
1(eti) ≤ ˆ̀

1 ((Bti−1, Bti)) . (2.37)

Let γ′i = e0 ∗ · · · ∗ eLi−2 ∗ eti , then γ′i joins Bsi and Bti . Moreover, from (2.36) and (2.37),
we have

ˆ̀
1(γ′i) =

Li−2∑
l=0

ˆ̀
1(el) + ˆ̀

1(eti) ≤
Li−2∑
l=0

π∗(Cl) + ˆ̀
1 ((Bti−1, Bti))

≤
Li−2∑
l=0

ˆ̀
1(σl) + ˆ̀

1 ((Bti−1, Bti)) ≤ ˆ̀
1(γi).

Consider the case i = 1, we do a similar construction to the one above. Let z be the
center of D1 ∈ Sk, the parent of B1, so in particular x1 ∈ B (z, κrk). Similarly, divide the
construction into two cases. Assume first that xj ∈ B (z, 2κrk) for all j ∈ {1, . . . , t1 − 1}.
Since d(x1, xN ) > 4κrk, we know that γ1 is a proper sub-path of γ. Thus (Bt1−1, Bt1) is
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a vertical edge. An argument similar to that given above shows that e = (D1, Bt1) is an
edge of Zd, and that if we set γ′1 = e, we obtain ˆ̀

1(γ′1) ≤ ˆ̀
1(γ1). If instead, there exists j

such that xj /∈ B (z, 2κrk), as in the second case above let γ′1 = e0 ∗ · · · ∗ eL1−2 ∗ et1 .
Also for i = M we do the same construction. Set z = xsM , so in particular xsM+1 ∈

B (z, κrk). If xj ∈ B (z, 2κrk) for all j = sM + 1, . . . , N , using the fact that (BsM , BsM+1)
is a vertical edge, we see as above that it suffices to take γ′M = (BsM , D2), where D2 ∈ Sk
is the parent of BN . Otherwise, with j0 = sM + 1 and C0 = BsM , we do as in the second
case above and we obtain γ′M = e0∗· · ·∗eLM−3∗(CLM−2, D2). If LM ≤ 2 we take (C0, D2).
We must show the existence of the edge (CLM−2, D2), which is done similarly as in the
other cases.

Finally, we note that if M = 1, i.e. γ = γ1 is a path of level k + 1, we have s1 = 1 and
t1 = M . We define similarly j0 = 1, and z0 the center of C0 the parent parent of B1. We
also define by induction

jl+1 := min {jl < j ≤ N : xj /∈ B (zl, 2κrk) or j = N} ,
and zl+1 the center of Cl+1 the parent of Bjl+1

. We obtain a sequence {j0, . . . , jL} ⊂
{1, . . . , N} with j0 = 1 and jL = N . Write σl = {(Bj , Bj+1)}jl+1−1

j=jl
. We show in the same

way that both edges el = (Cl, Cl+1) and e = (CL−2, CL) are in Zd. The same arguments
as above show that if γ′ := e0 ∗ · · · ∗ eL−3 ∗ e, then ˆ̀

1 (γ′) ≤ ˆ̀
1(γ).

In conclusion, in both cases, for i 6= 1,M , we obtain a path γ′i of level at most k joining
Bsi and Bti , and length less than or equal to ˆ̀

1(γi). For i = 1, we obtain such a path
joining D1 ∈ Sk, the parent of B1, to Bt1 . And for i = M , we obtain such a path joining
BsM to D2 ∈ Sk, the parent of BN . Finally, if we denote ζi = {(Bj , Bj+1)}si+1−1

j=ti
for

i = 1, . . . ,M − 1, it suffices to take

γ′ = γ′1 ∗ ζ1 ∗ γ′2 · · · ∗ ζM−1 ∗ γ′M .
This completes the proof of the lemma. �

We take α = 8 in the statement of (H3), and to simplify the notation, we write c(x, y)
instead of cα(x, y).

Lemma 2.13. There exists a uniform constant K6 ≥ 1 with the following property: for
all x, y ∈ X, there exists k0 depending on x and y, such that for k ≥ k0, if B,B′ ∈ Sk are
such that x ∈ B and y ∈ B′, then any edge-path γ joining B and B′ verifies

ˆ̀
1(γ) ≥ 1

K6
· π (c(x, y)) . (2.38)

Proof. Let m = |c(x, y)| be the level of the center of x and y. We suppose k ≥ m+ 1. By
definition of m, we know that d(x, y) ≥ 7κrm+1 and

d(xB, xB′) ≥ d(x, y)− 2κrk ≥ 5κrm+1. (2.39)

Let γ be an edge-path joining B and B′. The idea is to inductively use Lemma 2.12 to
find a path of level at most m + 1, and of length smaller than or equal to that of γ. We
divide the proof into two cases.

First case: the path γ is of level at most k.

From (2.39), we can apply Lemma 2.12 at least once. Set γk = γ, and suppose con-
structed the paths γi for i ∈ {l, l + 1, . . . , k}, which verify the following properties:

• γi is of level at most i and joins the elements Bi, B′i ∈ Si,
• Bi, B′i are the parents of Bi+1, B

′
i+1 respectively, and



ON THE CONFORMAL GAUGE OF A COMPACT METRIC SPACE 27

n
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B′nBn

Ak A′k

B′B

γ

Figure 2.6. Proof of Lemma 2.13, second case.

• ˆ̀
1(γi) ≤ ˆ̀

1(γi+1).
We denote xi and yi the centers of the elements Bi and B′i respectively. Then, we recall
that τ = a

a−1 ,

d(xl, yl) ≥ d(xk, yk)− 2
k−1∑
i=l

κa−i ≥ 5κa−(m+1) − 2τκa−l.

Using (2.8), we have d(xl, yl) ≥ 4κa−(l−1) if l ≥ m+2. But this allows us to apply, provided
that l ≥ m+ 2, at least one more time Lemma 2.12 to obtain a path γl−1. In conclusion,
we know that there exists a path γm+1 of level at most m + 1 joining Bm+1 and B′m+1,
the parents in Sm+1 of B and B′ respectively, with the property that ˆ̀

1(γm+1) ≤ ˆ̀
1(γ).

Furthermore, if Bm ∈ Sm is the parent of Bm+1, then

d(xm, x) ≤
k−1∑
i=m

κa−i + κa−k ≤ τκa−m, (2.40)

where we write xm for the center of Bm. Thus, if A ∈ c(x, y), the fact that d(xA, x) ≤
8κa−m and (2.40) gives d(xA, xm) ≤ λκa−m. That is, e = (A,Bm) is an edge of Zd and
therefore π(Bm) ≥ K−1

0 π(A). Finally, since ˆ̀
1(γm+1) ≥ K−2

0 π∗(Bm+1) ≥ K−3
0 K−1

5 π(Bm),
we obtain

ˆ̀
1(γ) ≥ ˆ̀

1(γm) ≥ 1

K4
0K5

π(c(x, y)). (2.41)

Second case: γ is a path of level at least k + 1.

Let k0 be large enough such that

2K5

∞∑
i=k0

(η+)i ≤ 1

2K4
0K5

(η−)m , (2.42)

and suppose k ≥ k0. Let n > k be the maximal level of a vertex of γ, and let Bn, B′n ∈ Sn be
such that x ∈ Bn and y ∈ B′n. Set Ak = g(Bn)k and A′k = g(B′n)k. We write gx = [Ak, Bn]
and gy = [A′k, B

′
n] for the corresponding geodesic segments. As usual, xk, xn and x′k denote
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the centers of B, Bn and Ak respectively. By the triangle inequality and from (2.8), we
have

d(x′k, xk) ≤ d(x′k, xn) + d(xn, xk) ≤ (τ + 2)κa−k ≤ λκa−k.
So ex = (Ak, B) is an edge of Zd. Analogously, we see that ey = (B′, A′k) is an edge of Zd.
Then γn = gx ∗ ex ∗ γ ∗ ey ∗ gy is a path of level at most n joining Bn and B′n. From (2.41),
we know that

ˆ̀
1(γn) ≥ 1

K4
0K5

π(c(x, y)) ≥ 1

K4
0K5

(η−)m . (2.43)

On the other hand, we have

ˆ̀
1(gx ∗ ex) ≤ (η+)k +K5

n∑
i=k+1

(η+)i ≤ K5

∞∑
i=k

(η+)i .

The same computation holds for ey ∗ gy; therefore, we obtain
ˆ̀
1(γ) = ˆ̀

1(γn)− ˆ̀
1(gx ∗ ex)− ˆ̀

1(ey ∗ gy)

≥ ˆ̀
1(γn)− 2K5

∞∑
i=k

(η+)i ≥ 1

2K4
0K5

π(c(x, y)).

The last inequality holds by definition of k0 and (2.43). This completes the proof of the
lemma. �

We now give the proof of Theorem 2.9. We first show two lemmas, the first proof is
inspired by the construction of doubling measures of Vol’berg and Koniagyn [VK88] (see
also [Wu98] and [Hei01]).

