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Abstract

This Gipsa-lab research repbdeals with channel estimation for Orthogonal Frequencyisitim Multiplexing
systems over slowly-varying multi-path fading channelsasiof the conventional methods exploit the frequency-
domain correlation in estimating the channel at pilot sutiees position, and then interpolating it over the entire
frequency grid. More advanced algorithms exploit the tisloeain correlation as well, by employing Kalman
filter based on the approximation of the time-varying (assdirRayleigh with Jakes’'spectrum) channel. Adopting
a parametric approach and assuming a primary acquisitiatelafy related information, channel estimator has to
track the Complex Amplitudes (CAs) of the channel paths.his perspective, we propose a reduced complexity
algorithm compared to Kalman methods, based on a secomd-Q#& Tracking Loop. Inspired by Phase-Locked
Loops, an error signal is built from the pilot-aided Leagti@res (LS) estimate of the CAs, and is integrated by the
loop to carry out the final CAs estimate. We derive closednfexpressions of the Mean Square Error (MSE) of the
algorithm, and of the corresponding optimal loop coeffitseSimulation results show that our algorithm outperforms
the conventional (frequency-domain interpolation) mdtlod has almost the same performance as a second-order
Kalman based algorithm. Moreover, efficiency of a secordeowersus first-order approach is demonstrated for the
slow-fading case, with a MSE closer to the Bayesian-Craraa-Bound.

Index Terms

OFDM, Channel estimation, Rayleigh multi-path channeked@pectrum, Tracking Loop, Phase Locked Loop,
Kalman filter, Auto-Regressive model.

. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is an effiwe technique for alleviating frequency-selective
channel effects in wireless communication systems. In téttnique, a wideband frequency-selective channel is
converted to a number of parallel narrow-band flat fading Baboels which are free of Intersymbol Interference
(ISl) and free (assuming negligible channel time variatiothiw one OFDM symbol period’) of Inter-Carrier
Interference (ICl). For coherent detection of the inforimatsymbols, reliable estimation of the gain of each
subchannel in the OFDM system is crucial.

A. Some approaches to channel estimation in OFDM

Most of the conventional methods work in a symbol-by-symédieme [1] [2] [3] by using the correlation of
the channel only in the frequency-domain (FRy. the correlation between subchannels. Generally, theyistoois
estimating the channel at pilot frequencies and then iotating the channel frequency response [1]. The channel
estimation at the pilot frequencies can be based on the ISzpsires (LS) criterion, or for better performance
on the Linear-Minimum-Mean-Square-Error (LMMSE) criterion [B].[3], Low-Pass Interpolation (LPI) has been
shown to perform better than all interpolation techniqussduin channel estimation.

1The final revised form of this paper was written November 15, 201@r(ah initial version on July 14th 2010), and a part of this work
was presented in the conference [18] (ISCCSP, Limassol, Cypras;HV2010). The goal of the on-line posting of this manuscript is to
provide analytical results about the so-calfedt algorithm proposed in [18].
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Though the conventional methods can operate with time-wgrghannels, the information of the time-domain
correlation is not exploited. However, we have shown in [fptgh on-line Bayesian Cramer-Rao-Bound (BCRB)
analysis, how much the channel estimation process of themusymbol can be improved by using the previous
OFDM symbols. Some works have addressed the time-domain dgsafithe fading process to obtain an updated
channel estimate. Chen and Zhang proposed in [5] a structbhiehwises a Kalman filter estimator for each
subchannel (exploits the time-domain correlation) anchedi combiner to refine the estimate of each subchannel
(exploits the frequency-domain correlation). The compiewif the proposed structure increases with the number
of subcarriers. However in practice, only a subset of (p#oibcarriers can be used to perform the per-subchannel
Kalman filter, and the global frequency response of the cHaranre still be obtained by LPI interpolation. Other
works using Kalman filter to exploit time and frequency catiein for OFDM channel estimation are based on
additional assumptions or different approaches. Assurttirgavailability of the power delay profile, a data-aided
Kalman estimator (derived from the Expectation-Maximiaatalgorithm framework) is employed in [6] to track
the discrete-time impulse response of the channeli( Time-Domain (TD)). And a low-complexity parameter
reduction approach based on the eigenvalues decomposftitie auto-correlation matrix of the channel (in FD) is
proposed in [7]. It tracks the channel coefficients in the d@mi eigenvectors subspace basis, before performing
eigenvalues interpolation to compute the channel frequeesponse.

In the same idea of reducing the signal subspace dimensiemow focus on the class of parametric channel
estimator [8] [9]. Assuming a multi-path channel structugstimation can be reduced to the estimation of certain
physical propagation parameters, such as multi-path delagt multi-path Complex Amplitudes (CAs) [8] [10] [11]
[12], summarized in ar.-path channel structure. Moreover, in wireless radio ckefrthe CAs show temporal
variations while the delays are quasi-constant over a latgeber of OFDM symbols, and then can be accurately
estimated by an acquisition procedure. In [8], the acqaisihcludes the detection of the number of paths based on
the MDL (Maximum Description Length) principle and the adtion of the initial multipath time delays through
the ESPRIT (Estimation of Signal Parameters by Rotational lamag Techniques) method. With this information,
a MMSE estimator is derived to estimate the channel frequeesyonse, with a great performance compared to
non-parametric methods. However, the optimal Wiener egtmremains complex and requires the knowledge of
the second-order statistical properties of the channe]l0h, the delay-subspace (assumed invariant over several
symbols) and the fast variation of the CAs are tracked seéglgiry subspace-tracking algorithms. In [11] [12],
we have addressed the problem of paths CA estimation andelkfliction for the case of fast-varying Rayleigh
channel (normalized Doppler spreggl’ > 10~2). Based on a polynomial modeling of the (Jakes process) CA
variation, we used polynomial estimation over a block of OFBnbols in [11], and a Kalman filter based on
Auto-regressive (AR) model of the polynomial coefficientsydgic in [12].

B. Motivation of the work and contributions

The use of Kalman filters for the channel estimation problemrhasived great attention in recent years in the
wireless communication literature. Various approaches lneen developed, as mentioned in the previous examples
[5]1[6] [7] [12], and not only of course for OFDM systems [15]llAhe aforementioned works based their Kalman
filter on the AR approximation of the widely accepted Raylefgtiing channel with Jakes’Doppler spectrum [24],
as developed in [13]. The first-order Gauss-Markov assumg#déril model) is often retained [14] [25] [6] [7]
[15] [16]. However, the so-called AR1-Kalman estimator sloet ensure to reach the BCRB in the much common
scenario of slowly varying channel ¢. when IClI is negligible) [17] [18]. Moreover, and above afetAR1-Kalman
is still a quite complex algorithm even if it employs only a fissder state-space model.

