
HAL Id: hal-00687836
https://hal.science/hal-00687836

Preprint submitted on 16 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homonyms with forgeable identifiers
Carole Delporte-Gallet, Hugues Fauconnier, Hung Tran-The

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Hung Tran-The. Homonyms with forgeable identifiers.
2012. �hal-00687836�

https://hal.science/hal-00687836
https://hal.archives-ouvertes.fr

Homonyms with forgeable identifiers

Carole Delporte-Gallet1, Hugues Fauconnier1, and Hung Tran-The1

LIAFA- Université Paris-Diderot

email:{cd,hf,Hung.Tran-The}@liafa.jussieu.fr

Abstract. We consider here the Byzantine Agreement problem (BA) in synchronous systems with

homonyms in the case where some identifiers may be forgeable. More precisely, the n processes

share a set of l (1 ≤ l ≤ n) identifiers. Assuming that at most t processes may be Byzantine and

at most k (t ≤ k ≤ l) of these identifiers are forgeable in the sense that any Byzantine process can

falsely use them, we prove that Byzantine Agreement problem is solvable if and only if l > 2t+ k.

Moreover we extend this result to systems with authentication by signatures in which at most k
signatures are forgeable and we prove that Byzantine Agreement problem is solvable if and only if

l > t+ k.

Regular paper

1 Introduction

Most of distributed algorithms assume that each process has an unique identity. Yet assuming

that every process has unique identity given by a checkable identifier might be too strong (and

costly) an assumption in practice especially if some processes are malicious. For example, very

simple systems giving MAC addresses as identifier are not reliable, because MAC addresses

may be duplicated and more sophisticated mechanisms using for example digital signatures are

costly and difficult to implement. Moreover, for privacy reason, the processes may prefer to not

have an unique identifier. For example, agents may be registered as members of groups and may

want to act as member of the groups not as individuals. Hence it could be useful and interesting

to relax the unicity of identifiers assumption. However, lack of identifiers is very restrictive and

in fully anonymous systems very few problems are solvable (e.g. [1, 3, 4, 11]).

In [6], the authors presented a general model with homonyms in which processes may share

the same identifier and may then be homonyms. In this model n processes share a set of l
identifiers (1 ≤ l ≤ n). More precisely, each process p has an unique identifier belonging to

the set of l identifiers, but several processes may have the same identifier. The processes cannot

distinguish between processes having the same identifier. A process may only send messages

to all the processes with some identifier and when a process receives a message it knows only

the identifier of the origin of the message without knowing which particular process it is. When

l = n each proces has its own identifier and at the other extreme the case l = 1 corresponds to

the fully anonymous system.

An important point in the model described in [6] is that there is no “masquerading” and even

a Byzantine process is not able to lie about its identifier: if any process p receives a message,

then process p knows that the sender of this message has identifier id. Hence even a Byzantine

process cannot lie about its identifier. Yet it is rather natural that Byzantine processes may at

least form a coalition and “exchange” their identifiers.

In this paper we present an extension of homonyms processes in which some identifiers are

“forgeable” and a Byzantine process may freely use any such identifier. Moreover we restrict

ourselves to the classical synchronized rounds model. More precisely, we keep on ensuring

that each process has an unique identity, but some identifiers are forgeable in the sense that

Byzantine processes may use such an identifier id to send messages. A process receiving this

message falsely believes that the identifier of the sender is id. Of course the set of forgeable

identifiers is not known by the processes, we only assume that we have l identifiers for the n
processes, and among these identifiers at most k are forgeable. As Byzantine are able to form

coalitions and exchange their identifies, we assume that the set of forgeable identifiers contains

at least all identifiers of Byzantine processes. Hence if t is the maximum number of Byzantine

processes, we have t ≤ k ≤ l.

To determine the power of the model of homonyms with forgeable identifiers, as in [6],

we are going to consider the problem of Byzantine agreement [13]. As a Byzantine process is

able to send in each round messages with all forgeable identifiers, intuitively, it means that it is

the same as having at least one Byzantine process per forgeable identifier. Recall from [6] that

Byzantine agreement is solvable in the homonyms model if and only if l > 3t, then considering

forgeable identifiers as similar to groups of processes with Byzantine processes, we get directly

a solution with l forgeable identifiers if l > 3k and we could suppose that we have a solution

if and only if l > 3k. But surprisingly, we prove a better bound, we prove that there is solution

for the Byzantine agreement with k forgeable identifiers if and only if l > 2t + k. In fact, this

result comes from the fact that if a Byzantine process forges the identifier a group of process

containing correct processes, this group of processes has the same behaviour as a group of

processes containing Byzantine process and correct processes together and it is proven in [7]

that such groups of processes are weaker adversaries than groups containing only Byzantine

processes.