Lemma 2.14. Suppose we have a function π0 : Sk → (0,+∞) which verifies

∀B ∼ B′ ∈ Sk,
1

K
≤ π0(B)

π0(B′)
≤ K, (2.44)

where K ≥ 1 is a constant. Suppose also that we have a function π1 : Sk+1 → (0,+∞)
which verifies the following property:

∀B ∈ Sk+1, ∃A ∈ Sk with d(xB, xA) ≤ 2κrk and 1 ≤ π0(A)

π1(B)
≤ K. (2.45)

Then there exists a function π̂1 : Sk+1 → R+ such that
(1) for all B ∼ B′ ∈ Sk+1,

1

K
≤ π̂1(B)

π̂1(B′)
≤ K.

(2) for all B′ ∈ Sk+1, we have π̂1(B′) = π1(B′) or there exists B ∼ B′ ∈ Sk+1 such
that π̂1(B′) = π1(B)

K . More precisely, in the second case, we have

π̂1

(
B′
)

=
1

K
max

{
π1(B) : B ∼ B′

}
.

Proof. For each pair of neighbors B,B′ ∈ Sk+1, we check if the inequalities
1

K
≤ π1(B)

π1(B′)
≤ K,

hold or not. Only one of these two inequalities can be false; therefore, we put an oriented
edge going from B to B′ if π1(B) > Kπ1(B′). The fundamental property is the following:
there is no oriented path of edges of length at least two. In fact, suppose that B ∼ B′
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B′′

B′

B

Figure 2.7. Typical situation for a vertex B′ ∈ Sk+1 with entering edges.

and B′ ∼ B′′ are such that π1(B) > Kπ1(B′) and π1(B′) > Kπ1(B′′). Then we obtain
π1(B) > K2π1(B′′). Since d (xB, xB′′) ≤ 4λκa−(k+1) ≤ 4κa−k, if we write A,A′′ ∈ Sk such
that

d(xB, xA) ≤ 2κa−k and d(xB′′ , xA′′) ≤ 2κa−k,

and also such that

1 ≤ π0(A)

π1(B)
≤ K and 1 ≤ π0(A′′)

π1(B′′)
≤ K,

we obtain, from item (iv) of Lemma 2.2, that A ∼ A′′. But since

π0(A) ≥ π1(B) > K2π1(B′′) ≥ Kπ0(A′′),

we get π0(A) > Kπ0(A′′), which is impossible. As a consequence, for all B ∈ Sk+1, the
directed edges which have B as an extremity, or all enter or all leave the vertex B. We
modify π1 only in that subset of vertices B′ for which all directed edges enter. See Figure
2.7.

Let B′ ∈ Sk+1 be such that there exists at least one entering directed edge. To define
π̂1(B′) we proceed in the following way. Let Bi ∼ B′, i = 1, . . . , l, be all the neighbors of
B′, and let B ∈ {B1, . . . , Bl} be such that

π1(B) ≥ π1(Bi), i = 1, . . . , l.

We replace π1(B′) by π1(B)
K . In other words, we replace it by π̂1(B′) = απ1(B′), where

α =
π1(B)

Kπ1(B′)
> 1.

Thus, for all i ∈ {1, . . . , l}, we have
π1(Bi)

π̂1(B′)
= K · π1(Bi)

π1(B)
≤ K,

by definition of B. To see the other inequality, let Ai ∈ Sk be such that d(xAi , xBi) ≤
2κa−k, and such that

1 ≤ π0(Ai)

π1(Bi)
≤ K.

We denote A the element corresponding to B. Then
π1(Bi)

π̂1(B′)
= K · π1(Bi)

π1(B)
≥ π0(Ai)

π0(A)
≥ 1

K
.
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Finally, we obtain π̂1(B′) which verifies
1

K
≤ π1(B)

π̂1(B′)
≤ K,

for all B ∼ B′, and such that there exists B ∼ B′ with π̂1(B′) = π1(B)
K . That completes

the proof of the lemma. �

Lemma 2.15. Let G = (V,E) be a graph with valence bounded by a constant K and let
p > 0. Let Γ be a family of edge-paths of G and let p > 0. Suppose that τ : V → R+ is a
function verifying

N−1∑
i=1

τ (zi) ≥ 1, for all path γ = {(zi, zi+1)}N−1
i=1 ∈ Γ.

Then there exists τ̃ : V → R+ such that
N−1∑
i=1

τ̃∗ (zi) ∧ τ̃∗ (zi+1) ≥ 1 for all path γ = {(zi, zi+1)}N−1
i=1 ∈ Γ, (2.46)

where τ̃∗(x) = min {τ̃(y) : y ∼ x}, and such that∑
z∈V

τ̃ (z)p ≤ 2pK2 ·
∑
z∈V

τ(z)p. (2.47)

Proof. For x ∈ V , let V2(x) = {y ∈ V : ∃ z ∈ V s.t. y ∼ z ∼ x} be the “combinatorial” ball
of radius 2 in the graph G. We define τ̂ : V → R+ by setting

τ̂(x) = max {τ(y) : y ∈ V2(x)} .

If γ = {(zi, zi+1)}N−1
i=1 is a path of Γ, for i ∈ {1, . . . , N − 1}, we write Ai the vertices of G

which are neighbors of zi or neighbors of zi+1. Then
N−1∑
i=1

τ̂∗ (zi) ∧ τ̂∗ (zi+1) =

N−1∑
i=1

min {τ̂(z) : z ∈ Ai} .

If y ∈ V2(x), then τ̂(y) ≥ τ(x). But this implies that

min {τ̂(z) : z ∈ Ai} ≥ min {τ̂(z) : z ∈ V2 (zi)} ≥ max {τ (zi) , τ (zi+1)} , (2.48)

since Ai is contained in V2 (zi) and in V2 (zi+1). Therefore,
N−1∑
i=1

τ̂∗ (zi) ∧ τ̂∗ (zi+1) ≥
N−1∑
i=1

τ (zi) + τ (zi+1)

2
≥ 1

2
. (2.49)

On the other hand, the cardinal number of V2(x) is bounded from above by K2 for all
x ∈ V . So ∑

x∈V
τ̂(x)p ≤

∑
x∈S

∑
z∈V2(x)

τ(z)p ≤ K2
∑
x∈V

τ(x)p.

It is enough to take τ̃ = 2 · τ̂ . This finish the proof of the lemma. �

Proof of Theorem 2.9. Take η0 ∈ (0, 1) which will be fixed later, and define

η− =
(
η0 ·M−1

1

)1/p ∈ (0, 1),

where M1 is a constant, depending only on a, λ, κ and the constant KD, which bounds
from above the cardinal number of Tk(B) for all k ≥ 0 and B ∈ Sk. We define the function
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τ =
(
σp + ηp−

)1/p ≥ η−, which also verifies item (S1). From inequality (2.26), for all B ∈ Sk
and k ≥ 0, we have ∑

B′∈Tk(B)

τ(B′)p ≤
∑

B′∈Tk(B)

σ(B′)p + ηp−M1 ≤ 2 · η0. (2.50)

For B ∈ Sk, let V2,k(B) = {B′ ∈ Sk : ∃ B′′ ∈ Sk s.t. B ∼ B′′ ∼ B′} be the “combinatorial”
ball of radius 2 in the graph Sk. For k ≥ 0 and B ∈ Sk, we define

τ̃(B) = 2 ·max
{
τ(B′) : B′ ∈ V2,k(B)

}
.

By Lemma 2.15, we obtain a function τ̃ satisfying condition (H3’), bounded from below
by η− and such that ∑

B′∈Tk(B)

τ̃(B′)p ≤ 2p+1 ·M2
2 · η0, (2.51)

for all B ∈ Sk and k ≥ 0. Here, the constant M2, that only depends on λ, κ and the
doubling constant KD, bounds from above the cardinal number of horizontal 2-neighbors
of any vertex B ∈ Sk; i.e. elements in Sk and at combinatorial distance at most 2 from B.
Let K = η−1

− , we construct a function ρ̂ : S → R+ verifying
(1) ρ̂ ≥ τ̃ , and
(2) (H2) with the constant K.

Moreover, we will see that by construction, ρ̂ also verifies
(3) ρ̂(B) ≤ max {τ̃(B′) : B′ ∼ B}.

We will construct ρ̂ by defining it inductively on each Sk. We set ρ̂(w) = 1, and since
η− ≤ τ̃ ≤ 1 we can set ρ̂1 = τ̃ |S1 . Suppose constructed ρ̂i : Si → R+ verifying items 1 and
2 for i = 1, 2, . . . , j, let’s construct ρ̂j+1 : Sj+1 → R+ using Lemma 2.14. With the same
notation as in the lemma, we denote for A ∈ Sj ,

π0(A) =

j∏
i=1

ρ̂i (g(A)i) ,

and for B ∈ Sj+1,
π1(B) = τ̃(B)π0 (g(B)j) .

Since K = η−1
− , and for all B ∈ Sj+1, we have d

(
xB, xg(B)j

)
≤ κa−j , we see that the

hypothesis of Lemma 2.14 are verified. Let π̂1 : Sj+1 → R+ be the application given by
the lemma.