In this paper, we propose a simplified on-line recursive dligar for the multi-path CAs estimation problem under
the slow channel variations scenarify{ < 10~2). It is developed for OFDM systems into the class of parametri
channel estimators, exploiting the availability of delajated information (assuming a primary acquisition proced
as in [8] [11] [12]) for tracking the CA variations. But, it attl be also directly applied to the more basic single-
carrier flat fading channel estimation problem, or adapteafoer approaches than parametric approach. Our main
motivations for the work presented in this paper are theo¥ahg:

« to obtain a reduced complexity algorithm compared to Kalrfitier based algorithms, with quasi same
asymptotic MSE performance (for a same model order),
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» to obtain a closed-form and usable expression of the pedoce in MSE with respect to the channel
state (Doppler spread, power-delay profile, SNR), derivechftbeoretical analysis under “Rayleigh-Jakes”
assumption.

» to measure the advantage of choosing a proper 2nd-orderlnodeproach slow fading variation, versus a
first-order model.

The proposed algorithms is based on a Complex Amplitudeskifrpd_oop (CATL) structure. This structure
is inspired by the “prediction-correction” principle ofatKalman filter [30], and by second-order digital Phase-
Locked Loops (PLL) [19] [22] [26]. Thereforencrementqor drifts ) into the CAs variations are also estimated in
order to improve the CAs prediction for the next iteratioxpleiting the time-domain correlation and especially the
fact that CAs exhibit strong trend behaviare( they continue in some direction during several OFDM symbols)
The error signal that feeds the loop is based on the (per dussenbol) LS estimate of the paths CA, obtained
from the pilot-subcarriers. A theoretical analysis of thATC combined with this specific error signal (leading
to the proposed LS-CATL algorithm) is derived. Three naturaénevices (the AR1-Kalman filter, a 2nd-order
Kalman filter, and the BCRB) useful to appreciate the MSE of dgordhm with the same (parametric modeling)
assumptions are also presented. Simulation results cothpatbese obvious references and also to other literature
algorithms validate the proposed algorithm and the themieanalysis.

The paper is organized as follows: Section Il describes theisysmodel. Section Il derives the two suboptimal
algorithms, whereas Section IV recalls the Kalman algoritmd the BCRB references. Finally, the different results
are discussed in Section V.

Notations:[x];, denotes théith entry of the vectok, and[X]; ,,, the [k, m]th entry of the matrixX (indices begin
from 1). 1y is a N x N identity matrix. The notation digg} stands for a diagonal matrix witkh on its diagonal,
diag{X} is a vector whose elements are the elements of the diagongl afd blkdiagX, Y} is a block diagonal

matrix with the matriceX andY on its diagonal. The superscriptg”, (-)¥, |- |, and T¢-) stand respectively for
transpose and Hermitian operators, determinant and traeratons.Jy(-) is the zeroth-order Bessel function of
the first kind. V represents the first partial derivatives operater, Vy = [8%1, e %]T.

[l. SYSTEM MODEL
A. OFDM Transmission over multi-path channel
Consider an OFDM system witN' sub-carriers, and a cyclic prefix lengt¥),. The duration of an OFDM symbol

is T' = vT;, whereT is the sampling time and = N-+N,. LetX,) = [z [~ 5], 2 [- 5 +1]. .., x(n)[%—l]]T be
thenth transmitted OFDM symbol, wherer,,)[b]} are normalized QAM symbols. After transmission over a multi
path channel and FFT demodulation, tté received OFDM symbo ., = [y(n) (=51, Yim) (=5 + 1], - ¥ [5 —
1]]T is given by [8] [11]:

Yoy = Hm) Xm) + W) (1)
wherew(,, is a N x 1 zero-mean complex circular Gaussian noise vector with reavee matrixo?l y, andH,,

is a N x N diagonal matrix with diagonal elements given by

L

[H(n)]k,k = %Z [al(n) X eijn(%,é)n} o

L is the total number of propagation paths,is the ith CA of varianceac%l (with Zle o2 =1),andr x T, is

the ith delay {; is not necessarily an integer, but < IV,). The L individual elements o{all(n)} are uncorrelated
with respect to each other. Using (2), the observation misdél) for thenth OFDM symbol can be re-written as

Yoy = diag{X)tF o) + W (3)

wherea,) = [aip), - aL(n)]T andF is a N x L Fourier matrix depending on the delays distribution, defibgd
[8l:
[Flr, = e I2m (5t =3 (4)
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Fig. 1. Equivalent structure of the second-order complex amplitud&itrg loop, inspired by second-order digital PLL

The algorithm proposed in this paper can work without explécipriori model for the paths CA variation.
However, we will provide theoretical expressions for theecaf the widely accepted Rayleigh model with the
so-called Jakes’ power spectrum [24] with Doppler freqyefig named “Rayleigh-Jakes” model in this paper. It
means that thé CA «;,,) are independent wide-sense stationary narrow-band zeesrcomplex circular Gaussian
processes, with correlation coefficients for a timesagiven by

RY) = Eloymaum_p?] = o2, Jo(2nfaTp) (5)
B. Pilot Pattern

The N, pilot subcarriers are evenly inserted into tNesubcarriers at the positior3 = {p, | ps = (s — 1)Ly +
1, s=1,..,N,} with L the distance between two adjacent pilots. The received gilbtarriers can be written
as

Yoy = Km@m) +Wom) 6)
wherey, andw, are N, x 1 vectors, and where we have defined flig x L matrix
K n) = diag{Xp(n) }Fp (7)

that can be computed for each symbol periofrom the knowledge of théV, x 1 data pilot vectoix,,, and the
delays{r;} through theN, x L Fourier transform matri¥, with elements given by

PR

T (8)

(Folky = eI

I11. COMPLEX AMPLITUDE TRACKING ALGORITHM

The proposed tracking algorithm, called LS based-CATL algonitis built from a general second-order recursive
structure (CATL), and a specific error signal (based on LS coitgrthat conditions one element of the structure.

