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Abstract

A micromechanics-based approach for the derivation of the effective properties of
periodic linear elastic composites which exhibit strain gradient effects at the macro-
scopic level is presented. At the local scale, all phases of the composite obey the
classic equations of three-dimensional elasticity, but, since the assumption of strict
separation of scales is not verified, the macroscopic behavior is described by the
equations of strain gradient elasticity. The methodology uses the series expansions
at the local scale, for which higher-order terms, (which are generally neglected in
standard homogenization framework) are kept, in order to take into account the mi-
crostructural effects. An energy based micro-macro transition is then proposed for
upscaling and constitutes, in fact, a generalization of the Hill-Mandel lemma to the
case of higher-order homogenization problems. The constitutive relations and the
definitions for higher-order elasticity tensors are retrieved by means of the ”state
law” associated to the derived macroscopic potential. As an illustration purpose,
we derive the closed-form expressions for the components of the gradient elastic-
ity tensors in the particular case of a stratified periodic composite. For handling
the problems with an arbitrary microstructure, a FFT-based computational itera-
tive scheme is proposed in the last part of the paper. Its efficiency is shown in the
particular case of composites reinforced by long fibers.
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1 Introduction

Conventional homogenization processes applied to periodic composite materi-
als generally use the assumption of scale separation, i.e. the size of microstruc-
tural elements remains negligible compared with the size of the studied me-
chanical components or with the characteristic length of the applied load.
Under this hypothesis, the macroscopic quantities are nearly constant at lo-
cal scale (the scale of the heterogeneities) and the effective properties, ob-
tained from the homogenization procedure, do not introduce the size of the
microstructural elements, typically, the size of inclusions or the size of the
periodic unit cell. This framework is valid in many situations, specially when
the heterogeneities are micrometer sized and when the gradient of the macro-
scopic strain remains small enough. When such assumptions are not satisfied,
the size of the microstructural elements affects the macroscopic behavior of
composites. Moreover, these effects can become predominant for some spe-
cial practical problems in mechanics and of high importance for structural
design such as in the case of fracture (see Exadaktylos 1998, Altan and Aifan-
tis 1992, Georgiadis and Grentzelou 2006) or the localization phenomenon
(see Triantafyllidis and Aifantis 1986, Chambon et al. 2001, Engelen 2006) for
which very large values of strain gradient may occur.
Generalized continuum-mechanics theories introduce a characteristic length
of the microstructure, Toupin 1962, Toupin 1964, Mindlin 1964, Mindlin and
Eshel 1968, (see Fleck and Hutchinson 1993, Fleck et al. 1994, Mühlhaus and
Aifantis 1991 for a plastic version of the strain gradient models). These ap-
proaches extend the usual linear elasticity by including the gradient of strain
and higher-order derivatives of the strain in the expression of the elastic energy
density. These models are often considered as describing more adequately the
effect of the microstructure at the macroscale. However they are phenomeno-
logical in the sense that the constitutive elastic coefficients are not derived
from a micromechanics-based framework. Moreover, such models generally
introduce a large number of coefficients whose identification constitutes an
important limitation for their use in the modeling of structures.
The derivation of the constitutive equations of non local models in a homoge-
nization framework has been the subject of extensive research during the last
three decades. Among the first, Diener et al. 1981, 1982, 1984 and later Drugan
and Willis 1996 derived a non local constitutive model from the variational
Hashin-Shtrikman variational principle. Other works, Bouyge et al. 2001, 2002,
Kouznetsova et al. 2002, 2004, Yuan et al. 2008, have used higher-order bound-
ary type conditions for the unit cell in order to derive the constitutive equa-
tions of generalized continuum models. These approaches use a generalization
of the Hill-Mandel´ s macrohomogeneity condition for deriving the higher-
order constitutive relations and can deal with non-linear materials while the
present paper offers only developments in the linear elastic case. However, as
mentioned by Yuan et al. 2008, these definitions produce overevaluated values
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of the macroscopic internal energy of gradient elastic media and give rise to
some unphysical results. Indeed, the macroscopic behavior obtained from this
procedure still leads to a macroscopic gradient elastic model even if the unit
cell is defined by a homogeneous material.
Still in the context of periodic microstructures, Gambin and Kroener 1989,
Boutin 1996, Triantafyllidis and Bardenhagen 1996 and later Smyshlyaev and
Cherednichenko 2000 have studied the influence of the higher-order terms of
the series expansion on the macroscopic behavior of linear elastic composites.
This approach of series expansion, which has been initiated by Benssoussan et
al. 1978 and Sanchez-Palencia 1980, has shown to be a rigorous and efficient
method for introducing the effect of the macroscopic gradient of strain on the
local response of linear composites. The asymptotic expansion method intro-
duces the scale factor ϵ defined as the ratio between the characteristic length of
the microstructure and the one of the applied macroscopic loading. When this
scale factor ϵ is very small compared with 1, there is a strict separation of the
micro and macroscopic scales. In practice, the limit ϵ → 0 is taken in the ex-
pression of strains and stresses, and the standard homogenization framework
can be used. When the parameter ϵ is close to 1, no homogenization is valid
anymore. When ϵ is lower than 1 but not negligible before 1, the solution can
be approximated by keeping higher-order terms in the series expansion. All
these terms are then obtained by solving a hierarchy of higher-order elasticity
problems with prescribed body forces and eigenstrains whose expressions de-
pend on the solution at the lower-order. In Boutin 1996, the author does not
interpret the macroscopic response of the composite as of strain gradient type
but only considers the higher-order terms of the series in order to evaluate the
deviation of the macroscopic stress-strain relation from the classic one, due to
the microstructural effects. Later Smyshlyaev and Cherednichenko 2000 also
studied the higher-order terms of the asymptotic expansion in the framework
of variational principles and showed that the resulting ”homogenized model”,
with the appropriate definitions for the macroscopic quantities, leads to consti-
tutive equations which are in agreement with the gradient elasticity theories.
In the present paper we propose a simple method for computing the effec-
tive properties of elastic composites which exhibit a gradient effect at the
macroscopic scale which depends on a characteristic length of the microstruc-
ture. The method follows the ”asymptotic based” approaches of Boutin 1996,
Smyshlyaev and Cherednichenko 2000. The transition between the micro and
macro scales is effected by defining the macroscopic elastic energy density as
the average of the local energy density: this can be interpreted as a general-
ization of the Hill-Mandel Lemma for higher order homogenization problems,
similarly to the works of Bouyge et al. 2001, Yuan et al. 2008. The macroscopic
law of the composite is then obtained by means of the ”state law” associated
to the macroscopic potential. As an illustration, we derive the closed-form
solution for the higher-order elastic coefficients in the case of a periodic strati-
fied composite. For handling the problem of an arbitrary geometry of the unit
cell, we extend the FFT-based method initially introduced for elasticity by
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Moulinec and Suquet 1994. The ability of this numerical approach is illus-
trated in the case of a composite made up of periodically aligned fibers along
a regular network.