Let B ∈ Sj+1, from the item (2) of Lemma 2.14, we have two possibilities for π̂1(B): it
is equal to π1(B), or there exists some B′ ∈ Sj+1 such that B′ ∼ B and π̂1(B) = π1(B′)

K .
Equivalently, we can write π̂1(B) = ρ̂j+1(B)π0(g(B)j), where ρ̂j+1(B) is equal to τ̃(B), or
it is equal to ατ̃(B), with

α =
1

K

τ̃(B′)π0(g(B′)j)

τ̃(B)π0(g(B)j)
> 1.

We remark that

α =
τ̃(B′)π0(g(B′)j)

Kτ̃(B)π0(g(B)j)
≤ τ̃(B′)

τ̃(B)
.

Thus, we obtain
ρ̂j+1(B) = ατ̃(B) ≤ τ̃(B′).
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In any case, the function ρ̂j+1 verifies

τ̃(B) ≤ ρ̂j+1(B) ≤ max
B′∼B

τ̃(B′),

for all B ∈ Sj+1. This shows the existence of the function ρ̂j+1 : S → R+ which verifies
items (1), (2) and (3) above. Finally, define ρ̂ : S → (0,+∞) by setting ρ̂|Sk := ρ̂k.

We now estimate, using item (3) above, the sum of ρ̂p over Tk(B). Since for all k ≥ 1
and all B ∈ Sk, the cardinal number of the set {C : C ∼ B} is bounded from above by the
constant M2, we obtain∑
B′∈Tk(B)

ρ̂(B′)p ≤
∑

B′∈Tk(B)

∑
B′′∼B′

τ̃(B′′)p ≤M2

∑
C∼B

∑
B′∈Tk(C)

τ̃(B′)p ≤ 2p+1M4
2 · η0 = M3η0.

(2.52)
We fix η0 = (2M3)−1, which only depends on λ, κ and the doubling constant KD.

Therefore, the sum (2.52) is smaller than 1/2.
We still have to modify ρ̂ taking into account (H4). Note that for each level k ≥ 1, it

makes sense to ask about conditions (H1), (H2), and (H3’), since they are concerned with
properties of the function ρ up to this level. To start, we can simply normalize ρ̂1 so that
the sum is equal to 1. Since we divide by a quantity smaller than 1, and the same for all
B ∈ S1, we preserve also the conditions (H1), (H2) and (H3’).

Let now k > 1. We should remark that if B ∈ Sk−1, then by item (vii) of Lemma 2.2, we
know that all neighbors of an element B′ in Sk are descendants of B if xB belongs to the
ball B (xB′ , κrk). For each B ∈ Sk−1, we chose one descendant CB ∈ Sk with the above
property. We denote T ∗k−1(B) = Tk−1(B)\{CB}, and we call CB the center of Tk−1(B).
For B ∈ Sk−1, let ωB ∈ [1,+∞) be such that

(ωB ρ̂k(CB))p +
∑

B′∈T ∗k−1(B)

ρ̂k(B
′)p = 1.

The fact that the sum (2.52) is strictly smaller than 1 justifies the existence of the number
ω(B). We define ρk : Sk → R+ by setting

ρk(B
′) =

{
ωB ρ̂k(CB) if B′ = CB for some B ∈ Sk−1.

ρ̂k(B
′) otherwise.

Since ωB ≥ 1, conditions (H1) and (H3’) are verified. For (H1), it’s enough to take
η+ = 1− η−, because #Tk(B) ≥ 2. By the choice of ωB, we also have condition (H4) with
constant K2 = 1.

Let us show that the condition (H2) is also verified. Recall that for B ∈ Sk−1, all
neighbors of CB in Sk belong to Tk−1(B). Let A,A′ ∈ Sk be such that A ∼ A′, and let
0 ≤ n ≤ k − 1 be the biggest positive integer such that g(A)n = g(A′)n. Since A ∼ A′,
we have g(A)i ∼ g(A′)i for all i ∈ {n + 1, . . . , k}. Therefore, for all i ∈ {n + 2, . . . , k},
neither g(A)i nor g(A′)i can be centers. Otherwise, since they are neighbors, they would
have the same parent, which is in contradiction with the definition of n. This implies that
ρi (g(A)i) = ρ̂i (g(A)i) and ρi (g(A′)i) = ρ̂i (g(A′)i) for all i ∈ {n+2, . . . , k}. For i = n+1,
only one of them can be a center. If neither is a center we have

k∏
i=n+1

ρi (g(A)i)

k∏
i=n+1

ρ̂i (g(A)i)

=

k∏
i=n+1

ρi (g(A′)i)

k∏
i=n+1

ρ̂i (g(A′)i)

= 1. (2.53)
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If for example g(A)n+1 is a center, the quotient (2.53) is equal to ωg(A)n+1
. Since for all

center CB, we have η− ≤ ωBρi(CB) ≤ 1, we see that in any case the quotient (2.53) is
between 1 and K2. Therefore we obtain (H2) with K0 = K2. This completes the proof of
the proposition. �

3. Ahlfors regular conformal dimension and combinatorial modulus

3.1. The critical exponent. Let G = (V,E) be a graph and let Γ be a family of subsets
of V . Consider a function ρ : V → R+ and for γ ∈ Γ, define its ρ-length as

`ρ (γ) =
∑
v∈γ

ρ (v) . (3.1)

For p > 0, we denote the p-volume of ρ by

Volp(ρ) =
∑
v∈V

ρ (v)p . (3.2)

Thus the p-combinatorial modulus of Γ is by definition

Modp (Γ, G) = inf
ρ

Volp(ρ), (3.3)

where the infimum is taken over all functions ρ : V → R+ which are Γ-admissible, i.e.
`ρ (γ) ≥ 1 for all γ ∈ Γ. We remark that if p ∈ (0, 1), then Modp (Γ, G) ≥ 1 unless Γ is
empty.
Remark. This definition is a discretization of the classical notion of conformal modulus
from complex analysis, see [Ah73]. See also [Haïss09] for a detailed exposition on the
combinatorial modulus.

We recall that we suppose X doubling of constant KD ≥ 1, and uniformly perfect of
constant KP ≥ 1. In particular, the conformal gauge JAR(X, d) 6= ∅. We fix κ > 1 and
b > 1. For each k ≥ 1, let Uk be a finite covering of X satisfying eq. (2.1) and (2.2) with
b in the place of a. We write U :=

⋃
k Uk. For each k ≥ 1, we define the graph Gk as the

nerve of Uk, i.e. the vertices of Gk are the elements of Uk and we put an edge between B
and B′ if λ ·B ∩ λ ·B′ 6= ∅, where λ is a constant (recall (2.8)). We use the same notation
as in the previous sections.

Definition 3.1 (Combinatorial modulus). Let p > 0 and L > 1, we define

Mp,k (L) := sup
B∈U

Modp
(
Γk,L(B), G|B|+k

)
, (3.4)

where, for k ≥ 1 and B ∈ U , we denote by Γk,L(B) the family of paths γ = {Bi}Ni=1 of
G|B|+k such that z1, the center of B1, belongs to B and zN , the center of BN , belongs to
X \ L ·B. See Figure 3.1.

In this first part, L is considered as a fixed parameter. We remark that Mp,k (L) < +∞
for all k ≥ 1, since the number of elements in U|B|+k that intersect L ·B is bounded above
by some constant, which only depends on k, and therefore not on B ∈ U .

We study the asymptotic behavior of the sequence {Mp,k (L)}k when k tends to infinity,
and its dependence on p. We define

Mp (L) = lim inf
k→+∞

Mp,k (L) . (3.5)

For fixed k, the function p 7→Mp,k (L) is non-increasing, since an optimal function for the
combinatorial modulus, which always exists, is less than or equal to 1. This important fact
implies that the set of p ∈ (0,∞) such that Mp (L) = 0 is an interval.
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zN

z1

B ∈ Ui

L · κb−i

� b−i

Figure 3.1. Definition of the combinatorial modulusMp,k(L) (Definition
3.4). In the figure, B is an element of U and z1, zN are the centers of the
extremities of a path γ in Γk,L(B). The scale of the covering is |B|+ k so
k represents the scale relative to that of B. The number L represents the
relative diameter of the paths γ. The modulus Mp,k(L) takes into account
all moduli of the “annuli” associated to the elements of U .

Definition 3.2 (The critical exponent). We define the critical exponent of the combina-
torial modulus by setting

QN (L) = inf {p ∈ (0,+∞) : Mp (L) = 0} . (3.6)

Remark 1. Later we will consider another critical exponent closely related to the topology
of X, so it is important to note that QN is defined in purely combinatorial terms, i.e. we
only use the combinatorial modulus on the nerves Gk of the sequence of coverings Uk.
Remark 2. If p ∈ (0, 1), then Mp,k(L) ≥ 1 unless Γk,L(B) is empty for all B ∈ U .
Conversely, if the curve families Γk,L(B) are empty, for all k sufficiently large we also have
Mp(L) = 0 for all p > 0. Therefore, QN (L) /∈ (0, 1), and QN (L) = 0 if and only if X is
uniformly disconnected (for a definition, see Chapter 15 of [DS97]).