A. Structure of the algorithm: CA Tracking Loop

1) Structure: The purpose is to estimate the channel coefficientSThe estimate otx,,), denotedé ), is
updated at a symbol rate by the computation of a loop erravasig,,), which is next filtered by a digital loop
filter. Inspired by the Phase-Locked-Loop (PLL) design [26], we useand-order closed-loop to get the ability
to track potential time linear drifts of the parameters toelsémated. The general recursive equations can be given
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by the way of two stages:
Measurement Update Equations

Ve(n) = Junction of { yp(n);d(n\n—l) } (9)
Anin)y = Gpn—1) T [1-Ve(n) (10)
Time Update equations
Viagin) = WYlag(n—1) T Ve(n) (11)
Qniin) = Qln) T H2-Viag(n) (12)

where 1, uo are the (real positive) loop coefficients.

As in a Kalman filter, the Time Update Equations can be thougipredictor equations, while the Measurement
Update Equations can be thought of corrector equations.

The Measurement Update Equations are responsible for thbdekd.c., for incorporating a new measurement
Yp(ny INto thea priori estimateé(,,,, 1) to obtain an improvea posteriori estimateé,,,,). More specifically in
our imposed structure (10), the output estimédg,,, is obtained from the predicted vectéy,,,_1), thanks to
the additive correction of the error signal vectqy,,). And v, can be regarded as the output of an equivalent
“Complex Amplitude Error Detector” (CAED), to be defined in (9pin the new measuremest,,,, and the
predicted valuegy,,,—1)-

The Time Update Equations are responsible for projectingdadv(in time) the current sta@,,,,) to obtain the
a priori estimates for the next time stefy,,,1),)- More specifically in our imposed structure (12), the predrct
& (n41pn) I Obtained from the current estimatiay,, ) by adding a component proportional to the veapy ).
And v 4,y defined in (11) is a digital accumulation of the error signatteev,(,,). Note that at each iteration,
we get in fact inus - v ag an estimate of thepeed evolutiorfor slope) of the parametet, useful to predict the
parameter evolution for the next iteration.

2) Similitude and difference with a digital PLL structurdéfrom equations (12)(10), we haveé, i) =
G (njn—1) T 11 Ve(n) + H2-Viag(n)- ThiS means that the predicted estiméte,,,_;) can be regarded as the output of
a “Complex Amplitude Locked Loop” (CALL). The CALL contains in caste a “CA Error Detector” (instead of
“Phase Error Detector” in a PLL) delivering,,), a standard first-order Lead / Lag loop filt€p.1.(2) = p1+ 2=
deliveringve(,) = [11-Ve(n) + 12-VLag(n), @nd @ “Numerically Controlled CA Generator” (instead of americally
Controlled Oscillator in a PLL) delivering(,,41jn) = &(njn—1) +ve(n)- The figure 1 gives an equivalent scheme of
our “Complex Amplitude Tracking Loop” (CATL), which permits t@cognize the similitude with a second order
digital PLL structure [19]. But our final estimate is not dirgcthe CALL outputé&,,,,—1), but thea posteriori
estimate (or CATL outputfy(,,,)-

B. Error signal specific to the LS-CATL algorithm

1) Motivation: for one OFDM symbol, the (instantaneous) Squared Distance $Bdieares error) between
noisy received pilot subcarriers and corresponding maslelefined by

N H
S(G(m)) = dr)-din) (13)

where thelV,, x 1 error vector is
An) = Yp(n) = Km@m) (14)

for any estimatoi,,) of «,). The LS-estimator otx,,) permits to minimize the SD (13) and can be computed
from the observed pilots by

asm) = GmYpwm) (15)
with .
G = (KlhKw) K (16)
where we recall thatC,,, = diag{Xy(,}Fp- We see thatV, must fuffill the requirementV, > L in order to
allow the pseudo-inverse computation (16) ( B4 < L could be used with a MMSE criterion instead of the

5
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LS criterion). On the other hand, it should be noted that thé&riraversion in (16) has to be done only once
when using the same set of pilots from one OFDM symbol to amotiiealso in the case of 4-QAM symbols. For
4-QAM symbols, the matrix inversion is indeed independenthe indexn: G, = (Frf?’Fp)*1 il diag{Xp() 7.
After LS estimation, we obtain from (1&)(16)&(6):

aLs(n) = Q)+ €wn) (17)

wheree,,) is a zero-mean complex Gaussian noise vector.

2) Error signal: we use the difference between the LS estimaigg(,) for the nth OFDM block and the
predicted vector parameter for this bloak,,,—1). The error signal vector is then:

Ve(n) = Gn)Yp(n) — C(nln—1) (18)

The specific error signal vector defined in (18) can be expressesing (15§:(17) versus the prediction error
€Pred(n) = Q(n) — &(njn—1) IN the most simple linear form:

The real coefficienk, is the so called gain of the equivalent CAED, reduced to one her
kg=1 (20)

And N,y = [Ni(n), ...,NL(n)]T is a (temporally uncorrelated) zero-mean disturbance dubd additive thermal
noise wy,,y in input of the CAED, and represents the so-called (inputplowmise {.c. in input of the loop
but in output of the CAED). With this specific LS-based error signal, we hdVg,) = eyn) = GyWpe),

with a correlation matrixE{N(n).N(’Z)} = o2 (Fpr)*l, and a mean variance (per branch or per path,=

1 L 2 3.
Z'ZZ:1 UNZ)'

o2 = T (21)

%

with Ay = 2.%«{(}\1@;5 Fp)
where N, is the number of pilot sub-carriers. It should be noted that (input) loop noise variance is minimum
(0% (min) = ;{,—i and Ay = 1) if Ny, is uncorrelated from one path to anothér, when Fg“’Fp is a diagonal
matrix (this condition depends on the delays distribution)
Special case of first-order loop:if the loop coefficientu, = 0, the on-line estimation algorithm is reduced to an
ARL1 low-pass filtering of the LS estimatat, g,

1
p=1 (22)

Gnn)y = (1 — p1)-G(n_1jn—1) + 1.0 5(n) (23)

C. General properties and theoretical MSE analysis
1) Second-order closed-loop transfer functiofihe estimation error of the tracking algorithm is defined as

€(n) = C(n) ~ A(njn) (24)
We want to get the transfer function between the true vedoampeter and the estimate. Combining equations (12)
and (10), we have that:
Q(njn) = A(n—1jn—1) T M1-Ve(n) + H2-VLag(n—1) (25)

By using (11), the Z-domain transform of (25) leads to

-1

G(2).[1 — 271 = [ + 1“2_'2_1].1,6(2) (26)

Combining the general loop equation (26) with the specific (l&Sddl) error signal (19) rewritten versus the
estimation error as
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Ve(n) = J];‘;m.{a(n) — G} + ;W.N(n) (27)
leads in the Z-transform domain to
a(z) = L(z).a(z) + Lk(:j) N (2) (28)
where L(z) is the transfer function of the CATL defined by
L(z) = i ) (29)
(1—271) + s F(2)