2 Higher-order homogenization problems and their solutions

In this section, we recall shortly without new developments the asymptotic
expansion method applied to periodic composites and its elastic solution as
derived in the work of Boutin 1996, because this work constitutes the basis
of the developments proposed in the present paper. Let us consider a periodic
microstructure defined by a parallelepipedic unit cell Y and three vectors
denoted by d1,d2,d3 which characterize the translational invariance. Each
constituent obeys the equations of three-dimensional elasticity:


∇z .σ + f(z) = 0

σ = c(z) : ε

ε = 1
2
(∇z ⊗u+ u⊗∇z)

(1)

where z = (z1, z2, z3) denotes the vector position. By c(z), we denote the
fourth-order elasticity tensor of the periodic composite which is piecewise con-
stant and invariant by any translation according to the vectors d1,d2,d3. The
inclusions and the matrix are assumed to be perfectly bonded through their
interfaces. Then, the displacement field, u, and the traction vector, t = σ.n,
remain continuous across the interface between the matrix and the hetero-
geneities. The problem is defined by its two characteristic length scales, h and
L. The first, h, is characteristic of the microstructural elements (the size of
the unit cell, of the inclusions, the distance between two neighboring inclu-
sions...). L denotes a characteristic length of the studied macrostructure or
the characteristic size related to the applied load. The ratio between these
two lengths defines the scale factor, ϵ = h/L which is assumed to be smaller
than 1 but not negligible. The existence of a small parameter in (1) allows to
search the solution along asymptotic series. The technique basically consists
in four steps:

• The presence of two length scales suggests to introduce the non dimensional
space variables x = z/L and y = z/h, where x is the ”slow” oscillating
variable while y is the ”fast” oscillating variable.

• The displacement field is expanded as a power series in ϵ:
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u(x, y) = L
+∞∑
i=0

ϵiui(x, y) (2)

where the displacements fields ui(x, y) are Y -periodic and non dimensional
due to the presence of the lengthscale L before the sum in the previous
equation.

• The gradient operator is decomposed into two parts : ∇z = 1
L
(∇x +

1
ϵ
∇y),

where the indices x and y indicate that the derivatives are taken respectively
with respect to x and y.

• By equating terms with the same power of ϵ, we get a hierarchy of equations
for the quantities u0(x, y), u1(x, y), u2(x, y), etc.

The total displacement field takes the form:

u(x, y) = U(x) + ϵX1(y) : E(x) + ϵ2X2(y) :·G(x) + ϵ3X3(y) :: D(x)...(3)

In which quantities U(x), E(x), G(x) and D(x) are functions of the variable
x while tensors X1(y), X2(y), ... are only functions of the variable y. Ten-
sors X1(y), X2(y), ... are obtained by solving a hierarchy of linear elasticity
problems which are given in appendix A. The physical meaning of quantities
U(x), E(x), G(x) and D(x) will be specified in the next section.
The associated strain field is:

ε(x, y) = a0(y) : E(x) + ϵa1(y) :·G(x) + ϵ2a2(y) :: D(x)... (4)

where the components of tensors a0(y), a1(y), etc., are related to the ones of
tensors X1(y), X2(y), etc., by:

a0ijpq(y) =
1

2
(δipδjq + δiqδjp) +

1

2

{
∂X1

ipq

∂yj
(y) +

∂X1
jpq

∂yi
(y)

}

a1ijpqr(y) =
1

2

{
X1

ipq(y)δjr +X1
jpq(y)δir

}
+

1

2

{
∂X2

ipqr

∂yj
(y) +

∂X2
jpqr

∂yi
(y)

}

etc.

(5)

The local stress field reads:

σ(x, y) = c0(y) : E(x) + ϵc1(y) :·G(x) + ϵ2c2(y) :·D(x)... (6)

with cα(y) = c(y) : aα(y). The local fields then require the identification of
the components of tensors Xα(y) for α ≥ 1.
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3 The micro-macro transition

In this section, we propose a homogenization process based on the elastic
energy density which proves to be adapted for taking properly into account
higher order terms of the asymptotic series and the microstructural effects
at the macroscopic level. As in the standard thermodynamic framework, the
macroscopic law is obtained by means of the state law associated to the derived
expression of the homogenized elastic potential. It is shown that the resulting
macroscopic model complies with the first gradient theory of Toupin (1962,
1964) and Mindlin (1964,1968), when the series is truncated at the second or-
der, and allows to recover the more general gradient elastic theory established
by Green and Rivlin 1964, when all the terms of the series are kept.