3.2. Proof of Theorem 1.2. We can prove now the first inequality between QN (L) and
the Ahlfors regular conformal dimension of X (compare with [HP08] Corollaire 3.3). We
will prove that if p > dimARX, then Mp (L) = 0. Therefore, QN (L) ≤ dimARX. In
particular, since X is doubling and uniformly perfect, we have QN (L) < +∞.

Proof of QN (L) ≤ dimARX. Suppose that dimARX < q < p, and let θ be an Ahlfors
q-regular distance in the gauge of X. We denote µ the q-dimensional Hausdorff measure of
(X, θ) and η : R+ → R+ the distortion function of id : (X, d)→ (X, θ). Fix some element
B ∈ U and let k ≥ 1, we set i = |B|. Define ρ : U|B|+k → R+ by setting

ρ
(
B′
)

=


(

µ(B′)
µ((L+1)·B)

)1/q
if B′ ∩ L ·B 6= ∅.

0 otherwise.
(3.7)

Then ∑
B′∈U|B|+k

ρ
(
B′
)p ≤ max

B′∩L·B 6=∅
ρ
(
B′
)p−q · ∑

B′∩L·B 6=∅

ρ
(
B′
)q
.
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We write diamθ for the diameter, and Bθ(s) for a ball of radius s, both in the distance θ.
Since X is uniformly perfect,

diam ((L+ 1) ·B) ≥ (L+ 1)K−1
P κb−i.

From the diameter distortion formula for quasisymmetric maps (see eq. (1.2)), for all ele-
ment B′ in Ui+k such that B′ ∩ L ·B 6= ∅, we have

ρ
(
B′
)

=

(
µ (B′)

µ ((L+ 1) ·B)

)1/q

� diamθB
′

diamθ (L+ 1) ·B

. η

(
2 · diamB′

diam (L+ 1) ·B

)
≤ η

(
4KP

(L+ 1) · bk

)
:= ηk.

There exists a constantK ≥ 1, which depends only on η and κ, such that for any B′ ∈ Ui+k,
there is a ball Bθ(s) for the distance θ such that

Bθ(s) ⊂ B
(
xB′ ,

1

κ
b−(i+k)

)
⊂ B′ ⊂ Bθ(Ks).

Since the balls
{
B
(
xB′ , κ

−1b−(i+k)
)

: B′ ∈ Ui+k
}
are pairwise disjoint, the same holds for

the balls Bθ(s). Also, since the union of the elements B′ such that B′ ∩ L ·B 6= ∅, is
contained in (L+ 1) ·B, we obtain∑
B′∩L·B 6=∅

ρ
(
B′
)q

=
1

µ ((L+ 1) ·B)
·

∑
B′∩L·B 6=∅

µ
(
B′
)
≤ 1

µ ((L+ 1) ·B)
·

∑
B′∩L·B 6=∅

µ (Bθ(Ks))

.
1

µ ((L+ 1) ·B)
·

∑
B′∩L·B 6=∅

µ (Bθ(s)) ≤ 1.

We now look at the admissibility condition. Let γ = {Bj}Nj=1 ∈ Γk,L(B), we can suppose
that Bj ∩ L ·B 6= ∅ for all j. We denote the center of Bj by zj . Since for each j ∈
{1, . . . , N − 1} we have θ (zj , zj+1) ≤ diamθ (λ ·Bj) + diamθ (λ ·Bj+1), we obtain

N∑
j=1

ρ (Bj) =
N∑
j=1

(
µ (Bj)

µ ((L+ 1) ·B)

)1/q

�
N∑
j=1

diamθBj
diamθ (L+ 1) ·B

&
θ (z1, zN )

2 · diamθ (L+ 1) ·B
≥ c,

where c > 0 is a constant that depends only on η, λ, κ, KP and L. Therefore, we finally
obtain

Mp,k . η
p−q
k ,

which tends to zero when k tends to infinity. This completes the proof of the inequality. �

If L′ ≥ L ≥ 1, thenMp,k (L′) ≤Mp,k (L) for all k ≥ 1; therefore, QN (L′) ≤ QN (L). We
start by showing in the following lemma that, in fact, QN (L) does not depend on L > 1.

Lemma 3.3 (Independence on L). Let 1 < L ≤ L′ and p > 0. There exists an integer
l ≥ 0 and a constant K7 ≥ 1, which depend only on L, L′ and κ, such that for all k ≥ 1,
we have

Mp,l+k (L) ≤ K7 ·Mp,k

(
L′
)
.

In particular, QN (L) = QN (L′) for all L and L′.
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Proof. Let 1 < L ≤ L′ and B ∈ Ui for some i ≥ 1. We take l ≥ 0 the smallest integer such
that b−l < L−1

2L′ , and let

Ui+l(B) := {A ∈ Ui+l : A ∩B 6= ∅} .

Let γ = {Bj}Nj=1 be a path of Γl+k,L (B), and denote zj the center of Bj . If A is an element
of Ui+l(B) such that z1 belongs to A, then γ is a path in Γl+k,L′(A). In fact, by the choice
of l the point zN does not belongs to L′ ·A, since d (z1, zN ) ≥ (L− 1)κb−i.

For each A ∈ Ui+l(B), let ρA : Ui+l+k → R+ be an optimal function for Γl+k,L′(A). We
define ρ : Ui+l+k → R+ by setting

ρ(B′) = max
{
ρA(B′) : A ∈ Ui+l(B)

}
.

Therefore, ρ is Γl+k,L(B)-admissible. Remark that there exists a constant K7, which
depends only on l, κ and the doubling constant of X, that bounds from above the number
of elements in Ui+l(B). So we obtain

Volp (ρ) ≤
∑

A∈Ui+l(B)

Modp
(
Γl+k,L′(A), Gi+l+k

)
≤ K7 ·Mp,k

(
L′
)
.

Therefore, Mp,l+k (L) ≤ K7 ·Mp,k (L′). �

We fix L = 2, and we consider Mp,k := Mp,k (2), Mp := Mp (2) and QN := QN (2). We
can prove now the main result of this Section.

Proof of the inequality dimARX ≤ QN . Let p > 0 such that Mp = 0, applying Theorem
2.10 we will show that dimARX ≤ p. Let n0 ≥ 1 be large enough so that a := bn0 verifies
(2.8), and that Mp,n0 ≤ η, where η ∈ (0, 1) is a number that will be fixed later.

We take Sk = Uk·n0 . For simplicity, we write Gk in the place of Gk·n0 , and Γ(B)
for the family of paths in Gk+1 which “join” B and X \ 2 · B. Therefore, we have
Modp (Γ(B), Gk+1) ≤ η for all B ∈ S. We fix the genealogy V as that of eq. (2.5), i.e.
we set

Vk(B) = {y ∈ X : d(y, xB) = dist(y,Xk)} .

Using the fact that the combinatorial modulus is small, we construct a function ρ : S →
(0, 1) which verifies the hypotheses (S1) and (S2) of Proposition 2.9. In fact, for all B ∈ S,
there exists σB : Sk+1 → R+ such that:

(1) if we denote by VB = {B′ ∈ Sk+1 : B′ ∩ 3 ·B 6= ∅}, then σB(B′) = 0 if B′ /∈ VB.
(2) for any path γ = {Bi}Ni=1 of level k + 1 such that z1 ∈ B and zN ∈ X \ 2 ·B —we

write as usual zi the center of Bi— we have

N∑
i=1

σB (Bi) ≥ 1,

(3) and
∑

B′∈Sk+1

σB(B′)p ≤ η.

To define ρ, we start by setting σk+1 : Sk+1 → R+ to be

σk+1(B′) = max
{
σA(B′) : A ∈ Sk

}
.
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Since σk+1 ≥ σB, item 2 above still holds if we replace σB by σk+1. Using the item (1)
and the fact that Tk(B) ⊂ VB for all B ∈ S, we obtain∑

B′∈Tk(B)

σk+1(B′)p =
∑

B′∈Tk(B)

max
{
σA
(
B′
)p

: A ∈ Sk
}
≤

∑
B′∈Tk(B)

∑
A:B′∈VA

σA
(
B′
)p

≤
∑

A:VB∩VA 6=∅

∑
B′∈VA

σA
(
B′
)p ≤ K8 · η,

where K8 is a constant, which depends only on κ and the doubling constant of X, such
that |{A ∈ Sk : VA ∩ VB 6= ∅}| ≤ K8 for all k ≥ 1 and all B ∈ Sk. Therefore, to apply
Proposition 2.9 it is enough to choose η ≤ K−1

8 η0. This ends the proof of Theorem
1.2. �

Remark 1. One consequence of the proof of Theorem 1.2 is the following: if p > QN , i.e.
Mp = lim infkMp,k = 0, we have shown that dimARX ≤ p. Therefore, from the proof of
the first inequality, we have limkMq,k = 0 for all q > p. In other words, we can replace
the lower limit by the limit in the definition of QN .
Remark 2. From the remark that follows Definition 3.2, we have that dimARX /∈ (0, 1),
and is equal to zero if and only if X is uniformly disconnected. In that case, the AR
conformal dimension is not attained. Compare with [Kov06].