1

with respect toF'(z) = 1 + ’fi‘iil. Hence, the CATL transfer function can be written versus tuop Icoefficients
(p1, p2) as

L(z) = kal(z — 1).pu + (2 = 1).(p1 + p2) + po]

(z = 1)? + (2 = 1).ka(pur + p2) + kapio

or rewritten in a more interpretable fofnas a function of the couple natural pulsatiop (or natural frequency
fn = 52), and damping facto¢ as

(30)

B 2Cwn. (1 — 274 + w?
L(z) = (1—2"12+2Cw,.(1—271) +w? (31)

kqpo

with: ZT)? = —= 32
(wnT) 1= ki (32)
2w, T = (1 = p2)ka (33)

1 — kg

And from (32) and (33), one given couple,{, () of the second-order low-pass transfer function can beimdda
in tuning (p1, pu2) as
1 (wnT)? + 2w, T
= —. 34
i ka 1+ (wnT)2 + 2CwonT (34)
1 (wnT)?
= —. 35
H2 ka 1+ (wnT)? + 2CwnT (35)
The strict stability conditions of.(z) in (30) or (31) will be given in the next subsection for anw (u2). But
if we impose the constraint that< w,, < +o0o and0 < { < +oco to preserve a physical meaning, we deduce from
(34)&(35) that0 < s < w1 < 1/k4. We can rewriteL(z) in the frequency-domain, by making = e?, with
p=j2nf, and f is the frequency variable. Fig. 2 gives the modulus in fregyetomain of the exact function
given in (31). Assuming slow reaction of the loop during oneBM symbol T (i.e. f,,.T" << 1), the digital loop
transfer function is close (approximatian! ~ 1 — p.T) to the second-order low-pass transfer function usual in
analog PLL [27]:

2Cwnp + w72z
p? + 2Cwnp + w2

Special case of first-order loopif e = 0, the transfer function of the system just depends on a dyiu$ation
we (or cut-off frequencyf. = 5<), and is reduced to

L(ePT) ~ (36)

We

L(z) = m (37)
with: (w.T) = % (38)

kq

2expression ofL(z) is the same than in [18] witl8; = T

PLL [26].

but differs to the closed loop transfer function of a 2nd-order digital
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and then approximatively (whefi.T << 1) to an analog first-order low-pass transfer functiofe?”) ~ %=, as

ptw.’
can be seen in Fig. 2. We have from (38) that= %

2) Stability: the condition of stability of the causal rational systéitr) is obtained when all the roots of the
denominator polynomial are inside the unit circle. For a-Bnder denominator polynomial(z) = [1 + c;z~! +
c2272], the stability conditions (obtained by the Schur-Cohn t@g{) are:

1
1+eco

leo] <1 and —1< <1 (39)

with in our case:
c1=—2+ kd(ﬂl + HQ) and cp=1-— kd,ul

In summary,L(z) in (30) is stable (for a true second-order system with# 0) if and only if:

0 < kg < 2 (40)
0 < kguo < 4-—2kgu (41)

And for the special case of first-order systefi{4) in (37)), only the first equation (40) has to be verified.

3) Mean Squared Error analysisthe estimator is unbiased since the CA estimation etfpy defined in (24)
is zero-mean (see (28)). Our aim is to compute the estimatioor variancer? = %E{efi)e(m} as

2

Oc = Gza + UGQN (42)

where 2, is the dynamic error variance, resulting on the variatiorthef processy, and o2 is the static error
variance, resulting on the additive thermal noise. Acawgdio (28) and (24), the erras,,) can be expressed in
the Z-domain bye(z) = (1 — L(z)).a(z) — k;*.L(z).N(z). Then, the two components of the variangecan
be easily expressed. The componep} results from the high-pass filtering — L(z)) of the CAs inputa(,):

+57 .
o2, = / To(f)1 — L(e/T)2df (43)
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Fig. 3. Network of curves of globat? = o2, + o2y (continuous line) versug, / f4 (for a fixed f4T = 1.10~%) for a second-order loop
with various damping facto¢ = 0.2,0.3,0.5,0.7,1, 1.5, 2 computed numerically from (43) assuming Jakes model (wgh= 1, L = 6),
and from (44) assuming? = 1 and o2 = 6,25.10~2 (top of figure) oro3 = 6,25.10~* (bottom of figure). Theoretical reference (dashed
line) given from closed form expressions (&%7) for o2y, and from (51) foro2,

with T (f) = +. 3/, T's, Wherel,, is the Power Spectrum Density (PSD)@f And the component?,, results
from the low-pass filtering{kd‘l.L(z)) of the input loop noisEV,,:

o= ()L LT s (44)
eN — ) N k?l

Taor

with Ty (f) = +. 3/, T, (f) whereTy, is the PSD of/;.

If the statistical properties of the stochastic inputs amobpl noise are known, the CAs error variance can be
computed numerically in evaluating the integrals (43) a#d)).(The couple f,, () has to be properly chosen for
a good trade-off between gain tracking ability and loop eaisduction, for a given SNR anf}/T" scenario. Fig.

3 gives some numerical integration results & assuming a “Rayleigh-Jakes” model for the CA dynamic, and
a (temporally uncorrelated) input loop noise with two diéfiet variances%;. It is shown that fixing¢ = % and
varying f,, can be a strategy to obtain the best minimumzgf Our objective now is to give some approximate
closed form expressions fer?, and o2, especially for¢ = % (or around).