3.1 Definitions for the stress and hyperstress

Since all tensors Xα(y) in (3) have a null volume average over a period, it
follows that:

< u(x, y) >V= U(x) (7)

U(x) represents the macroscopic displacement field which can be interpreted
as the translation of the geometric center of the unit cell. Taking into account
the following equalities:

< a0(y) >V= I; < aα(y) >V= 0 α = 1, 2, ... (8)

where I denotes the Fourth order identity tensor, it follows that the average
of the local strain is given by:

< ε(x, y) >V= E(x) =
1

2
(∇x ⊗U(x) +U (x)⊗∇x) (9)

E(x) is then interpreted as the macroscopic strain and G(x) and D(x) are
respectively the non-dimensional gradient and double gradient of macroscopic
strain, the derivative being taken according to the non dimensional macro-
scopic vector position, x. It follows that, in all the expressions, ϵG(x) and
ϵ2D(x) must be replaced by: h∇E(x) and h2∇2E(x). Taking into account
the expression of the total strain and stress fields (see equations (4), (6)), the
average of the local density energy over the volume of the unit cell can be
written in the form:
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W (x) =
1

2
< σ(x, y) : ε(x, y) >V

=
1

2

{
E(x) : C0,0 : E(x)

+ 2hE(x) : C0,1 : ∇E(x)

+ h2∇E(x) : C1,1 : ∇E(x) + 2h2E(x) : C0,2 : ∇2E(x)

+ 2h3∇E(x) : C1,2 : ∇2E(x) + 2h3∇E(x) : C0,3 : ∇3E(x)

+ . . .
}

(10)

with:

Cα,β
i..jp..q =< cαkli..j(y)a

β
klp..q(y) >V=< cklmn(y)a

α
mni..j(y)a

β
klp..q(y) >V (11)

where the Cα,β are tensors of order α + β + 4. Note that tensor Cβ,α can be
seen as the ”transpose” of Cα,β obtained by permuting the first α+ 2 indices
with the last β+2 indices. The quantityW (x) is called thereafter macroscopic
elastic energy. It can be observed that W (x) is a quadratic function according
to the macroscopic quantities E(x), ∇E(x), ∇2E(x), etc. As usually in the
thermodynamic framework, it is possible to define the dual variables associated
to E(x), ∇E(x), ∇2E(x), by means of the state law:

Σ(x) =
∂W

∂E
=< σ(x, y) : a0(y) >V

= C0,0 : E(x) + hC0,1 :·∇E(x) + h2C0,2 :: ∇2E(x) + ...

T (x) =
∂W

∂∇E
= h < σ(x, y) : a1(y) >V

= hC1,0 : E(x) + h2C1,1 :·∇E(x) + h3C1,2 :: ∇2E(x) + ...

M (x) =
∂W

∂∇2E
= h2 < σ(x, y) : a2(y) >V

= h2C2,0 : E(x) + h3C2,1 :·∇E(x) + h4C2,2 :: ∇2E(x) + ...

etc.

(12)

Σ(x) is the macroscopic stress and T (x), M (x), etc., are called hyperstresses.
Tensors Cα,β are the elastic tensors of the generalized continuum whose de-
termination requires the computation of functions Xα(y) for α = 1, 2, 3.... Let
us recall that these tensors are determined by solving successively a hierarchy
of linear elastic problems also called ”higher order homogenization problem”
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in the literature and which can be found in appendix A. The problems can
be solved by standard numerical tools as the Finite Element Method (FEM)
or, as proposed in section 5, by a Fast Fourier Transform Based numerical
approach, adapted to the context of the computational homogenization of pe-
riodic structures.
It must be emphasized that the macroscopic stress is not defined by the classic
volume average, Σ(x) ̸=< σ(x, y) >V . This constitutes an important differ-
ence with Boutin 1996, together with the fact that the hyperstresses have not
been introduced in Boutin’s work. With the above definitions, it follows that:

< σ(x, y) : ε(x, y) >V=

Σ(x) : E(x) + T (x) :·∇E(x) +M(x) :: ∇2E(x) + ...
(13)

which constitutes a generalization of the Hill-Mandel lemma to higher-order
homogenization framework. For completeness, we have to demonstrate that
the stress and hyperstresses (12) comply with the balance equation for such
models of generalized continua. This is the subject of the following sub-section.
Before proceeding to this, let us provide the following remarks:
(a) When the limit h→ 0 of the macroscopic potential (10) is taken, all terms
associated to the gradient of strain and to higher order derivatives vanish
and the energy density reduces to W (x) = 1

2
E(x) : C0,0 : E(x). The macro-

scopic elastic law reduces to Σ(x) = C0,0 : E(x). Obviously, the resulting
macroscopic model is of Cauchy type and the standard equations for homog-
enization are recovered.
(b) When all the series are truncated at the order 1 in the expression of the
microscopic strain field (4), the macroscopic elastic energy densityW (x) com-
puted from (10) takes the form:

W (x) =
1

2
E(x) : C0,0 : E(x) + hE(x) : C0,1 : ∇E(x)

+
h2

2
∇E(x) : C1,1 : ∇E(x)

(14)

which can be interpreted as the energy density introduced in the first strain
gradient theories of Toupin (1962, 1964) and Mindlin (1964, 1968). Note also
that a truncature at the order 2 in the expression of the microscopic strain field
(4), leads to a macroscopic energy density which is quadratic with respect to
the macroscopic strain, gradient of strain and double gradient of macroscopic
strain. Such a potential can be interpreted as the energy density of the second
strain gradient theory of Mindlin (1965).
(c) When all the terms of the series are kept in the expression of the micro-
scopic strain field (4), the macroscopic energy density is the one introduced in
a more general theory established by Green and Rivlin (1964) which includes
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the derivatives of the strain at any order.