3.3. Comparison with the moduli on the tangent spaces. The purpose of this sec-
tion is to show that when X is p-regular, Mp is bounded from above by the p-analytic
modulus of curve families in the weak tangent spaces of X.

We start by recalling some definitions, for a detailed exposition we refer to [MT10]. A
sequence of nonempty closed subsets {Fn}n of a metric space (Z, d) converges in the sense
of Hausdorff to a closed set F ⊂ Z if

lim
n→∞

sup
z∈Fn∩B(x,R)

dist(z, F ) = 0 and lim
n→∞

sup
z∈F∩B(x,R)

dist(z, Fn) = 0, (3.8)

for all x ∈ Z and R > 0.

Definition 3.4 (Convergence of metric measure spaces). A pointed sequence of complete
metric measure spaces {(Zn, dn, µn, pn)} converges to a pointed complete metric measure
space (Z, d, µ, p), if there exists a pointed metric space (Z, D, q), and isometric embeddings
ιn : Zn → Z and ι : Z → Z, with ιn(pn) = ι(p) = q for all n ≥ 0, such that {ιn(Zn)}
converges in the sense of Hausdorff to ι(Z), and the sequence of measures {(ιn)∗µn} weakly
converges to ι∗µ. If we ignore measures, we obtain the Gromov-Hausdorff convergence of
metric spaces.

If X is a doubling space, for any sequence {rn} of scales and any sequence of points {xn}
of X, the family

{(
X,xn, r

−1
n d

)}
is relatively compact in the Gromov-Hausdorff topology.

The limit points are called weak tangent spaces of X, and tangent spaces when {xn} is
constant and {rn} tends to zero.

If (X, d, µ) is Ahlfors regular of dimension p > 0 and (X∞, d∞, x∞) is a weak tangent
space of X, with sequence of scales {rn}, then X∞ is also regular of dimension p, where the
p-dimensional Hausdorff measure is comparable to a weak limit of {r−pn µ}, which we denote
µ∞. We remark that if p ∈ (0, 1), then X is uniformly disconnected (see also Theorem 5.1.9
of [MT10]). We also recall that if Γ is a curve family of X, then the p-analytic modulus of
Γ is by definition

Modp (Γ) = inf
ρ

∫
X
ρp dµ,



38 MATIAS CARRASCO PIAGGIO

where the infimum is taken over all Borel measurable functions ρ : X → R+∪{+∞} which
are Γ-admissible (see [Hei01]). The analytic moduli in the weak tangent spaces of X are
always defined using this measure µ∞.

From now on we suppose that X is p-regular. Let (X∞, d∞, x∞) be a weak tangent space
of X. We consider the family Γ(x∞) of curves which join B(x∞, 1) and X \B(x∞, 2).

Definition 3.5 (Moduli on the tangent spaces). We define

MT
p := sup {Modp (Γ(x∞)) : (X∞, d∞, x∞) is a weak tangent space of X} .

The following proposition shows that the combinatorial modulus is dominated by the
analytical moduli on the weak tangent spaces of X.

Proposition 3.6. There exists a constant K9, which depends only on κ and the doubling
constant of X, such that Mp ≤ K9 ·MT

p .

Proof. If p ∈ (0, 1), the inequality trivially holds, because X is uniformly disconnected,
and therefore, both Mp and MT

p are null. So we can suppose that p ≥ 1. We does not
provide full details of the proof, because it consists of small modifications of arguments
that appear in Section 3 of [KL04] and Appendix B of [Haïss09].

Let C ≥ 1, ε > 0 and suppose that Mp > K ·MT
p . This means that there exists k0 ≥ 1

such that for all k ≥ k0, there exists i = ik ≥ 1 and B = Bk ∈ Ui such that

Modp (Γk (B) , Gi+k) ≥ K ·MT
p + δ, where δ > 0.

Let rk = b−ik , and consider (X∞, d∞, x∞) a limit point of the sequence
{(
X, r−1

k d, xk
)}

k
.

We fix a compact metric space Z, and isometric embeddings ι : B (x∞, 3) → Z and
ιk :

(
B (xk, 3) , r−1

k d
)
→ Z for each k, where we denote xk the center of B. We identify

the curve family Γ (x∞) and the family of paths Γk(B) with its images by the embedding
ι and ιk. Analogously, we identify the measure µ∞ with its image by ι.

Consider ρ : Z → R+ a continuous Γ (x∞)-admissible function such that Volp(ρ) ≤
Modp (Γ (x∞)) + ε ≤MT

p + ε. We can suppose that ρ ≥ m > 0. Define ρk : Ui+k → R+ by
—we also identify Ui+k with its image by ιk—

ρk(A) =
3

2
inf {ρ(y) : y ∈ λ ·A}diamZ (λ ·A) . (3.9)

For big enough k, the function ρk is Γk(B)-admissible (see [Haïss09] Proposition B.2 and
[KL04] Proposition 3.2.4). Since the balls

{
B
(
xA, κ

−1b−(i+k
)

: A ∈ Ui+k
}

are pairwise
disjoint, there exists a constant M , which depends only on κ and the Ahlfors regularity
constant of Z, such that Volp (ρk) ≤M ·Volp(ρ) ≤M ·

(
MT
p + ε

)
. Therefore, for all ε > 0,

we have
K ·MT

p + δ ≤M ·
(
MT
p + ε

)
,

which is impossible if K > M . This finish the proof. �

3.4. Positiveness of moduli at the critical exponent. In this section, we show that
the sequence {Mp,k}k admits a strictly positive lower bound when p = QN . Indeed, this
is a consequence of the fact that the sequence {Mp,k}k satisfies a weak sub-multiplicative
inequality on k. The proof is an adaptation of arguments from [BouK09] Section 3, Propo-
sition 3.12. The difference here is that we don’t supposeX to be approximately self-similar.

We fixe L ≥ 2, and we also denote Mp,k = Mp,k (L). For i, k ≥ 1 and B ∈ Ui, we denote
by Γ′k(B) the family of paths in Gi+k which join L1 ·B and L2 ·B, where

L1 = 1 +
1

b
and L2 = L− 1

b
.
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Define M ′p,k in the same way as Mp,k, replacing Γk(B) by Γ′k(B) in the definition 3.4. We
have the following lemma:

Lemma 3.7. There exists a constant K10 ≥ 1, which depends only on p, L, κ and the
doubling constant KD, such that

Mp,k+l ≤ K10 ·M ′p,k ·Mp,l. (3.10)

for all k and l.

Proof. For each i, k ≥ 1 and B ∈ Ui, we denote ρBk : Ui+k → R+ an optimal function, i.e.
which verifies: ρBk is Γk(B)-admissible and∑

B′∈Ui+k

ρBk
(
B′
)p

= Modp (Γk(B), Gi+k) .

Analogously, define σBk : Ui+k → R+ an optimal function forM ′p,k. Optimality implies that
ρBk (A) = σBk (A) = 0 for any element A of Ui+k which does not intersects L ·B. For B ∈ Ui,
we set Ui+k (B) the elements A ∈ Ui+k such that A ∩ L ·B 6= ∅, and χBk : Ui+k → {0, 1}
the characteristic function of Ui+k (B).

We fix now i ≥ 1 and B ∈ Ui. We must bound from above the p-combinatorial modulus
of the path family Γk+l(B) of Gi+k+l. We define ρ : Ui+k+l → R+ by

ρ (C) = max
{
σBk (A) · ρAl (C) : A ∈ Ui+k

}
· χBk+l (C) . (3.11)

Therefore, the p-volume is bounded from above by:∑
C∈Ui+k+l

ρ (C)p =
∑

C∈Ui+k+l

max
{
σBk (A)p · ρAl (C)p : A ∈ Ui+k

}
χBk+l (C)

≤
∑

C∈Ui+k+l

∑
A∈Ui+k

σBk (A)p · ρAl (C)p χBk+l (C)χAl (C)

=
∑

A∈Ui+k

σBk (A)p ·

 ∑
C∈Ui+k+l

ρAl (C)p χBk+l (C)χAl (C)


≤

∑
A∈Ui+k

σBk (A)p ·Modp
(
Γl(A), G(i+k)+l

)
≤ Modp

(
Γ′k(B), Gi+k

)
· max
A∈Ui+k

Modp
(
Γl(A), G(i+k)+l

)
≤ M ′p,k ·Mp,l.