Static error variancer?: since the whiteness 0¥,y can be assumed (willy (f) = o3/ for our algorithm,
(44) reduces to

2 N B (45)

where Bj, represents the (double-sided normalized) noise equivakmdwidth of the system, defined by

1

+2T .
B =T x / |L(e2™ T2 df (46)

An exact analytical expression @f; can be derived by the method presented by R. Winkelstein3h (fZased
on the book of E.I. Jury [29]) for the second-order loop ((30)31)), resulting in

8¢ + 2)(wnT) + 6¢(wnT)? + (w, T)3
8¢ + 6C.(w,T) + (w,T)3
If f,.T << 1, the approximation leads to the noise equivalent bandwafithe analog second-order loop given in

Bj, (47)
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(36):
1
By, = 2nf,T.(¢C + —) (48)
4¢
And for the first-order loop, the noise equivalent bandwidth i
2nf.T
Boo = omr 2 49
and can be approached whéfi" << 1 by By =~ «wf.T.
o2/L

Dynamic error variancer?: For the “Rayleigh-Jakes” model (5), the Doppler spectrlip(,f) = flim
T™Ta — E

for f €]— fq4;+f4[, has a bounded support. Therefore, a good tracking will redgbat the natural frequency of the
second order loog, is greater thary,;. On the other hand, assuming thiat<< 1/7", we can deduce that only the
Low Frequency (LF) part of the functiod — L(e727/T)| is used in the integral (43). According to (36), the squared
modulus of the error transfer function of the second-ordeplcan be approached in LF (fgr< f,, << 1/T) by

|1 — L(e??™fT)|? ~ T f?.fé4.(4<2 - And when moreovet ~ 3, we can use finally the accurate approximation
|1 — L(ed?™IT)| ~ (fi)Q. It results that the CA dynamic error varianeg, in (43) can finally be approached (for
fa < fn<<1)T, an%lg ~ 1) by

+fa f 4
ot [ (L) @ (50
fa fn
For the “Rayleigh-Jakes™ model case, a variable chang® = (f/f4) permits to evaluate (50) analytically as
: <3 (1) 7
ol (Jakes) ~ (8) <fn T (51)

And for the first-order loop, using from (37) thét — L(e/?™/T)| ~ (%) when f < f; < f. << 1/T, we have
o2, (Jakes) ~ (3).(4)2. %
Optimal natural frequency:the dynamic component?, decreases proportionally to thigh power of f,,
according to (51), whereas the static componeht increases as a function ¢f,, according to (45) and (48).
The component2, (respectivelys?y) is the dominant part of the globaf in the low (respectively largey,/ f4
region, as can be seen in dashed line in the previously nmedtid-ig. 3. Now if we fix{ (around %), we can
calculate the natural frequengy; that permits (forf; < f,, << 1/T) to minimize the global MSE? in (42) as

fa 31 1 1 o2/L\°
—)(Jakes) = | -.—. . . 52
Gtk (4 ST D) TR .

And the corresponding optimal MSE results in
o2\* (o} 45
o?(Jakes) = \ - <L> -(%-m) (53)
15 1. 4r)5

ith \=—- —) = 4
with A S [(<+4C) 3] (54)

And for the special case of the first-order loop, the optimal MBE f; < f. << 1/T) is reduced to?(Jakes) =
2\ 3 2 2/3 , _
3. ("f) ) (w.k—g.de> / , obtained with

fo /11 o2JL\F
(E)(Jakes)— (W.M.U?V/k(%) (55)

10
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IV. REFERENCES KALMAN FILTERS AND BCRB

In the perspective to appreciate the performance of thegsexptracking loop based algorithm, we present in this
section three obvious benchmarks that were also investigattreat our specific problem. We remind the reader that
we wish to estimate the CAs,,) assuming the knowledge of pilots subcarriggs,) and delaysr = [r, o]t
The estimation is based on the observation model (6) thateae-formulated ag,,,) = K (xp(n), 7-) Q) +Wp(r)-

For this specific (parametric channel modeling based) pnopke Kalman filter with an usual first-order Auto-
Regressive model (called AR1-Kalman) was first investigatéel developed also a Kalman filter using an optimized
second-order model more appropriate under a slow fadingngialn this manuscript, we call this algorithm the
(2nd-order) Or2-Kalman filter. Finally, the Bayesian CramaoMound (BCRB) that provides lower bound on the
variance achievable by any unbiased estimator is also dieesafter. Note that other literature channel estimators
that operate over the channel transfer functiee (on-parametric Frequency-Domain estimators) will also be
discussed in the simulations section.

A. AR1-Kalman filter and (2nd-order) Or2-Kalman filter

We consider first the Kalman Filter algorithm that can deliviersa sequential manner an estimate of the CAs
as proposed in [6§:
G (njn) = Ka'ma”@(n\nfl) »Yo(n) Xp(n)> T)

For a so-called Linear Gaussian problem [30], the Kalman filtenld give the optimal performance. Exact linear
state evolution equation for the Jakes’ process CAs are vailadle. However, we have to give an approximate
linear state-space representation of the problem in oerseé Kalman filter. In this perspective, the flat fading
Rayleigh channel can first commonly be approached by a firgtrgkdto-Regressive (AR1) model with Gaussian
assumption (or Gauss-Markov model) [30], leading to an ARdman filter [14] [16] [25] [15]. However, in case
of slow variations, the CAs variations look like linear chgia few symbols, and it could then be more appropriate
to consider also second-order model including a (slightbpite) linear driftd;. The general model that we consider
to approach the variation of one Jakes’procegs) by d;,) is finally:

Ay = V-Wn-1) T Oin-1) (56)
6l(n) = ﬁ'él(n—l) + Ul(n) (57)

where~ and 3 are two positive scalars (lower than 1)y, is zero mean Gaussian complex circular with a
varianceos?, .

First, for the special case of AR1-model (no drift), we have 0, and theny = Rg}l)/agl ando? =02 (1—+2).
The standard choice foy becomesJy (27 f;T) if we impose that the autocorrelation coefﬁcierﬁé’f) of the
approximate process perfectly match the Bessel autolatime function of the true Jakes process in (5) for lag
ke {-1;0;1} (or for k € {—p; ...;0; ...;p} for a model with ordep). But we can use a more general choice as
in [13], with:

~ Jo(2m faT)

N 1+e€
wheree is a possible very small positive amourt< 1). This slight change can create a moegular process that
in some sense closely approximates the original processspéefic equations of the AR1-Kalman filter applied
to our model can be found in [18].

Secondly, for the second-order model, the coefficigns chosen close to one (but lower) to introduce a drift
with time. And the parameters of the model have to be calildratich that the slope (or drift) of the CA variation,
di(n)» changes slowly with time:, according to the actual value ¢f;7". From the relationship betweeﬁg) and

Rgl) obtained from (5&(57), we find that the coefficient can be computed, for a givehy by

(AR1-Kalman)

R® _ gpW»)
y=—-—H—"  (Or2-Kalman)

Sconsidering in [6] the Kalman-(forward-only)-initial estimation basedpiats. More precisely [6] is the Time-Domain channel estimator
that estimates the discrete-time impulse response including both physicalet(CAs at known positions) and receive filter.