From a more practical point of view, it is easy to implement homonyms with help of digital

signatures as with [9] in which at each identifier is associated a public key and processes with

the same identifiers share corresponding private keys. In this way we get a (strictly) stronger

authentication mechanism as defined in [14]. With this authentication mechanism a process

cannot retransmit falsely messages. More precisely, if the identifier is unforgeable, then it is not

possible for any process q to wrongly pretend that it received message m coming from a process

with this identifier. It is well known that with this kind of authentication, the Byzantine agree-

ment problem can be solved if and only if n > 2t in the classical case in which all processes

have unique and different unforgeable identifiers, giving a n > 2k bound with k forgeable iden-

tifiers. With homonyms and at most k forgeable identifiers, we prove that Byzantine agreement

is solvable if and only if l > t+ k. Again the a priori expected result would be l > 2k.

Due to the lack of space some proofs are omitted and will appear in the full version of the

paper.

The rest of the paper is organized as follows. Section 2 describes the model of homonyms

with forgeable identifiers and gives the specification of Byzantine Agreement. Then in Section 3

2

we prove the impossibility results concerning Byzantine Agreement with homonyms and forge-

able identifiers. In Section 4, we propose a specification of Authenticated Broadcast and give a

corresponding algorithm. Section 5 contains the algorithm for Byzantine Agreement using Au-

thenticated broadcast. Then, in Section 6 we study the authentication case. Finally in Section 7,

we discuss some related work and perspectives.

2 Model and definitions

Identifiers and homonyms. We consider a distributed message-passing system of n processes.

Each process gets an unique identifier from a set of identifiers L = {1, 2, . . . , l}. We assume

that each identifier is assigned to at least one process but some processes may share the same

identifier. Hence we have l ≤ n. If p is a process then Id(p) is the identifier of process p.1 For

an identifier id, the group of processes with identifier id, G(id), is the set of all processes with

identifier id.

For example, if l = 1 then the system is fully anonymous and if n = l each process has an

unique identifier.

Process failure. A correct process does not deviate from its algorithm specification. Some pro-

cesses may be Byzantine, such a process can deviate arbitrarily from its algorithm specification.

In particular, a Byzantine process may send different messages than its algorithm specifies or

fails to send the messages it is supposed to. In the following t is an upper bound on the number

of Byzantine processes.

From [13, 14], we know that Byzantine Agreement is impossible to solve if n < 3t, so we

assume n > 3t.

Forgeable Identifiers. To each message m is associated the origin group of m that is an identifier

in L denoted from(m). When the sender of the message m is a correct process p, this identifier

is the identifier of this process: from(m) = Id(p). Remark that from(m) enables only to

know the origin group but does not enable to know which process in this group is the sender.

We assume that Byzantine processes have the power to forge some identifiers. The set of

identifiers that can be forge by Byzantine processes is a subset of L and is denoted F . In the

following k designs an upper bound of the number of identifiers that can be forged: |F| = k.

Let idf be an identifier in F , a Byzantine process with identifier id may send a message m
to group id′ with the forged identifier idf . In this case, a process p with identifier id′ receives the

message m with from(m) = idf . As a Byzantine process acts as an adversary it may divulge

any information, then we assume here that if p is a Byzantine process then Id(p) is also in F .

Consequently, if a process p receives a message m with from(m) = id, p knows that

this message has been either sent by a correct process with identifier id or sent by a Byzantine

process which has forged the identifier id.

1 For convenience, we sometimes refer to individual processes using names like p but these names cannot be used

by processes in the algorithms.

3

We name (n, l, k, t)-homonym model such a model. In the following a correct group designs

a group of processes with some identifier that contains only correct processes and whose its

identifier is not forgeable.

Synchronous rounds. We consider a synchronous model of rounds. The computation proceeds

in rounds. In each round, each process first sends a set of messages, which depends on its current

state, to some identifiers. Then, each process receives all the messages sent to its identifier in

the same round and finally changes its state according to the set of received messages.