We look now for the admissibility condition. Let γ = {Cj}Nj=1 ∈ Γk+l(B), we write wj for
the center of Bj . For A ∈ Ui+k such that A ∩ γ 6= ∅, the path γ also belongs to Γl(A),
because diamγ ≥ (L − 1)b−i and diam (L ·B) ≤ 2L · b−(i+k). We fix A ∈ Ui+k such that
A ∩ γ 6= ∅, and let j1 < j2 ∈ {1, . . . , N} be such that wj1 ∈ A and wj2 ∈ X \ L · A. Using
the admissibility of ρAl , we obtain

j2∑
j=j1

ρ (Cj) ≥
j2∑
j=j1

σBk (A) ρAl (Cj) ≥ σBk (A) . (3.12)
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Let Ui+k (γ) be the set of A ∈ Ui+k such that A ∩ γ 6= ∅. Then there exists a path
γ′ ∈ Γ′k(B) which is contained in Ui+k (γ). This implies

1 ≤
∑

A∩γ 6=∅

σBk (A) ≤
∑

A∩γ 6=∅

j2∑
j1

ρ (Cj) ≤ K ·
N∑
1

ρ (Cj) , (3.13)

where K is a constant that bounds from above the cardinal number of Ui+k (B), and which
only depends on κ, L and the doubling constant KD. Therefore, if we multiply ρ by K, we
obtain a Γk+l(B)-admissible function with p-volume bounded from above byKp ·M ′p,k ·Mp,l.
This completes the proof of the proposition. �

An important consequence of this sub-multiplicative inequality is the following:

Lemma 3.8. Let ε = (3K10)−1, where K10 is the constant of Lemma 3.7. ThenM ′QN ,k ≥ ε
for all k ≥ 1.

Proof. Let 1 ≤ k ≤ n be any integers. Then, from Lemma 3.7, we have

Mp,n ≤
(
K10 ·M ′p,k

)m · max
0<r<k

M ′p,r,

where m = [n/k]. In particular, for fixed k, the limit of Mp,n when n tends to infinity is
bounded from above by the limit of ckθ

[n/k]
k , where θk = K10 ·M ′p,k and ck is the maximum

of M ′p,r with 0 < r < k. Therefore, Mp = 0 if there exists k ≥ 1 such that M ′p,k < K−1
10 .

That is, we have the following interval inclusions:

I ′ :=
{
p : M ′p = 0

}
⊂ J :=

{
p : ∃ k, M ′p,k < K−1

10

}
⊂ I := {p : Mp = 0} .

Suppose there exists k ≥ 1 such that M ′p,k < ε. Let K be a constant which bounds from
above the number of elements A ∈ Ui+k such that A ∩ L ·B 6= ∅ for all i ≥ 1 and B ∈ Ui.
Since M ′p,k < ε, we have Modp (Γ′k(B), Gi+k) < ε for all i ≥ 1 and B ∈ Ui.

Let i ≥ 1 and B ∈ Ui, we consider ρ : Ui+k → R+ an optimal function for Γ′k(B).
By optimality ρ(A) = 0 for any A in Ui+k which does not intersects L · B. We define
σ : Ui+k → R+ by setting

σ(A) := max
{
ρ(A),

(
εK−1

)1/p}
.

Then σ is a Γ′k(B)-admissible function, bounded from below by
(
εK−1

)1/p and with p-
volume bounded from above by∑

A∈∈Ui+k

σ(A)p ≤
∑

A∩L·B 6=∅

ρ(A)p +
(
εK−1

)
·# {A ∈ Ui+k : A ∩ L ·B 6= ∅} ≤ 2ε.

This implies that for q ≤ p, we have

Modq
(
Γ′k(B), Gi+k

)
≤

∑
A∈Ui+k

σ(A)q ≤ max
{
σ(A)q−p

}
·
∑

A∈Ui+k

σ(A)p

≤
(
K

ε

)(p−q)/p
· 2ε =

(
K

ε

)1− q
p

· 2ε.

In particular,M ′q,k < 3ε = K−1
10 if q < p is close enough to p. Suppose now by contradiction

that M ′QN ,k < ε. Then there exists q < QN , close enough to QN , such that M ′q,k < K−1
10 .

Therefore, Mq = 0 which is a contradiction. This finish the proof. �
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A slight modification of the proof of Lemma 3.3, shows that there exists an integer l ≥ 1
and a constantK11 such thatM ′QN ,k+l ≤ K11 ·MQN ,k. This allows us to prove the following
corollary.

Corollary 3.9 (Positiveness of the modulus at the critical exponent). The sequence of
moduli {MQN ,k(L)}k admits a positive lower bound, which depends only on L and the
doubling constant of X.

This lower bound —therefore, the sub-multiplicative inequality— with the following
facts: (a) combinational modulus is bounded by the analytical moduli on tangent spaces
of X, and (b) the critical exponent is equal the AR conformal dimension, give a more
conceptual proof of the following theorem of Keith and Laakso (see [KL04]):

Corollary 3.10 (Keith-Laakso). Let X be compact and Q-regular, Q > 1, such that
dimARX = Q. Then there exists a weak tangent space X∞ of X, which admits a curve
family Γ ⊂ X∞ of definite diameter and of positive Q-analytical modulus.

Proof. Indeed, from Proposition 3.6, we know thatMQN ≤ K9 ·MT
QN

. Since from Corollary
3.9, we have that MQN > 0, we conclude that there exists a weak tangent space (X∞, x∞)
of X such that the family of curves joining B(x∞, 1) and X∞ \ B(x∞, 2) is of positive
QN -modulus. �

3.5. Some variants. When the tangent spaces of X are not locally homeomorphic to X,
the nerves Gk, associated to the coverings of X, differ from X by approaching its tangent
spaces when k becomes large, i.e. small scales. For example, it is usually possible to find
curves in Gk that do not exist in X.

In this Section, we introduce a second combinatorial modulus MX
p,k defined using curves

of X. We give topological and metric conditions on X so these two moduli,MX
p,k andMp,k,

have the same asymptotic behavior when k tends to infinity. This new modulus will allow
us to compute the AR conformal dimension of X using “genuine” curves of X.

Let Γ be a curve family in X, and let U be a covering of X. For γ ∈ Γ, we denote by
U (γ) = {B ∈ U : B ∩ γ 6= ∅}. For each B ∈ U , we denote Γ(B) the family of curves in X
which intersect both ` ·B and X \ L ·B, where L ≥ 2 and ` := 1 + b−1. Therefore, for all
k ≥ 1 and B ∈ U , we define the following family of subsets of G|B|+k:

∆k(B) =
{
U|B|+k (γ) : γ ∈ Γ(B)

}
.

Finally, we set Modp
(
Γ(B),U|B|+k

)
:= Modp

(
∆k(B), G|B|+k

)
.

Definition 3.11 (Combinatorial modulus of curves in the space). We define

MX
p,k (L) = sup

B∈U
Modp

(
Γ(B),U|B|+k

)
. (3.14)

The symbol X, in the notation, indicates that the modulus is computed using curves of X.

To simplify the notation, we write MX
p,k instead of MX

p,k (L). The sequence {MX
p,k} have

the same properties as {Mp,k}: for fixed k, the function p 7→ MX
p,k is non-increasing, and

the set of p ∈ (0,∞) such that MX
p := lim infkM

X
p,k = 0 is an interval. We define in the

same way the critical exponent QX .
The first remark, is that the sequence {MX

p,k}k verifies a “stronger” sub-multiplicative
inequality on k: there exists a constant K ≥ 1, which depends only on p, κ, L and the
doubling constant KD, such that

MX
p,k+l ≤ K ·MX

p,k ·MX
p,l. (3.15)
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for all k and l. The proof is analogous to that of (3.10), noting that here the family of
curves Γ(B) does not change when scale does; therefore, it is not necessary to consider the
modulus M ′p,k like before. If we set εL = K−1, we have (compare with [BouK09] Section
3)

lim
k→+∞

MX
p,k = 0⇔ ∃ k ≥ 1 tel que MX

p,k < εL, (3.16)

and therefore, MX
p,k ≥ εL for all k ≥ 1 if p ∈ (0, QX ]. We remark that QX ≤ QN always

holds, because for any curve γ ∈ Γ(B), the subset U|B|+k (γ) contains a path which belongs
to Γ′k(B); and therefore, MX

p,k ≤ M ′p,k. In general, it is a strict inequality (see the remark
following Theorem 3.12).

Recall the following definition. Suppose X is connected, the for x, y ∈ X, define

δ(x, y) := inf{diam J : J is connected with x, y ∈ J}.

For r > 0 let
h(r) := sup{δ(x, y) : d(x, y) ≤ r}.

We say that X is locally connected if h(r) → 0 when r → 0. The function h is called the
modulus of local connectivity. We say that X is linearly connected —LC for short— if there
exists a constant K` ≥ 1 such that h(r) ≤ K`r for all 0 < r ≤ diamX. Up to changing the
constant K`, this is equivalent to the following: for any x, y ∈ X, there exists a curve γ
in X joining them with diamγ ≤ K`d(x, y). We can also give the following interpretation:
the distance δ is bi-Lipschitz equivalent to d: d ≤ δ ≤ K`d. For the distance δ, every ball
is path-connected.