11
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2
O—(xl

=) Jo(27 f4.T), and nong) = 02, Jo(27 f4.2T) for lag k = 2. The state-
noise variance is;, = o3 (1 — %), whereo; = o3, (1++%) — 2v.RY is the variance of the driff;. The 2nd-

(67}

order model of the CAs evolution can be re-formulated in éestpace model. The state vector to be considered
includes the CA and the drift for each patl,, = [a{(n),aQT(n), ...,af(n)]T, whereay,,y = @), Gin)]” - The

where we can still imposézg) =

state evolution matrix isM = blkdiag{M1,...,M}, whereM; = for [ = 1...L, and the state-noise

v 1
0 p
vector isug,) = [O,ul(n),...,O,uL(n)]T. The observation matrix with sizéV,, x 2L is S,y = K, Z, where
Z =1[1;,0;,...,11,0z], with 17, being a column vector witil ones, and;, with L zeros. From this we obtain
the state evolution (56)(57) and the observation equation (6) in a state-space fation as

amp) = Ma(n,l)—i-U(n) (58)
Yoy = Sm)@m) + Wp(n) (59)

The two stages of the so call€2-Kalmanfilter are:
Time Update Equations:

~

Anjn-1) = Mag 11
P(n\n—l) = MP(n—1|n—1)MH+U (60)

Measurement Update Equations:

H H 2 -1
Ky = Plaln-1)Sn) (Sm)Pmin-1)SH) +o°1w,)
apny = A1) + K@) (Vpm) = Sy @nn-1))
Py = Pain-1) = Kn)Stm)Pnjn-1) (61)

whereK () is the Kalman gain matrix and = diag{0,07 ,...,0,0%

uy? ?Cup )

B. Bayesian Cramer Rao Bound (BCRB)

The on-line BCRB for the estimation ef,,) from actual and previous observations over a multi-pathld2gly
fading channel and OFDM modulation has been derived in [4]ter Data-Aided or Non Data-Aided contexts.
The adaptation of [4] for our pilot-based observation mdyl&ll), ...,yp(n)] implies that for any unbiased estimator
d(n) of a(n):

1 R .
7 Ellam - &))" (@) — &)} > BCRB,

where the on-line BCRB reduces to
nlL

> [BCRB()], (62)

i=(n—1)L+1

—1
with BCRB(n) = (blkdiag{Jm,Jm,...,Jm} + R;l)

BCRBy,) =

==

whereld,,, = %FHF is a L x L matrix, and the covariance matrX, of sizenL x nL is defined by the elements:
REP) for v e,r]  paelon1]
R . o, — QU ) ) )
[ ] (lﬂp)72(l )p) { 0 for l/?él 7

with i(l,p) =1+ (I — 1) +pL and é{;) defined in (5). In the simulation results, we will plot BCRBBCRB,)
as reference.

V. SIMULATIONS

In this section, the performance of the LS-CATL algorithm isleaged, first confronted with theoretical analysis
and section IV references (AR1-Kalman, Or2-Kalman, BCRB)] next with literature algorithms. By default, we

12
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Fig. 4. Comparison between simulated and theoretical MSE,\@ for f,7 = 1072, ¢ = 0.5, SNR = 0, 20, or 40 dBN, = 16 for
proposed 2nd-order LS-CATL algorithm. Theoretical values arergivom (45%(47) for o2y, and from (51) foro2,.

used a 4QAM-OFDM system (but other sizes of QAM modulationadse considered)y = 128 subcarriersN, =

£ = 16 samples for the cyclic prefix, an%L = 2M Hz. The number of pilot subcarriers wa§, = 6, 8,16, or 32,
correspondlng to a distance between pllot subcarrgrs= 22,16, 8, or 4 respectively. We used the same set of
pilots for each OFDM symbols. The channel model is a Jakesﬂ&pad?aylelgh channel model with = 6 paths
and maximum delay,,.... = 10 (expressed as a fraction 8f), and corresponds to the GSM model [1] [11] recalled
in table 1. The performance is evaluated under a slowly timeing channel withf,7 < 10~2 (corresponding to

a vehicle speed;,, < 140 km/h for f. = 1GHz), with a default valuef,7 = 103

Path number [ | 1 | 2| 3 4 5 6
02, /o2 (dB) | -3[0|-2|-6]-8]-10
7 0 [1] 23] 47 10

TABLE |
AVERAGE POWERS AND(NORMALIZED) DELAYS OF THE CHANNEL

A. Confrontation with theory and with section IV references

1) Confrontation with theoretical analysis versfisl': Fig. 4 gives comparison between simulated and theoretical
error variances versug,T for f;7 = 1073, and SNR = 0, 20, or 40 dB for proposed 2nd-order (LS-CATL)
algorithm, with N,, = 16 pilot subcarriers. The simulated dynamic error variangée was obtained in forcing the
noisewp,,) to zero, whereas the simulated static error variante was obtained in maintaining the CAs of the
paths to constant values equal to their standard deviatipnBirst of all, we can observe that all the theoretical
curves are very close to the simulated ones. Therefore, theissla of the minimum of the simulated MSE
matches also very well with the (theoretical closed form)YSptimal natural frequency (such thgt/ f; (Jakes)
=3, 7.4 and18.7 respectively forSNR = 0, 20, and 40 dB, withV, = 16). It is interesting to note that there is
a large range around the optimal natural frequency for wtiehMSE remains very close to the minimum value
(for any SNR). Hence, the tuning of natural frequency of thepleoefficients does not need to be very accurate.

2) Performance comparisonin the following, we use the parameters that yield around liket possible
performance, for the various algorithms. For the proposedCBSEL algorithm, Tables ll(a) and lI(b) give the
loop parameters used (theoretical values from (52) aregil@m) for f,7 = 10~3 and f;7" = 102 respectively,
with N, = 16 pilot subcarriers. According to this tables given as exaspbut also more generally, we have
observed that for the 2nd-order proposed algorithm, thengptf,, were very close to the theoretical values for
f4T < 1073, and still are close up tgf;7" = 10~2 (so for our slow-fading assumption). And for the 1st-order
version of the algorithm, closed form expressions and ofesevalues of the optimal cut-off frequengy match
well only for f,7 < 10~2 and low SNR. For the AR1-Kalman and the Or2-Kalman filters, taeameters~, )

13
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used and the correspondiadthat yield around the best possible performance) are giveable Il (performance
with e = 0 for the AR1-Kalman will also be plotted in thin dotted liness in [18]).