As several processes may share the same identifier, in a round a process may receive several

identical messages coming from processes with the same identifier (or Byzantine process that

has forged this identifiers). But we assume here that when a process receives a message m with

from(m) = id, it does not know how many correct processes with identifier id (or Byzantine

process that has forged id) have sent this message.2

A Byzantine process can deviate arbitrarily from its algorithm specification and Byzan-

tine process may send any set of messages (possibly an empty set) with any identifiers in F .

Moreover, contrary to correct processes, we assume that Byzantine processes are able to send

different messages to different processes in the same group.

Byzantine Agreement. In the following we are interested in the Byzantine agreement prob-

lem [13, 14]. Recall that solutions to this problem are the basis of most of fault tolerant algo-

rithms (e.g. [15]). Byzantine Agreement is an irrevocable decision problem that has to satisfy

the following properties:

1. Validity: If all correct processes propose the same value v, then no value different from v
can be decided by any correct process.

2. Agreement: No two correct processes decide different values.

3. Termination: Eventually every correct process decides some value.

3 Impossibility result

Following the spirit of the impossibility of Byzantine Agreement in [8], we prove our impossi-

bility results in (n, l, k, t)-homonym model.

Proposition 1. Byzantine Agreement is unsolvable in (n, l, k, t)-homonym model if l ≤ 2t+ k.

Proof. It suffices to prove there is no synchronous algorithm for Byzantine Agreement when

l = 2t+ k. To derive a contradiction, suppose there is an algorithm A for Byzantine agreement

with l = 2t+ k. Let Ai(v) be the algorithm executed by a process with identifier i when it has

input value v.

We divide the set of processes into 4 subsets: A = ∪0<i≤tG(i), B = ∪t<i≤2tG(i), C =
∪2t<i≤3tG(i) and F = ∪3t<i≤k+2tG(i).

2 Our results can be extended to the model of numerate processes as defined in [6] for which each process receives

in a round a multiset of messages and is able to count the number of copies of identical messages they receive in

the round.

4

We consider a system of 8 sets: two sets A0 and A1 (resp B0 and B1, C0 and C1, F0 and

F1) with the same number of processes and the same repartition in group as A (resp. B, C, F).

Each process of A0 with identifier i executes the code Ai(0) and the analog for others sets and

other input values.

Imagine setting up a system S as shown in Figure 1. Every process correctly executes the

algorithm assigned to it. Communication between groups are indicated by continuous line. A

dash arrow from group X to group Y indicates that processes of X send its message also to Y .

(We do not pretend that we have a Byzantine Agreement algorithm for this system.)

A0

B0C0

C1

A1

F1

F0

B1

Fig. 1. communication from a process registered on serverl2 to processes on server l3.

We now define three executions of the algorithm A.

In execution α, processes of A, B and F are correct and have input 1, all the processes in

C are Byzantine and the identifiers in F may be forged. By validity, all the correct processes

must decide 1. A process c in C sends (1) the same messages to processes in A and F as the

corresponding process in C0 in system S, (2) the same messages to processes in B and F as the

corresponding process in C1 in system S, Moreover one process in C sends the same messages

as processes in F0 to processes in A, B and F .

In execution β, processes of B, C and F are correct and have input 0, all the processes in

A are Byzantine and the identifiers in F may be forged. By validity, all the correct processes

must decide 0. A process a in A sends (1) the same messages to processes in C and F as the

corresponding process in A1 in system S, (2) the same messages to processes in B and F as the

corresponding process in A0 in system S, Moreover one process in A sends the same messages

as processes in F1 to processes in A, B and F .

In execution γ, processes of A, C and F are correct. Processes of A and F have input 1

and processes of C have input 0. All the processes in B are Byzantine and the identifiers in

F may be forged. Processes in B send (1) the same messages to processes in A and F as the

5

corresponding processes in B1 in system S (and the same that in α) (2) the same messages to

processes in C as the corresponding processes in B0 in system S (and the same that in γ)

Moreover one process in B sends the same messages as processes in F0 to processes in

A, C and F . Note that processes in F and this Byzantine process sends the same message to

processes in A as in run α and to processes in C as in run γ.