We also recall that Vr(A) denotes the r-neighborhood of A. The goal of this section is
to prove the following result:

Theorem 3.12. Let X be a doubling, uniformly perfect, compact metric space. Suppose
that X also verifies the following two hypotheses:

(1) (Uniform linear connectivity of components) There exists a constant K` ≥ 1 such
that any connected component of X is K`-linearly connected.

(2) (Uniform separation of components) There exists a constant Ks ≥ 1 such that: for
all 0 < r ≤ diamX, there exists a covering Wr of X, by open and closed sets, such
that for all W ∈ Wr, we have dist (W,X \W ) ≥ r/Ks and there exists a connected
component Y of X with Y ⊂W ⊂ Vr(Y ).

Then QX = QN . In particular, when X linearly connected the critical exponent QX is
equal to the AR conformal dimension of X.

We make some remarks before proving the theorem.
Remark 1. In general, QX < QN . It’s not hard to construct a Cantor set X in the plane
R2 such that QX = 0 and QN = 2. See also Figure 3.2.
Remark 2. The hypothesis of the item (2) is inspired in the analogous notion of uniform
disconnectness of David and Semmes [DS97]. By compactness, we can always suppose that
the covering Wr is finite.

We can state this condition in the following way. Given ε > 0, we can define an equiva-
lence relation ∼ε in X, for which two points x and y of X are ε-equivalent if they can be
connected by an ε-chain, i.e. there exists a sequence {zi}Ni=1 ⊂ X with z1 = x, zN = y and
d(zi, zi+1) ≤ ε for all i = 1, . . . , N − 1.

Each ε-class W , is open and closed with dist (W,X \W ) > ε. Moreover, if ε1 ≤ ε2, and
if we denote Wεi(x), i = 1, 2, the εi-class which contains x, then Wε1(x) ⊂ Wε2(x). Also
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ε = 1
(n−1)n

r = 1
n

0

Figure 3.2. Let X = {1/n : n ≥ 1} × [0, 1]. The condition of uniform
separation of connected components is not verified. Indeed, if ε = 1/((n−
1)n), then with ε-chains we can connect 0 to all the r-neighborhood of
{0} × [0, 1], where r = 1/n. But r/ε → ∞ when n → ∞. This behavior is
forbidden by condition 2 of the theorem. For this simple exampleQX < QN .

⋂
ε>0Wε(x) = Y , where Y is the connected component of X containing x. In particular,

for all 0 < r ≤ diamX, there exists εr such that if ε ≤ εr, then Wε(x) ⊂ Vr(Y ).
Condition 2 above is equivalent to the following: for all ε ∈ (0, diamX) and all ε-class

W , there exists a connected component Y of X such that W ⊂ VKsε(Y ).
In fact, suppose that X verifies condition (2), then we take r = Ksε. If Wr is a finite

covering of X associated to r, like in the statement of condition 2, then each element W
of Wr is a union of ε-classes, and each one of these classes is in the r-neighborhood of the
connected component Y of X corresponding to W .

Conversely, since the ε-classes form an open covering of X and are pairwise disjoint,
for each ε > 0, there are only finitely many such classes. We denote them by Wi(ε) for
i = 1, . . . , Nε. If a component Y of X intersects an ε-class Wi(ε), it must be contained
in that class. Consider Yi a connected component of X such that Wi(ε) is in the Ksε-
neighborhood of Yi. For each Yi, we consider the open and closed set Ui consisting of the
ε-classes contained in the Ksε-neighborhood of Yi. Thus, we obtain a covering of X, by
open and closed subsets {Ui}, at distance at least ε of their complements, and such that
Yi ⊂ Ui ⊂ VKsε(Yi) for each i. We remark that the Ui are not necessarily disjoint.

We end with another formulation of condition 2. For each ε > 0, each i ∈ {1, . . . , Nε}
and each component Y of X, we set

dY (ε, i) := inf {r > 0 : Wi(ε) ⊂ Vr(Y )} .

For each class Wi(ε), denote

ri(ε) := inf {dY (ε, i) : Y connected component of X} ,

and finally, define h : (0, diamX]→ R+ by setting

h(ε) = max {ri(ε) : i = 1, . . . , Nε} . (3.17)

The hypothesis says that there exists a uniform constant Ks such that h(ε) ≤ Ks · ε
for all 0 < ε ≤ diamX (see also Figure 3.2). For example, the Cantor set of segments
X := C × [0, 1], where C is the standard middle Cantor set, verifies the hypothesis of
Theorem 3.12.
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Proof of Theorem 3.12. We must show the inequality QN ≤ QX . For p > 0, we show that
there exist constants M and k0, which depend only on λ and the geometry of X, such that
Mp,k ≤Mp+1 ·MX

p,k for all k ≥ k0.
First, remark that condition (2) implies that paths of Gm are at distance comparable to

b−m of genuine curves of X. If B1 ∼ B2 are two elements of Um, then their centers, which
we denote by z and w respectively, verify d(z, w) < 2λκb−m = εm where εm := 2λκb−m.
Therefore, if γ = {Bj}Nj=1 is a path in Gm, the centers of Bj , zj , j = 1, . . . N , belong to
the same εm-class W of X. Since h(εm) ≤ Ks · εm, there exists a connected component Y
of X such that W ⊂ VKsεm(Y ). This implies that γ is contained in W ⊂ Vεm(Y ).

So there exists yj ∈ Y such that d (yj , zj) < Ks · εm for all j ∈ {1, . . . , N}. In particular,
we have d (yj , yj+1) < 3Ksεm, and since Y is K`-linearly connected, there exists a curve γj
contained in Y , joining yj to yj+1, and with diameter bounded from above by 3K`Ksεm.
Set K := 3K`Ks. Let ζγ = γ1 ∗ · · · ∗ γN−1 be the concatenation of the curves γj . We write
ζγ(1) = y1 and ζγ(2) = yN .

Let k ≥ 1, B ∈ U , and let ρ̂B : U|B|+k → R+ be an Γ(B)-admissible function such that∑
A∈U|B|+k

ρ̂B (A)p = Modp
(
Γ(B),U|B|+k

)
. (3.18)

Take a path γ = {Bj}Nj=1 of G|B|+k which verifies: z1 belongs to B, zj belongs to (L+ 1)·B
for j = 2, . . . , N − 1 and zN does not belong to (L+ 1) · B. Let ζγ = γ1 ∗ · · · ∗ γN−1 be
the curve constructed before. Write for simplicity i = |B|. Since d(z1, ζγ(1)) ≤ K · εi+k,
we have

d(ζγ(1), x) ≤ d(z1, x) +K · εi+k ≤ κb−i
(

1 +
2λK

bk

)
.

Therefore, ζγ ∩ ` · B 6= ∅ if k ≥ k0, where k0 is the smallest integer such that k0 ≥
logb(2λK) + 1. Also, since

d (ζγ(2), x) ≥ d (zN , x)− d (ζγ(2), zN ) ≥ κ
(
L+ 1− 2λK

bk

)
b−i > Lκb−i,

we have ζγ ∩X \ L ·B 6= ∅, and so ζγ ∈ Γ(B). For each point w of γj , we have

d (zj , w) ≤ diamγj +Kεi+k ≤ 2Kεi+k ≤ Λκb−(i+k),

where Λ ≥ 4λK is a uniform constant which only depends on λ, κ, Ks and K`. We can
suppose Λ large enough so that any element A of Ui+k, which intersects γj , is contained in
Λ ·Bj . The same holds for j + 1. Define ρB : Ui+k → R+ by

ρB (A) = max {ρ̂B (C) : C ⊂ Λ ·A} . (3.19)

Since the number of elements C of Ui+k which are contained in Λ · A, is bounded from
above by a constant M , which depends only on Λ and the doubling constant KD, we have

ρB (Bj) ≥
1

M

∑
C∩γj 6=∅

ρ̂B (C) . (3.20)

Therefore,
N∑
j=1

ρB (Bj) ≥
1

M

∑
C∩ζ 6=∅

ρ̂B (C) ≥ 1

M
. (3.21)
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On the other hand, take M large enough so that the number of elements A in Ui+k such
that Λ·A contains C, is also bounded from above byM for each C in Ui+k. M still depends
only on Λ and the doubling constant. Then the p-volume is bounded by∑

A∈Ui+k

ρB (A)p =
∑

A∈Ui+k

max {ρ̂B (C)p : C ⊂ Λ ·A}

≤
∑

A∈Ui+k

∑
C⊂Λ·A

ρ̂B (C)p ≤M ·
∑

C∈Ui+k

ρ̂B(C)p

= M ·Modp
(
Γ(B),U|B|+k

)
.

That is to say, if we multiply ρB by M , we obtain a Γk(B)-admissible function which has
p-volume bounded from above by K ·Modp

(
Γ(B),U|B|+k

)
, where K := Mp+1. Therefore,

Modp
(
Γk(B), G|B|+k

)
≤ K ·Modp

(
Γ(B),U|B|+k

)
. This completes the proof of the theorem.