3.2 The macroscopic balance equation

In this section we prove that the definitions of the stress and of the hyper-
stresses (12) are compatible with the balance equation of elastic strain gradient
continua. To this end, let us start from the local balance equation with the
decomposition ∇z =

1
L
(∇x +

1
ϵ
∇y):

∇x .σ +
1

ϵ
∇y .σ + f(x, y) = 0 (15)

The traction σ.n at the boundary of the unit cell is Y−antiperiodic. The
volume average of the quantity ∇y .σ is then equal to zero and:

∇x . < σ >V +F (x) = 0 (16)

where we have denoted F (x) =< f(x, y) >V and < σ >V is only a function of
the macroscopic variable x. In the classic homogenization framework, the series
in (6) is truncated at the zero order and < σ >V represents the macroscopic
stress tensor, Σ(x). In that case, equation (16) reduces to ∇x .Σ(x)+F (x) = 0
which means that the macroscopic law of the composite is of Cauchy type.
When higher order terms are kept in the series (6), the quantity < σ >V

cannot be interpreted as the macroscopic stress since the definitions (12) are
now used. However, a representation of the average < σ >V in terms of the
macroscopic quantities Σ(x), T (x), M (x) ... is possible. Starting from the
definitions of the macroscopic stress (12) and of the localization tensor a0(y)
given by (5), one has, for α ≥ 0:

1

V

∫
V
σpqa

α
pqi..jk(y)dV =

1

V

∫
V
σpkX

α
pi..j(y)dV

+
1

V

∫
V
σpq

∂Xα+1
pi..jk

∂yq
(y)dV

(17)

Where X0
ij is conventionally taken as X0

ij(y) = δij. Using the divergence the-
orem and accounting for ∂/∂yi = −ϵ∂/∂xi, one has :

1

V

∫
V
σpq

∂Xα+1
pi..jk

∂yq
(y)dV =

1

V

∫
∂V
σpqnqX

α+1
pi..jk(y)dV

+ϵ
∂

∂xq

{
1

V

∫
V
σpqX

α+1
pi..jk(y)dV

} (18)
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The first term at the right of the above equality is null, due to the periodicity
of Xα+1

i..j (y) and the antiperiodicity of the traction vector σijnj. It follows that:

1

V

∫
V
σpqa

α
pqi..jk(y)dV =

1

V

∫
V
σpkX

α
pi..j(y)dV

+ϵ
∂

∂xq

{
1

V

∫
V
σpqX

α+1
pi..jk(y)dV

} (19)

Writing now this equation for α = 0, 1, 2... we obtain:

Σij(x) =
1

V

∫
V
σijdV +

∂

∂xq

{
ϵ

V

∫
V
σpqX

1
pij(y)dV

}

Tijk(x) =
h

V

∫
V
σpkX

1
pij(y)dV +

∂

∂xq

{
hϵ

V

∫
V
σpqX

2
pijk(y)dV

}

Mijkl(x) =
h2

V

∫
V
σplX

2
pijk(y)dV +

∂

∂xq

{
h2ϵ

V

∫
V
σpqX

3
pijkl(y)dV

} (20)

By combination of the above relations, we obtain:

< σij >V= Σij(x)−
∂Tijk
∂xk

(x) +
∂2Mijkl

∂xk∂xl
(x)− ... (21)

The macroscopic balance equation reads then:

∂Σij

∂xj
(x)− ∂2Tijk

∂xj∂xk
(x) +

∂3Mijkl

∂xj∂xk∂xl
(x)− ...+ Fi(x) = 0 (22)

Which is exactly the balance equation of the general theory of gradient elastic
media developed by Green and Rivlin (1964). When the series for the strain
field is truncated at the first order, the macroscopic potential is given by (14)
and the effective law only displays a relation between the macroscopic stress
Σ(x) and the first hyperstress T (x) with the macroscopic strain, E(x) and
the first gradient of strain, ∇E(x). Higher order hyperstresses vanish and, in
that case, the macroscopic balance equation reduces to:

∂Σij

∂xj
(x)− ∂2Tijk

∂xj∂xk
(x) + Fi(x) = 0 (23)

Which is exactly the balance equation of first gradient elastic media.

It must be noted that Smyshlaev & Cherednichenko (2000) developed a vari-
ational approach for deriving new higher-order effective relations for linear
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elastic composites which include the microstructural effects and the gradients
of the macroscopic strain. By taking the variation of their elastic functional,
Smyshlaev & Cherednichenko (2000) observe that balance equation does not
reduce to the standard, Cauchy-type, one but introduces new additional terms.
As mentioned by the authors themselves, the resulting balance equation may
be recognized as the one introduced by the Toupin and Mindlin theories. How-
ever these additional terms introduce higher order homogenized stress tensors
(which are only second-order tensors) but are not related to hyperstresses
which are tensors of order 3, 4, etc. as in the present work.

4 Closed-form solutions for a stratified composite

As a first illustration we propose to derive the closed-form expressions for the
components of gradient elasticity tensors in the case of a stratified composite.
The material, depicted on Figure 1, is constituted of two isotropic layers a and
b, having the thickness (1− τ)h and τh with 0 ≤ τ ≤ 1. The volume fractions
of phases a and b are respectively τ and 1− τ . The elastic moduli of the phase
a are λ1, µ1 while those of the layer b are denoted λ2 and µ2. The layers a
and b are periodically distributed along direction Oy1. The material remains
unchanged by any translation along directions Oy2 and Oy3 which implies that
the local displacements at any given order are only functions of the variable y1
(which is thereafter denoted y for simplicity). Still for simplicity reasons, the
”slow” variable x is omitted in the expression of the macroscopic quantities.

-τh

a b

(1-τ)h0

y1

y2

Fig. 1. The periodic unit cell for a stratified composite.