So, for the correct processes in A executions α and γ are undistinguishable and they decide

1. For the correct processes in C executions β and γ are undistinguishable and they decide 0.

This decision in execution γ contradicts the agreement property of the Byzantine agreement.

4 Authenticated Broadcast

Our algorithms for Byzantine Agreement use an adaptation of Authenticated Broadcast as in-

troduced by Srikanth and Toueg [16] in the classical case where each process has a different

identifier (n = l).

First, recall some principles for Authenticated Broadcast. Authenticated Broadcast in [16]

is defined by two primitives: Broadcast(p,m, r) and Accept(p,m, r). Computation is bro-

ken up in superrounds. Roughly speaking a process p broadcasts a message m in superround

r by Broadcast(p,m, r). If the process p is correct all processes receive the message and

Accept(p,m, r). If the process p is a Byzantine process, the Authenticated Broadcast guar-

antees that if some process Accept(p,m, r) at some superround r′ then all correct processes

Accept(p,m, r) no later than in superround r′+1. Furthermore no correct process can Accept(p,m, r)
from a correct process p if p has not broadcast it.

Considering the (n, l, k, t)-homonym model, we decompose the synchronous computation

in superrounds too. All the processes of a group have to invoke broadcast of a message m in the

superround r in order to ensure that this message will be accepted in the following superround.

More precisely, our Authenticated Broadcast is defined by two primitives: Broadcast(i,m, r)
and Accept(i,m, r) where i is the identifier of some group. We assume that a process broad-

casts at most one message in a superround. The Authenticated Broadcast primitive is specified

as follows:

1. Correctness: If all the processes in a correct group i perform Broadcast(i,m, r) in super-

round r then every correct process performs Accept(i,m, r) during superround r.

2. Relay: If a correct process performs Accept(i,m, r) during superround r′ ≥ r then every

correct process performs Accept(i,m, r) by superround r′ + 1.

3. Unforgeability: If some correct process performs Accepts(i,m, r) in superround r′ ≥ r
then all correct processes in group i must Broadcast(i,m, r) in superround r.

The algorithm is described in Figure 2. A superround r is composed of the two rounds 2r
and 2r + 1.

First, recall the principles of the algorithm of [16] with T Byzantine processes. To propose

a value v in superround r, process p sends message (init, p, v, r) to all processes (including

itself). A process receiving such a message becomes a “witness” for (p, v, r) and sends a mes-

sage of type echo to all processes. Any process that has T + 1 witnesses for (p, v, r) becomes

6

Code for process p with identifier i ∈ {1, ..., l}

Variable:

1 M = ∅;

Main code:

2 IN ROUND R
3 if R = 2r then if Broadcast(i,m, r) to perform

4 then send (M∪ (init, i,m, r), R) to all

5 else send (M∪ (noinit, i,⊥, r), R) to all

6 else send (M, R) to all;

on receipt of the messages of the round

7 For all h ∈ {1, ..., l}
8 Let M[h,R] be the set of messages with form (init, h, ∗, r) received from processes in group h
9 if (R = 2r) and M [h,R] = {(init, h,m, r)}
10 then M = M∪ (echo, h,m, r)
11 For all r ∈ {1, ..., R/2}
12 For all m ∈ possible messages

13 if (echo, h,m, r) received from at least l − 2t distinct groups

14 then M = M∪ (echo, h,m, r)
15 if (echo, h,m, r) received from at least l − t distinct groups

16 then Accept(h,m, r)

Fig. 2. Authenticated Broadcast algorithm in the (n, l, k, t)-homonym model.

itself witness (because at least one correct process has sent this message). When a process re-

ceives more than (2T +1) witnesses, it accepts (p, v, r) (T +1 correct processes have sent this

message then all correct processes will find T + 1 witnesses of this message).

The algorithm follows the same principles, to propose a value v in supperround r process

p with identifier i sends message (init, i, v, r) to all processes (including itself) (line 4). A

process receiving such a message from some processes with identifier i becomes “witness” for

(i, v, r) and sends a message of type echo to all processes (line 10). Any process having l − 2t
witnesses for (i, v, r) becomes itself witness (if l − 2t > k at least one process in a correct

group has sent this message) (line 13). When a process receives more than (l − t) witnesses, it

accepts (i, v, r) (at least t + 1 processes from correct groups have sent this message) (lines 15

to 16). In this way we ensure correctness and relay properties

To ensure the unforgeability property, a correct process that has no message to broadcast in

a superround broadcast a noinit message in the corresponding even round. In this way, if some

correct process with identifier i has no message to broadcast in superround r, every correct

process gets M [i, 2r] (line 9) different from one message init and wil not become witness of

any message (i, ∗, r).