SNR (dB) | 0| 5 [ 10 15]20|25|30| 35 | 40
Fnl fa 314 56| 8]10[12] 15 | 20
(theory (52)) 3 37 47 5.9 74 | 94 | 118 | 148 18.7
fe/ fa 7110 15|22 |34 |50 |80 | 130 | 200
(theory (55)) 67 | 99 | 145 | 212 | 312 | 457 | 67.1 | 985 145
(@) for f;T =103
SNR (dB) | 0| 5 |10|15]20 |25 |30 |35 40
fn/fd 2253456 [8[12] 15
(theory (52)) 1.9 | 2.4 3 3.7 | 47 | 5.9 | 7.4 | 94 | 11.8
fe/fa 3| 5 7 110 |24 ] 30| 50 | 90 | 400
(b) for f;T =102
TABLE I

LOOP PARAMETERS FOR THE2ND-ORDER LOOP(f,,/ f4) AND THE 1ST-ORDER LOOP(f./f4), FORN, = 16 AND f4T = 103,107

fJT =107 f4T =102
AR1-Kalman| Or2-Kalman| AR1-Kalman| Or2-Kalman
I} 0 0.9992 0 0.98
y 0.9996 0.9978 0.9921 0.9975
€ 4.107* 9.10° 8.1073 8.10~7

TABLE 11l
PARAMETERS (3, ) USED (AND CORRESPONDINGe) FOR THEAR1-KALMAN AND OR2-KALMAN , FOR f47 = 10731072

Fig. 5(a) and Fig. 5(b) show the evolution of MSE versus SNR, sy for ;7 = 10~2 and f;7 = 1072,
First of all, the MSE of the 2nd-order (respectively 1st-ojdmioposed LS-CATL algorithm is very close to the
one obtained by the Or2-Kalman (respectively AR1-Kalmdgdrathm. It is gratifying to observe that the reduced
complexity algorithm exhibits quasi the same asymptotitavece than the reference Kalman algorithm, for a same
model order. It was our desired objective, motivated by sameresting known results for the phase estimation
problem based on PLL. Indeed, some others have previously ¢otbed the PLL can be interpreted as a form of
Kalman filter [20] [31], with equivalent MSE asymptotic pemfieaince (in tracking modg if a satisfactory dynamic
model is available [21]. Secondly, we observe on the one haaitthhe performance of the AR1-Kalman algorithm,
despite its complexity, does not reach the BRCB in case of slwannel variation (more notable fgy7 = 10~3
than for f,7' = 10~2). On the other hand, with a second-order loop (or an Or2-l&alfiiter), the MSE becomes
closer to the BCRB. This point reveals the advantage of a skoater loop versus a first-order loope( po = 0)
in slow fading scenario. It emphasizes the benefit of the ratem, that is inherent to the second-order loop, but
not included in the AR1-Kalman algorithm. It allows a hightrcrease of the MSE that is proportional to (Iée)
power of the SNR, in full agreement with the closed form exgims (53), also validated on these figures (still
more exactly forf;7" = 10~3 than for f;T = 1072).

Fig. 6 (up) shows again the MSE performance improvement aetliey the 2nd-order against 1st order loop,
for a given number of pilot subcarrie, from 6 (minimum value permitted with, = 6 paths for the LS-
CATL algorithm) to 32, or for a given normalized Doppler frequengyT” from 10~° to 10~2. This performance
improvement is seen more important for smallgsl” (whereas for high speed channel such tigf > 1071,
the AR1-Kalman would closely approach the BCRB accordin¢l®], Fig. 3). In agreement with the theoretical
analysis (53), the MSE increases proportionally to (t§¢ power of f,;7" for the 2nd-order loop for all the range
of f4T < 1072 (versus a powe(%) for the 1st-order loop, verified only fof; 7" < 10~3). On the other hand, it is

4Kalman filter equations can be regarded as equivalent loop equati@mmasas the Kalman gain converges and becomes time invariant.

14
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Fig. 5. MSE vs SNR forf,7 = 1072 (a) and f47 = 10~ 2 (b), with N, = 16

normal to observe that when the number of pilots is increasexlMSE decreases. Fig. 6 (down) informs on the
value of the optimal natural frequendy, normalized byf,, for a givenNV,, or a givenf;7. Note that the optimal
[/ fa (52) (and also the optimal MSE (53)) depends on the input lamipenvariancer3, (21), which is inversely
proportional toNV,, but also proportional to a factory > 1. For the given channel, this factor still depends/gn
(actually \y = 13.7,3.7,2.8,2.7 respectively forN, = 6,8, 16,32), and is greater than one because Mgex N,
matrix F)'F, is not diagonal.

Fig. 7 shows the evolution of the Bit Error Rate (BER) in the cds&QAM, 16-QAM and 64-QAM modulations
for the previous channel estimators completed by a Zerouk@r(ZF) frequency-domain equalizer (the channel
frequency response is previously estimated from the CAnedéisé,,,) by 7-2(”) = Fé&,), before equalization).
For the sake of comparison, we also plotted the BER obtainéul pérfect knowledge of the channel. The BER
results agree with the previous MSE results, but with lowéedince between the curves due to decision process.
Hence, the performance with our 2nd-order LS-CATL algorithnmasv the same in terms of BER than with the
Or2-Kalman algorithm, and is slightly better (for low SNR i@gs) than with the AR1-Kalman (and then the
1st-order LS-CATL). The BER performances are close to that founld wiZF equalizer using perfect channel
knowledge. When increasing the size of the modulation, tB& Burves are obviously shifted toward highest SNR.
And for a given BER, the gap between 1st-order and 2nd-ordgrighms (in terms of required SNR) is also
slightly increased with the modulation size.
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Fig. 6. Evolution of the MSE (up) and of the corresponding optinfial fo (down) for the proposed CATL algorithm (2nd-order in
continuous line, 1st-order in dashed line) N R = 30dB versus the number of pilot subcarriers (left, for a figad” = 10~3) and versus
faT (right, for a fixed N, = 8)
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Fig. 7. BER comparison for the case of 4-QAM, 16-QAM or 64-QAM makadion for f,7 = 10~% and N, = 8

B. Bench marking
Now, we bench mark the BER performance of the proposed LS-CATarigign by other estimators that have
been suggested in literature. Specifically, we consider Freyu®omain (FD) channel estimator described in
introduction section that estimates the frequency respofishe channef,,) for the N subcarriers assuming the
knowledge of N,, pilots subcarriers¢,,,). The estimation is based on the observation model (equivate(6)):
Yo(n) = diag{Xp(n) } Hpn) + Wp(n), WhereH,,,) = Fpey(,). The algorithms are summarized as follows:
« “conventional” LS(FD)-LPI [2]: employs LS criterion to estimateet channel at pilot frequencieﬁlp(n) =
diag{Xp(n)} ~'Yp(n) and then makes LPI interpolatiofif ;) = LPI {# () }-
» Kalman(FD)-LPI [5F: employs (per-subchannel) AR-Kalman filter to estimate tmenoel at pilot frequencies:
Fo(nn) = Kalman ﬁp(nm_l),yp(n),xp(n)) and then makes LPI Interpolatiofif ,,y = LP1 {F,n) }-
Moreover, if the knowledge of delays is available, the previous (blind) LPI interpolation can bplaeed by a
Delays-Based-Interpolation (DB ) = DBI{#H ), T}, consisting in:#,,) = (F (Fg"Fp)f1 F£I> Fp(n)- This