Exact expressions of functions X1(y) and X2(y), which are needed for the
computation of effective elastic properties, have been already derived in Boutin
1996. However, due to the presence of misprints in the results, the corrected
expressions are provided in appendix B. We now provide the expressions for
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the higher order elasticity tensors. As for the case of fourth order tensors,
a matricial representation is useful for representing tensorial operations on
these tensors. The macroscopic strain, E, can be represented by a vector of
dimension 6, by using the modified Voigt notations:

E = (E1, ..., E6) = (E11, E22, E33,
√
2E23,

√
2E13,

√
2E12) (24)

Since the gradient of strain is symmetric according to its first two indices
(Eij,k = Eji,k), it is possible to use a similar representation for Eij,1, Eij,2 and
Eij,3:

(E1,k, ..., E6,k) = (E11,k, E22,k, E33,k,
√
2E23,k,

√
2E13,k,

√
2E12,k) (25)

with k = 1, 2, 3. Thus, the gradient of strain is represented by a vector of
dimension 18:

∇E(x) = (E1,1, ..., E6,1, E1,2, ..., E6,2, E1,3, ..., E6,3) (26)

The elasticity tensors C0,0, C0,1, C1,1, are represented by matrices of dimen-
sions 6× 6, 6× 18 and 18× 18:

C0,0 =


C11 . . . C16

. . .
...

Sym C66


6×6

(27)

C0,1 =


C111 . . . C161 C112 . . . C162 C113 . . . C163

...
. . .

...
...

. . .
...

...
. . .

...

C611 . . . C661 C612 . . . C662 C613 . . . C663


6×18

(28)
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C1,1 =



C1111 . . . C1161 C1112 . . . C1162 C1113 . . . C1163

. . .
...

...
. . .

...
...

. . .
...

C6161 C6112 . . . C6162 C6113 . . . C6163

C1212 . . . C1262 C1213 . . . C1263

. . .
...

...
. . .

...

C6262 C6213 . . . C6263

Sym C1313 . . . C1363

. . .
...

C6363


18×18

(29)

Here we propose to restrict our analysis to these tensors; the identification
of higher-order elasticity tensors requires the computation of functions X i(y)
for i = 3, 4, ... In the above matricial representation, coefficients Cij, Cijk and
Cijkl are computed from components C0,0

ijpq, C
0,1
ijpqr and C

1,1
ijkpqr as follows:

CIP = αC0,0
ijpq, CIPr = αC0,1

ijpqr, CIkPr = αC1,1
ijkpqr

(30)

where indices I, J and coefficient α are defined by:

I =


i if i = j

9− i− j if i ̸= j
P =


p if p = q

9− p− q if p ̸= q

α =


1 if i = j and p = q
√
2 if i = j or p = q

2 if i ̸= j and p ̸= q

(31)

The coefficient α takes the values α = 1, α =
√
2 or α = 2 depending on the

values of the set {I, P}. The components of tensor C0,1 are null for symmetry
reasons. The components of tensor C0,0 remain unchanged from the standard
homogenization and are given in Boutin 1996. Components of tensor C1,1 are
computed from (11) together with equation (5). The non null components of
C1,1 are:
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C2222 = C3333 = (1− τ)2τ 2
Q2

4Q2

3Q2
1

C1212 = C1313 = (1− τ)2τ 2
(λ2µ1 − λ1µ2)

2Q2

3(λ2 + 2µ2)2(λ1 + 2µ1)2Q2
1

C2323 = C3232 = (1− τ)2τ 2
(λ2 − λ1)

2µ2
1µ

2
2Q

3
2

3(λ2 + 2µ2)2(λ1 + 2µ1)2Q2
1

C5252 = C6363 = (1− τ)2τ 2
(µ1 − µ2)

2Q3

6µ2
1µ

2
2Q

2
2

C6262 = C5353 = (1− τ)2τ 2
2(µ1 − µ2)

2Q5

3µ2
1µ

2
2Q

2
2

C4242 = C4343 = (1− τ)2τ 2
(µ1 − µ2)

2Q2

6

C1222 = C1333 = (1− τ)2τ 2
(λ2µ1 − λ1µ2)Q4Q2

3(λ1 + 2µ1)(λ2 + 2µ2)Q2
1

C1232 = C1323 = (1− τ)2τ 2
µ1µ2(λ2 − λ1)(λ2µ1 − λ1µ2)Q

2
2

3(λ1 + 2µ1)2(λ2 + 2µ2)2Q2
1

C2232 = C3323 = (1− τ)2τ 2
µ1µ2(λ2 − λ1)Q4Q

2
2

3(λ1 + 2µ1)(λ2 + 2µ2)Q2
1

C2243 = C3342 = (1− τ)2τ 2
√
2(µ2 − µ1)Q4Q2

6Q1

C1243 = C1342 = (1− τ)2τ 2
√
2(λ2µ1 − λ1µ2)(µ2 − µ1)Q2

6(λ1 + 2µ1)(λ2 + 2µ2)Q1

C3243 = C2342 = (1− τ)2τ 2
√
2µ1µ2(µ1 − µ2)(λ1 − λ2)Q

2
2

6(λ1 + 2µ1)(λ2 + 2µ2)Q1

C5263 = C6352 = (1− τ)2τ 2
(µ1 − µ2)

2Q3

6µ2
1µ

2
2Q

2
2

C5362 = C6253 = (1− τ)2τ 2
(µ1 − µ2)

2Q6

3µ2
1µ

2
2Q

2
2

(32)

with:
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Q1 =
1− τ

λ1 + 2µ1

+
τ

λ2 + 2µ2

Q2 =
1− τ

µ1

+
τ

µ2

Q3 = (1− τ)µ1 + τµ2

Q4 = (µ2 − µ1)Q1 + (λ2 − λ1)
µ1µ2Q2

(λ1 + 2µ1)(λ2 + 2µ2)