The formal proof is standard and will be omitted due to lack of space. We have:

Proposition 2. If l > 2t + k, the algorithm Figure 2 implements Authenticated Broadcast in

(n, l, k, t)-homonym model.

7

5 Byzantine Agreement Algorithms

Code for process p with identifier i

Variable:

1 input = {v}; /* v ∈ {0, 1} is the value proposed value */

2 value = 0;
3 state = false;

Main code:

4 SUPERROUND 1
5 if input = 1 then Broadcast(i, 1, 1)
6 Let A1 = {h : p has Accepted(h, 1, 1)}
7 if |A1| ≥ t+ 1 then

8 state = true

9 SUPERROUND r from 2 to 2k + 2
10 if state = true then

11 Broadcast(i, 1, r)
12 state = false;

13 Let Ar = {h : p has Accepted(h, 1, 1)}
14 if |Ar| ≥ t+ 1

and has Accepted(iu, 1, ru) from r+1

2
distinct identifiers iu with ru ≥ 2

15 then value = 1

16 if |Ar| ≥ t+ 1
and has Accepted(iu, 1, ru) from r

2
distinct processes iu not including i with ru ≥ 2

17 then state = true;

18 AT THE END OF SUPERROUND 2k + 2
19 if value = 1 then

20 DECIDE 1
21 else

22 DECIDE 0;

Fig. 3. Synchronous Byzantine Agreement algorithm with at most k forgeable identifiers and at most t Byzantine

processes

Our algorithm follows the line of the algorithm in [16] defined in the classical case where

each process has a different identifier (n = l). One of the main difference here is the fact that

the behaviour of groups of processes is different from the behaviour of processes. In partic-

ular, correct processes in groups with forgeable identifiers or in groups containing Byzantine

processes have to decide and have to participate to the decision.

The algorithm proceeds in synchronous superrounds (set of successive rounds). In this al-

gorithm, 1 is the only value that may be broadcast and value 0 is decided upon by default if 1
is not decided. Hence, all processes in superround 1 broadcast 1 if their input is 1. A process p
sets variable value to 1 (and then will decides 1) in superround r < 2k, if it has (1) accepted

(iu, 1, 1) messages from t+1 distinct identifiers iu, and (2) accepted (ju, 1, ru) from (r+1)/2

8

with ru ≥ 2. Condition (1) ensures that at least one correct group has broadcast and condition

(2) corresponds to the one of [16]. Condition (1) ensures the validity property of consensus

and the condition (2) ensures the agreement property. The correctness and relay properties of

Authenticated Broadcast ensure that by the next superround (superround r + 1), all messages

accepted by process p are also accepted by all correct processes. Hence, they all set the variable

state to true. By superround r + 2, they broadcast and by correctness and relay properties, all

correct processes decide 1 by setting value to 1. If p decides in superround 2k + 2, then it can

be proved that at least one group of correct processes set its variable value to 1 by superround

2k, and all correct processes decide by superround 2k + 2.

We now prove that the algorithm of Figure 3 satisfies the specification of Byzantine agree-

ment. First we give without proofs the easy following lemmata:

Lemma 1. If, at superround r, a correct process p has |Ar| ≥ t + 1 then at each superround

r′ with r + 1 ≤ r′ ≤ 2k + 2 each correct process has |Ar′ | ≥ t+ 1.

Lemma 2. If every process of a correct group with identifier i0 broadcasts some message in

some superround r > 1, then every correct process sets value to 1 by superround r.

Proposition 3. (Validity) If all correct processes propose the same initial value v then no value

different from v can be decided by any correct process.

Proof. Assume all correct processes propose 1.

In superround 1, every process of correct group with identifier i broadcasts (i, 1, 1) message.

The correctness of the authenticated broadcast ensures that every correct process will accept

(i, 1, 1) message. As there are at least l − k > t, it is easy to verify that |A1| of every correct

process is greater than t. Thus every correct process sets state to true in superround 1 Line 8.