�

3.6. The approximately self-similar case. We finish by applying this result to the case
when the space is approximately self-similar. In this case, we can simplify the definition
of QX using a family of curves of definite diameter. The following definition appears in
[BouK09]: we say that X is approximately self-similar if there exist constants c0 > 0 and
L0 ≥ 1 such that for any 0 < r ≤ diamX and any x ∈ X, there exists an open set U ⊂ X,
with diamU ≥ c0, and a L0-bi-Lipschitz map φ :

(
B(x, r), dr

)
→ (U, d). This definition

implies that X is doubling and uniformly perfect, and that if X is connected and locally
connected, then X is LC (see [Ca11] Chapter 2).

Two important classes of approximately self-similar spaces are the boundaries of hyper-
bolic groups and the Julia sets of hyperbolic rational maps. Other examples indlude the
Sierpiński carpet and gasket, the Menger curve and other classical fractals, which appear
as attractors of some Iterated Function Systems.

The following definition appears in [BouK09] and [HP08]. From now on we suppose X
approximately self-similar. For δ > 0, denote

Γδ = {γ ⊂ X : diamγ ≥ δ} ,

and let Np,k (δ) := Modp (Γδ,Uk). In [BouK09] Section 3, several important properties of
Np,k(δ) for approximately self-similar sets are proved. In fact, the sequence {Np,k}k verifies
a sub-multiplicative inequality, and there exists εδ > 0, which depends only on δ and the
doubling constant of X, such that

lim
k→+∞

Np,k (δ) = 0⇔ ∃ k ≥ 1 such that Np,k (δ) < εδ. (3.22)

Therefore, we can define the large scale critical exponent of X by

QD (δ) = inf {p > 0 : Np,k (δ)→ 0, quand k → +∞} . (3.23)

From [HP08] Corollary 3.3, we have QD (δ) ≤ dimARX for all δ > 0.

Proposition 3.13. Let X be approximately self-similar. There exists δ0 > 0, which de-
pends only on the constant L0, such that if 0 < δ ≤ δ0, then QX ≤ QD (δ).

Proof. We use in the proof various ingredients taken from [BouK09] Section 3. Take 0 <
δ ≤ 1

6L0
, and let p > 0 so that Np,k (δ)→ 0 when k → +∞. Let k ≥ 1, and let ρ : Uk → R+

be a Γδ-admissible optimal function, i.e. so that Volp(ρ) = Modp (Γδ,Uk) = Np,k (δ).
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Let L ≥ 2. For B ∈ U , consider φ : (L+ 1) ·B → U the map given by the definition of
self-similarity of X. We denote i = |B| and

VB = {A ∈ Ui+k : A ⊂ (L+ 1) ·B} .

The set A′ := φ (A) is defined for any A in VB. Since the map φ is a L0-bi-Lipschitz
homeomorphism, from (L+ 1) ·B with the rescaled distance (L+ 1)−1κ−1bid, into U , for
any element A of VB, we have:

B

(
φ(xA),

1

(L+ 1)κ2L0
b−k
)
⊂ φ

(
B
(
xA, κ

−1b−(i+k)
))
⊂ A′ ⊂ B

(
φ(xA),

L0

L+ 1
b−k
)
.

Set κ′ = (L+ 1)κ2L0, since the balls
{
B
(
φ(xA), κ′−1

)}
A∈VB

are pairwise disjoint, there
exists a constant K ≥ 1, which only depends on κ′ and the doubling constant of X, such
that:

∀C ∈ Uk : #
{
A ∈ VB : A′ ∩ C 6= ∅

}
≤ K. (3.24)

Define σ : Ui+k → R+ by

σ (A) =

{
max {ρ (C) : C ∩A′ 6= ∅} if A ∈ VB.
0 otherwise.

Then ∑
A∈Ui+k

σ (A)p =
∑
A∈VB

σ (A)p ≤
∑
A∈VB

∑
C∩A′ 6=∅

ρ (C)p

≤K
∑
C∈Uk

ρ (C)p = K ·Modp (Γδ,Uk) .

We recall that ` = 1 + b−1 comes from Definition 3.11. Let γ ⊂ X be a curve that
γ ∩ ` · B 6= ∅ and γ ∩ X \ L · B 6= ∅. We can suppose γ to be contained in L ·B. Since
the diameter of γ is bounded from below by (L− `)κb−i, the diameter of φ (γ) is bounded
from below by L−`

(L+1)L0
≥ 1

6L0
≥ δ. Thus, φ (γ) is a curve in Γδ and∑

A∩φ(γ)6=∅

ρ(A) ≥ 1.

An element A belongs to VB if A∩L ·B 6= ∅. Then, for any element C of Uk which intersects
φ (γ), there exists an element A of VB such that C ∩A′ ∩φ (γ) 6= ∅. Thus, for any element
C of Uk (φ (γ)), there exists an element AC of Ui+k (γ) such that ρ (C) ≤ σ (AC).

We can suppose K big enough so that

∀A ∈ Ui+k (γ) , # {C ∈ Uk (φ (γ)) : AC = A} ≤ K,

since this quantity only depends on the doubling constant of X. Then

1 ≤
∑

C∈Uk(φ(γ))

ρ (C) ≤
∑

C∈Uk(φ(γ))

σ (AC) ≤ K
∑

A∈Ui+k(γ)

σ (A) .

This shows thatMX
p,k (L) ≤ K1+pNp,k (δ), and therefore, MX

p,k (L)→ 0 when k →∞. This
completes the proof of proposition. �

So to estimate the Ahlfors regular conformal dimension of an approximately self-similar
space, we just need to look at the modulus of curves of definite diameter.
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Corollary 3.14. Let X be an approximately self-similar space. If X verifies items 1 and
2 of Theorem 3.12, then dimARX = QD (δ) for all 0 < δ ≤ δ0. This is the case, in
particular, when X connected and locally connected.

Proof. Since QX ≤ QD ≤ dimARX, it suffices to show that QX = dimARX, but this is
true from Theorem 3.12. �

We say that the diameter of the connected components of X tends to zero, if for all
δ > 0, there are only finitely many connected components of X which have diameter
greater than or equal to δ. By convention, we define the AR conformal dimension of a
point set to be zero. It’s not clear in general whether the AR conformal dimension behaves
well under countable unions, see for example Figure 3.2 (see also [MT10] for a discussion
on this problem). The next corollary is a positive result in this direction.

Corollary 3.15. Let X be approximately self-similar which verifies items 1 and 2 of The-
orem 3.12. Suppose that the diameter of the connected components of X tends to zero.
Then

dimARX = sup {dimAR Y : Y connected component of X} .

Proof. We remark that dimARX ≥ dimAR Y for any connected component Y of X. If Y
is a point, the inequality trivially holds. Otherwise, Y is doubling and uniformly perfect:
therefore, its AR conformal dimension is equal to the Assouad conformal dimension (see
[MT10]). For the Assouad conformal dimension the inequality is clear.

We show the other inequality. Set

q := sup {dimAR Y : Y connected component of X} ,

and let p > q. We can suppose that q ≥ 1, otherwise, any connected component is
a singleton, and since X verifies the uniform separation of components, it is uniformly
disconnected. In that case q = dimARX = 0.

We know that there exists δ > 0 such that dimARX = QD(δ). Consider the set Y of
connected components of X which have diameter bigger than or equal to δ. By hypothesis,
Y is finite, and we write

Nδ := |Y| .
If Y is a component of X, we denote by Γδ(Y ) the curves of Γδ which are contained in Y .
Therefore,

Γδ =
⋃
Y ∈Y

Γδ(Y ),

and consequently, for all k ≥ 1, we have

Modp (Γδ,Uk) ≤
∑
Y ∈Y

Modp (Γδ(Y ),Uk) ≤ Nδ ·max
Y ∈Y
{Modp (Γδ(Y ),Uk)} .

If we denote by Uk(Y ) the set of elements B of Uk which intersect Y , we have the following
equality

Modp (Γδ(Y ),Uk) = Modp (Γδ(Y ),Uk(Y )) .

Fix now Y ∈ Y. For each element B of Uk(Y ), consider a point x′ ∈ B ∩ Y and let
B′ = B

(
x′, 2κb−k

)
; if the point xB already belongs to Y , we take x′ = xB.

Let Wk be the covering of Y by these balls. From Proposition B.2 of [Haïss09], the
sequence of moduli Modp (Γδ(Y ),Wk) tends to zero when k tends to infinity. Note that

Mod (Γδ(Y ),Uk(Y )) . Modp (Γδ(Y ),Wk) ,
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where the comparison constant depends only on the doubling constant of X. Since Y is
finite, we obtain Modp (Γδ,Uk) → 0 when k → +∞. Therefore, dimARX ≤ p. This ends
the proof of the corollary. �

Remark. The assumption of finiteness of connected components of definite diameter is
necessary, as it’s shown by the example of a Cantor set of segments X := C × [0, 1], whose
AR conformal dimension is equal 1+dimH C = 1+log3(2) > 1, although the AR conformal
dimension of the connected components of X is equal to 1, and that of C is equal to 0.
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