Q5 =
µ2(µ2 + λ2)

λ2 + 2µ2

τ +
µ1(λ1 + µ1)

λ1 + 2µ1

(1− τ)

Q6 =
µ2λ2

(λ2 + 2µ2)
τ +

µ1λ1
λ1 + 2µ1

(1− τ)

(33)

Figure 2 shows the variations of the components of the gradient elasticity ten-
sor, given by (32), as functions of the volume fraction τ for materials whose
elastic properties are given below. For brevity, only the ”in plane” components
have been plotted. It can be observed that all these higher order elastic coef-
ficients become null when τ = 0 and τ = 1. In these two particular cases, the
unit cell is constituted of a homogeneous medium, having the elastic proper-
ties λ1, µ1 or λ2, µ2. At the macroscopic scale, the strain gradient effects vanish
and the constitutive relations are of Cauchy type with the elastic coefficients
λ1, µ1 or λ2, µ2. For the applications proposed in figures 2 the following Pois-
son ratios have been used: ν1 = 1/3 and ν2 = 1/4. The Young’s moduli are
given by E1 = 10GPa and E2 = 20GPa. The gradient elastic coefficients rep-
resented on figures 2 have been normalized by the Young’s modulus E1. Note
that in Bouyge et al. 2001, Kouznetsova et al. 2002, Yuan et al. 2008, where
higher order boundary conditions for the unit cell are used, the macroscopic
behavior of the composite remains described by a gradient elasticity model
even if at the local scale the material remains homogeneous. It is noteworthy
that, at the contrary, the asymptotic expansion method combined with the
energy based micro-macro transition described in the previous section leads to
results for the gradient elastic properties which appear to be more physically
realistic.

5 A FFT-based computational algorithm for computing the com-
ponents of the sixth-order elasticity tensor

We aim now at deriving a FFT based numerical method for computing the ef-
fective elasticity tensors which enter the macroscopic law (12). As explained in
section 3.1, one has to compute functions X1(y), X2(y), X3(y), ... by solving
the hierarchy of elasticity problems provided in section A. To this end, and
along the lines of the paper of Moulinec and Suquet 1994, we first propose
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Fig. 2. Variations of the component C2222, C1212, C6262 and C1222 of the sixth-order
elasticity tensor for the stratified medium with the volume fraction τ .

to derive the Lippmann-Schwinger integral equation associated to the higher-
order homogenization problems, which is the basis of the FFT-based iterative
scheme. Indeed, the integral equation described in Moulinec and Suquet 1994
is only applicable for the 0-order homogenization problem (corresponding to
g0(y) = 0 and p0(y) = c(y) : E) and must be generalized for handling prob-
lems dealing with arbitrary expressions for the body force g(y) and the polar-
ization p(y) (here and in the next of the paper the variable x is omitted for
simplicity).

5.1 The Lippmann-Schwinger equation associated to higher-order homoge-
nization problems

Let us introduce in (A.1) a homogeneous reference medium with the elasticity
tensor c0. The stress-strain relation can be rewritten as:

16



σ(y) = c0 : ε(y) + τ (y) (34)

Where τ (y) is defined as:

τ (y) = (c(y)− c0) : ε(y) + p(y) (35)

Taking now the Fourier transform, defined, for any Y-periodic function F (y),
by:

F (ξ) = F(F (y)) =
1

V

∫
V
F (x) exp(iξ.x)dx (36)

the elasticity problem reads:


iσ(ξ).ξ + g(ξ) = 0

σ(ξ) = c0 : ε(ξ) + τ (ξ)

ε(ξ) = i
2
(ξ ⊗ u(ξ) + u(ξ)⊗ ξ)

(37)

Let us now introduce θ(ξ) defined by:

θ(ξ) =
i

∥ξ∥4
[
ξ ⊗ ξg(ξ).ξ − (g(ξ)⊗ ξ + ξ ⊗ g(ξ))∥ξ∥2

]
(38)

and such that g(ξ).ξ = iθ(ξ). The solution is:

ε(ξ) = −Γ0(ξ) : (τ (ξ) + θ(ξ)) (39)

Or equivalently, in the real space:

ε(y) = −Γ0(y) ∗ (τ (y) + θ(y)) (40)

where Γ0(y) represents the Green and the symbol ”∗” denotes the convolution
product. Finally, replacing τ (ξ) by its expression given by (35), the opera-
tor for the strain and solution of (A.1) complies with the following integral
equation:

ε(y) = −Γ0(y) ∗
[
(c(y)− c0) : ε(y) + p(y) + θ(y)

]
(41)
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5.2 The FFT based algorithm

Similarly to Moulinec and Suquet 1994, we propose to search the solution of
Lippmann-Schwinger equation (41) by means of the following iterative scheme:

εi+1(ξ) = −Γ0(ξ) ∗
[
(c(y)− c0) : εi(y) + p(y) + θ(y)

]
(42)

the scheme starting from ε1 = 0. A simplification of the above recurrence
relation is possible. Since the tensors εi(y) is compatible and < εi(y) >V= 0
at each iteration i, it follows that:

Γ0(ξ) ∗
[
c0 : εi(y)

]
= εi(y) (43)

Consequently:

εi+1(y) = εi(y)− Γ0(ξ) ∗
[
c(y) : εi(y) + p(y) + θ(y)

]
(44)

The following iterative scheme is then employed:

εi(y) = F−1(εi(ξ))

εi(y) = c(y) : εi(y) + p(y)

σi(ξ) = F(σi(y))

convergence test

εi+1(ξ) = εi(ξ)− Γ0(ξ) : (σi(ξ) + θ(ξ))

(45)