In superround 2, every correct process p broadcasts (Id(p), 1, 2) . As l > t + k there is at

least one correct group i in which every process broadcast (i, 1, 2). By Lemma 2, every correct

process sets value to 1 in Line 15 and will decide 1.

Assume now that all the correct process propose 0. We prove that no correct process sets

value to 1. For contradiction, assume that some correct process p sets value to 1 in some super-

round r. Thus, |Ar| of p must be greater than t. Since there are at most t Byzantine processes,

there is at least one correct group, say i, in Ar. By unforgeability property, all processes of this

group broadcast (i, 1, 1) in superround 1 and then the input value of every process in this group

must be 1, a contradiction. Thus, every correct process keeps value to 0 and decides 0 Line 22.

Proposition 4. (Termination) Eventually every correct process decides some value.

Proof. A correct process decides at superround 2k + 2 Line 20 or Line 22.

Assume that, in the execution, some correct process sets value to 1 at Line 15, and decides

1. Let r1 be the first superround in which some correct process sets value to 1. Let p1 be such

a correct process that set value to 1.

With the help of Lemma 2, we prove:

Lemma 3. If r1 ≤ 2k, then every correct process sets value to 1 by superround r1 + 2.

9

When r1 is greater than 2k, p1 has accepted (ju, 1, ru) from 2k+2

2
distinct processes ju, then

from at least k+1 distinct processes. Then there is at least one correct group, say i0, in this set.

Then we get:

Lemma 4. If r1 > 2k, then every correct process sets value to 1 by superround r1.

Proposition 5. (Agreement) No two correct processes decide different values.

Proof. Assume that some correct process sets value to 1 at Line 15 and decides 1. Let r1 be

the first superround where some correct process sets value to 1.

Lemma 4 shows that if 2k+ 2 ≥ r1 > 2k then every correct process sets its value variable

to 1 by superround r1. Lemma 3 shows that if r1 ≤ 2k then every correct process sets its value
variable to 1 by superround r1 + 2. Thus, all correct processes decide 1.

Otherwise, if no correct process sets value to 1 then value is 0 for all correct processes and

they decide 0.

We have:

Theorem 1. Assuming if l > t + k, algorithm of Figure 3 implements Byzantine Agreement

using Authenticated Broadcast in (n, l, k, t) homonym model.

Combining this with algorithms for Authenticated Broadcast we get:

Corollary 1. If l > 2t + k, the algorithms of Figure 3 and 2 implement Byzantine Agreement

in (n, l, k, t) homonym model.

6 Authentication

Authentication [14] ensures that Byzantine process may “lie” about its own values but may not

relay altered values without betraying itself as faulty. Currently this property may be ensured

with a system of signatures using public keys cryptography.

The implementation of homonyms with authentication is rather natural: the members of a

group share a secret key. The origin group of a message may be verified by a signature scheme

of this group. Messages m are authenticated by the identifier of the sender. Each process can

verify if a message carries the signature of a given identifier. As before we assume that the

signatures of at most k identifiers can be forged.

With homonyms and this scheme of authentication, if id is not forgeable (any process with

this identifier is correct) then it is not possible for any process to wrongly pretend that it has

received some messages coming from identifier id, hence we get the authentication property

of [14].

For this model with authentication, we improve our bound: l > t + k is necessary and

sufficient to achieve Byzantine Agreement. (Recall that in the classical model in which each

process has its own identifier and without forgeable identifiers the bound is n > 2t.)
The proofs of the lower bound is essentially the same as for the case without authentication

in Section 3.

10

The Byzantine Agreement algorithm of Figure 3 directly works with l > t + k if we have

an Authenticated Broadcast. It remains to get an Authenticated Broadcast with l > k + t.
In [16], in the classical case in which each process has its own identity, Authenticated

Broadcast can be obtained simply with authentication: it suffices to verify the signatures: A pro-

cess that receives a message (p,m, r) accepts it if it can verify p’s signature (and then forwards

this message). But if we apply this simple mechanism in our model, we do not get the unforge-

ability property. In a forgeable group with identifier i containing some correct processes, it is

possible that some correct accepts (i,m, r). Indeed, this message has been sent by a Byzantine

process that has forged the identifier i.
To implement Authenticated Broadcast, we use the signatures and the mechanism of wit-

nesses as in our previous algorithm. The implementation is based on the one presented in Sec-

tion 4 ans some easy changes.