The exact Fourier transform is thereafter approximated by the finite discrete
Fourier transform which is computed by using the FFT algorithm. The iter-
ative scheme is stopped when the stress field complies with the local equilib-
rium. The following convergence test has been used in our computations:

∥P (ξ) : σi(ξ) + θ(ξ)∥
∥σi(ξ)∥

< h (46)

where ∥ • ∥ denotes the Frobenius norm and P (ξ) is the fourth order tensor
defined by P (ξ) = I − Q(ξ) and Qijpq(ξ) = (kipkjq + kiqkjp)/2 and kij =
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δij − ξiξj/∥ξ∥2. Tensors P (ξ) and Q(ξ) are two projectors; for any second-
order tensor a, Q(ξ) : a is interpreted as the projection of a along the plane
orthogonal to the wave-vector ξ whereas P (ξ) : a is the out of plane projection
of a. Following Moulinec and Suquet 1994, the reference medium, giving the
convergence of the FFT-based iterative scheme, is chosen as:

c0 =
1

2

[
max

y
c(y) + min

y
c(y)

]
(47)

5.3 Illustration of the method

As an illustration purpose we compute the higher-order elastic coefficients in
the case of a composite made up of long fibers with a circular cross section.
The sections of the fibers are assumed to be arranged along a periodic squared
lattice (see figure 3). For the calculations, a squared unit cell has been con-
sidered and a representation with a grid containing 128× 128 points has been
used for effecting the Fourier transform and its inverse. The width of the cell is
denoted by h and the radius of the cylinder is denoted by a. The elastic moduli
of the matrix are λ1, µ1 whereas those of the fibers are denoted by λ2, µ2. For
all applications, the values of the elastic moduli are the ones already used in
the previous section.

2a

h

h

Fig. 3. Regular array of cylindrical inclusions aligned along direction Ox3.

Plane strain conditions are considered; it follows that only the components
Eij,k with i, j, k = 1, 2 are used. Due to the symmetry of the unit cell, the
relation giving the components of the hyperstress T as functions of the com-
ponents of the macroscopic gradient of strain ∇E is:
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

T11

T21

T62

T22

T12

T61



= h2



C1111 C1121 C1162 0 0 0

C1121 C2121 C2162 0 0 0

C1162 C2162 C6262 0 0 0

0 0 0 C1111 C1121 C1162

0 0 0 C1121 C2121 C2162

0 0 0 C1162 C2162 C6262





E1,1

E2,1

E6,2

E2,2

E1,2

E6,1



(48)

where the compact notation for the components of the hyperstress and strain-
gradient are used. The fourth-order elasticity tensor can be obtained from
usual homogenization procedures and its coefficients are not reported here.
Relation (48) involves only 6 elastic coefficients. The variation of these co-
efficients with ratio a/h are shown on figure 4. It can be observed that the
gradient elastic coefficients are again null when a = 0, corresponding to the
case of a unit cell having the constant elastic moduli λ1 and µ1., whereas these
coefficients are maximal when the ratio a/h is maximal and equal to 1/2, the
composite being still heterogeneous in this last case. The changes with con-
centration of theses coefficients are monotonous for C1111 and C1121 while they
are characterized by a minimum between a/h equal to 0.3 and 0.5 for all other
coefficients.

6 Conclusion

In this paper we have proposed a simple and efficient method for the determi-
nation of the gradient elastic properties of periodic composite materials. The
approach can be summarized as follows: (i) the elastic solution is expanded
along a series expansion for which higher order terms are kept (in addition
to those generally considered in the usual homogenization framework) (ii) the
elastic energy of the equivalent homogeneous material is computed by means
of a generalized Hill-Mandel lemma, (iii) the constitutive relations are derived
from the ”state law” associated with this macroscopic potential.
The averaging rule giving the higher-order elasticity tensors have been de-
rived. The components of these higher-order elasticity tensors are obtained
by solving higher-order homogenization problems for the unit cell of the pe-
riodic medium. Closed-form solutions for these higher-order elasticity tensors
are provided in the particular case of a stratified composite. For arbitrary mi-
crostructures, a computational method has been developed in the last part of
the paper. The method of resolution uses an iterative scheme and the exact
expression of the Green’s operator in the Fourier space. The relevance of this
approach has been illustrated in the case of a periodic array of elastic fibers
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embedded in an elastic matrix.
This work opens the way to many new applications and extensions not only in
the domain of linear but also in the domain of non linear homogenization. For
instance, the determination of gradient properties of elastic or plastic poly-
crystalline materials is an array of research of high importance. The extension
of our approach in this context will be the scope of a future work.

References

[1] S.B. Altan, E.C. Aifantis.
On the structure of the mode III crack-tip in gradient elasticity. Scripta Metal.
Mater. 26(2), 319-324, 1992.

[2] A. Bensoussan, J.-L. Lions, G.C. Papanicolaou.
Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1978.

[3] C. Boutin.
Microstructural effects in elastic composites. Int. J. Solids and Structures.
33(7), 1023-1051, 1996.

[4] F. Bouyge, I. Jasiuk, M. Ostoja-Starzewski.
A micromechanically based couple-stress model of an elastic two-phase
composite. Int. J. Sol. Struct. 38, 1721-1735, 2001.

[5] F. Bouyge, I. Jasiuk, M. Ostoja-Starzewski.
A micromechanically based couple-stress model of an elastic orthotropic two-
phase composite. Eur. J. Mech. A. 21, 465481, 2002.

[6] R. Chambon, D. Caillerie, T. Matsuchima. Plastic continuum with
microstructure, local second gradient theories for geomaterials: localization
studies. Int. J. Sol. Struct. 38, 8503-8527, 2001.

[7] G. Diener, CH. Raabe, J. Weissbarth.
Bounds for the non-local effective properties of random media. J. Mech. Phys.
solids. 29(3), 181-198, 1981.

[8] G. Diener, CH. Raabe, J. Weissbarth.
Bounds for the non-local effective properties of random media II. J. Mech. Phys.
solids. 30(5), 305-322, 1982.

[9] G. Diener, A. Hurrich, J. Weissbarth.
Bounds on the non-local effective elastic properties of composites. J. Mech.
Phys. solids. 32(1), 21-39, 1984.

[10] W. J. Drugan, J. R. Willis.
A micromechanics-based nonlocal constitutive equation and estimates of
representative volume element size for elastic composites. J. Mech. Phys. Solids.
44(4), 497-524, 1996.

22



[11] R.A.B. Engelen, N.A. Fleck, R.H.J. Peerlings, M.G.D. Geers. An
evaluation of higher-order plasticity theories for predicting size effects and
localization. Int. J. Sol. Struct. 43, 1857-1877, 2006

[12] G. Exadaktylos.
Gradient elasticity with surface energy: Mode-I crack problem. Int. J. Sol.
Struct. 35(5-6), 421-456, 1998.

[13] N.A. Fleck, J.W. Hutchinson.
A phenomenological theory for strain gradient effects in plasticity. J. Mech.
Phys. Solids. 41(12), 1825-1857, 1993.

[14] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson.
Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2),
475-487, 1994.

[15] S. Forest.
Mechanics of generalized continua: construction by homogenization. Journal de
Physique IV. 8, 39-48, 1998.

[16] S. Forest.
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A Hierarchy of problems

The hierarchy of linear elastic problems, leading to the identification of tensors
Xα(y) for α = 1, 2, 3, ..., can be put into the form:
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

∇y.σ(y) + gα(y) = 0

σ(y) = c(y) : ε(y) + pα(y)

ε(y) = 1
2
(∇y ⊗ u(y) + u(y)⊗∇y)

u(y) periodic, < u(y) >V= 0, t = σ(y).n antiperiodic

(A.1)

In which the coordinate x is omitted for simplicity. Expressions of gα(y) and
pα(y) are:

order 0 :


g0(y) = 0

p0(y) = c(y) : E

order 1 :


g1(y) =

[
c0(y)− β(y) < c0(y) >V

]
:·∇E

p1(y) = 1
2
c(y) :

[
X1(y) : ∇E + (X1(y) : ∇E)t

]

order 2 :


g2(y) =

[
c1(y)− β(y) < c1(y) >V

]
:: ∇2E

p2(y) = 1
2
c(y) :

[
X2(y) :·∇2E + (X2(y) :· ∇2E)t

]
etc.

(A.2)

Where β(y) is given by:

β(y) =
ρ(y)

< ρ(y) >V
(A.3)

When the body force is of the type: f(x, y) = ρ(y)f 0(x) , ρ(y) being the den-
sity of the material constituents. The solutions of these linear elastic problems
for α = 0, 1, 2, etc. are:

order 0 : u = X1(y) : E

order 1 : u = X2(y) :·∇E

order 2 : u = X3(y) :: ∇2E

etc.

(A.4)

where tensors X1(y), X2(y) X3(y) are localization tensors which do not de-
pend on macroscopic variables E ,∇E and ∇2E, but depend only on the
microstructure, as in the classical homogenization framework.
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B Solution for a stratified composite

For simplicity, the variable y1 is denoted thereafter by y. The solution at the
first order involves the components of the third order tensor X(1)(y) which
are:

X1
111(y) = kf(y)

X1
122(y) = X1

133(y) = k[D(λ)/D(λ+ 2µ)]f(y)

X1
212(y) = X1

313(y) = mf(y)

(B.1)

where function f(y) is given by:

f(y) =


[y/h− (1− τ)/2]/(1− τ) in layer a

−[y/h+ τ/2]/τ in layer b
(B.2)

coefficients k and m are given by:

k = H(λ+ 2µ)D(1/(λ+ 2µ))

m = H(µ)D(1/µ)
(B.3)

in which H(ψ) and D(ψ) are given, for any ψ, by:

H(ψ) =

[
1− τ

ψa

+
τ

ψb

]−1

D(ψ) = τ(1− τ)(ψa − ψb)

(B.4)

Where ψa and ψb are respectively the values of ψ in layer a and in layer b. The
solution at the second order involves the components of X2(y) which are:
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X2
1111(y) = hk(< F > −F )

X2
1221(y) = X2

1331(y) = hk(< F > −F )D(λ)/D(λ+ 2µ)

X2
1122(y) = X2

1133(y) = hm(< ηF > −ηF )

X2
2112(y) = X2

3113(y) = hk(< F > −F ) + (< F/µ > −F/µ)H(λ+ 2µ)D(η)

X2
2222(y) = X2

3333(y) = hk(< F > −F )D(λ)/D(λ+ 2µ)

+(< F/µ > −F/µ)H(λ+ 2µ)D(ϕ)

X2
2332(y) = X2

3223(y) = hk(< F > −F )D(λ)/D(λ+ 2µ)

+(< F/µ > −F/µ)H(λ+ 2µ)D(γ)

X2
2121(y) = X2

3131(y) = hm(< F > −F )

X2
2233(y) = X2

3322(y) = h(< F/µ > −F/µ)D(µ)

(B.5)

where function F (y) is defined by:

F (y) =


y[y/h− (1− τ)]/2(1− τ) in layer a

−y[y/h+ τ ]/2τ in layer b
(B.6)

and the following notations have been used:

M(ψ) = (1− τ)ψa + τψb

η = λ/(λ+ 2µ)

γ =M(η)η + λ(1− η)/H(λ+ 2µ)

ϕ = γ + 2µ/H(λ+ 2µ)

(B.7)
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