At some point, in algorithm 2 when a process receives some messages in round R, it will

send echo in the next rounds. The process will forward all messages that produced this echo. In

this way it gives a proof that it has the right to send echo. We get an Authenticated Broadcast

algorithm from algorithm Figure2 by: (1) removing from the received message all messages

with a bad signature, (2) forwarding the proof of each new echo message, (3) replacing the

line 13 of algorithm 2 by:

if received (echo, h,m, r) and the proof of (echo, h,m, r)

and, (4) replacing the line 15 of algorithm 2 by

if received (echo, h,m, r) and the proof of (echo, h,m, r) from at least l − t distinct groups

We have:

Theorem 2. With authentication Byzantine Agreement is solvable in (n, l, k, t)-homonym model

if and only if l > t+ k,

7 Related works and perspectives

When processes share identifiers and some of theses processes may be Byzantine, it is rather

natural that some of these identifiers may be forged. Hence this work is a natural extension

of [6] to forgeable identifiers.

At least for the authentication case, groups signature as introduced first in [5] are close to

our model. Groups signature enables to sign messages on behalf of a group and clearly can

be used to implement the model of homonyms. Note that group signatures generally ensures

other properties than the one we consider here. Groups signatures may be a valuable way to

implement models with homonyms.

In other works [2, 10, 12], a mixed adversary model is considered in the classical (l = n):

the adversary can corrupt processes actively (corresponding to Byzantine process) and can forge

the signature of some processes.

In some way, we combine here the idea of group signatures and forgeable signatures but

contrary to group signatures the goal is not to develop protocol ensuring strong properties

11

like anonymity or unforgeability but try to develop algorithms (like agreement) in presence

of groups of processes with Byzantine processes and forgeable identifiers.

Here we proved that with forgeable identifiers and homonyms Byzantine Agreement can

be solved in a “reasonable” way (and without any assumption about cryptographic system).

Interestingly, the solvability of Byzantine Agreement depends only on the number of identifiers

and the number of forgeable identifiers. Hence adding correct processes does not help to solve

Byzantine Agreement.

A natural extension of this work could be to consider partially synchronous models.

As Byzantine Agreement is the basis for replication systems in the classical models in which

each process has its own identity, a natural question is to know if it is still the case and envisage

to develop algorithms for more difficult problems.

References

1. Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asynchronous shared memory

systems. Information and Computation, 173(2):162–183, 2002.

2. Piyush Bansal, Prasant Gopal, Anuj Gupta, Kannan Srinathan, and Pranav K. Vasishta. Byzantine agreement

using partial authentication. In DISC, volume 6950 of LNCS, pages 389–403, 2011.

3. Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anonymous networks. In

DISC, volume 2180 of LNCS, pages 33–47. Springer, 2001.

4. Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul M. B. Vitányi. On the importance of having

an identity or, is consensus really universal? Distributed Computing, 18(3):167–176, February 2006.

5. David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, volume 547 of LNCS, pages 257–

265, 1991.

6. Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Anne-Marie Kermarrec, Eric Ruppert, and

Hung Tran-The. Byzantine agreement with homonyms. In PODC, pages 21–30. ACM, 2011.

7. Carole Delporte-Gallet, Hugues Fauconnier, and Hung Tran-The. Byzantine agreement with homonyms in

synchronous systems. In ICDCN, volume 7129 of LNCS, pages 76–90, 2012.

8. Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed consensus

problems. Distributed Computing, 1(1):26–39, January 1986.

9. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Transactions on Information Theory, 31(4):469–472, 1985.

10. S. Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and Arkady Yerukhimovich. Authenticated broadcast with

a partially compromised public-key infrastructure. In SSS, volume 6366 of LNCS, pages 144–158, 2010.

11. Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory computing. Distributed

Computing, 20(3):165–177, October 2007.

12. Anuj Gupta, Prasant Gopal, Piyush Bansal, and Kannan Srinathan. Authenticated byzantine generals in dual

failure model. In ICDCN, volume 5935 of LNCS, pages 79–91, 2010.

13. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, July 1982.

14. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of

the ACM, 27(2):228–234, April 1980.

15. Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys, 22(4):299–319, December 1990.

16. T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.

Distributed Computing, 2(2):80–94, 1987.

12