Sthe per-subchannel Kalman filter has been adapted to our pilot schiecee[5] considered a full block of pilots
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Fig. 8. BER comparison with various literature methods using equal atggraumber of pilot sub-carriers, than the proposed method,
for f4T = 1072 (a) and forf4T = 102 (b)

procedure leads to the two new versions of the previous ighgas:
« LS(FD)-DBI
« Kalman(FD)-DBI
A last algorithm that requires also the availability of trenygr-delay profile (in the version we have implemented)
is based on an “eigenvalues interpolation”:
« Kalman-EIG [7]®: in this parameter reduction approach, the channel frezjuezsponse ¥ subcarriers) is
computed by}l(nm) = Vé(,n), WhereV contains theN, << N dominant eigenvectors of the FD channel
correlation matrixRy (7) = Fdiag{c?2 ,...,02, } F¥ assumed here perfectly known. The subspace coefficients

o

are previously estimated by an AR1-Kalman filtéf;,,,) = Kalman(é(n|n_1),yp(n),xp(n)>.

Fig. 8(a) shows forf,T' = 10~ (and Fig. 8(b) forf,7 = 10~2) the BER performance, using a ZF equalizer and
a 4-QAM modulation, of the 2nd-order proposed LS-CATL algaritfand previous AR1-Kalman and Or2-Kalman
references) and three aforementioned literature methooisvéntional LS(FD)-LPI, Kalman(FD)-LPI, Kalman-
EIG). It is first of all highly noteworthy that the “first categdrgf algorithms (proposed algorithm, Or2-Kalman,
AR1-Kalman and Kalman-EIG) greatly outperforms the conweral LS(FD)-LPI method even if the latter uses

bcorresponds to the initial (pilot-based) channel estimator in [7]
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- .convehtional LS(FD)—LF‘I, N'J =8
Ll = Kalman(FD)-LPI, Np =8
- -LS(FD)-DBI, N =8

—4—Kalman(FD)-DBI, Np =8
—Kalman-EIG, Np =8

0 ARI1-Kalman, Np =8
107} = proposed LS-CATL (2nd-order), Np =8

o Or2-Kalman, Np =8
=% -Perfect Channel Knowledge
0 5 10 15

20 25 30 35 40
SNR (dB)

Fig. 9. BER comparison vs SNR fof;7" = 10~2 with various methods, all assuming knowledge of delays-related inf@méwith
Np = 8)

- Np =8, exact delays (SD=0)
+Np=8, SDZO.ZTS
-6-N,=16,SD=02T,
107°H —— N, =8, SD=01T,
_v-Np=16, SDZOAlTS
—t— Np =8,SD=0.05 Ts
-A -Np= 16, SD=0,05TS
107l — Np=8, SD =0.02 TS

-4 _Np =16,SD=0.02Ts
— Np =8,SD=0.01 TS
-p- Np=16, SD=0.01Ts
- - Per‘fect Channel‘ Knowledge‘

BER

L L
0 5 10 15 20 25 30 35 40
SNR (dB)

Fig. 10. BER of the proposed 2nd-order LS-CATL algorithm for theecakimperfect knowledge of the delays f@7" = 10~* (with
N, = 8 or 16)

a greater numbérof pilot subcarriers i, = 64 versus onlyN, = 8). These results permit to measure the
gain when exploiting time domain correlation, frequencyneén correlation, as well as knowledge of the delays-
related information (first category) versus only frequenagrelation (conventional). When the conventional symbol
by symbol LS(FD)-LPI method is extended into Kalman(FD)-LPI aldontto improve the estimation of the
channel at pilot frequency positions (before performing lti| interpolation in frequency-domain), we can measure
the increase in performance due only to the incorporatiotinoé correlation over several symbols. The benefit
of the time-filtering is mainly observed in low SNR region, andrm notable for the lower;T because of a
strongest channel time-correlation. But the resultingquerance remains still far from that of the “first category”
of algorithms, unless ifV,, = 64 pilot subcarriers are used.{. a distancelL ; = 2 between two pilot subcarriers).
Hence, the availability or the non-availability of the del@lated information is an assumption that influences
strongly the channel estimator performance, and will beudised later. Considering now the Kalman-EIG algorithm,
the BER performance is close to that found with perfect chiknewledge, and is the same than that obtained
with the AR1-Kalman algorithm (and then the 1st-order LS-CATIgosithm). It is quite understandable since

"for the LPI interpolation, the number of pilot subcarriers must actuallifllfuV, > 10 for our considered scenario if we impose to
satisfy the sampling theorem (with then a sampling rate in frequency dohyasuch that [8]:% > TT;,% =10).
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both algorithms use Kalman filter based on the same AR1 spaeesmodel (we take the same value &r
with 6 dominant eigenvalues tracked in the parameter remuetpproach, against L=6 paths CAs tracked in the
AR1-Kalman, and the tracking is performed from a same nunobgilot subcarriersV,, = 8.

Fig. 9 compares the BER performance of the previous algorithitinsthat achieved when using LS(FD)-DBI and
Kalman(FD)-DBI algorithms, for a same number of pilot sulreas fixed toV, = 8. These two algorithms are
respectively the extension of conventional LS(FD)-LPI and Kal(R®)-LPI by replacing the (blind) interpolation
LPI by the interpolation based on the knowledge of the delaysermits now to compare algorithms with equivalent
assumptions, contrary to the case of the previous figures. Téat gerformance gap between -LPl and -DPI
versions allows to measure the strong potential improvernmetihe channel estimation if delay-related information
is available. The improvement due to the a priori knowledgehef delays is predominant in large SNR region.
On the other hand, comparison between LS(FD)- and Kalman(FD$iores permits to measure again the gain in
performance when exploiting time correlation, interegtior low SNR region. It is finally not surprising to observe
that the Kalman(FD)-DBI algorithm and the AR1-Kalman al¢fum exhibit the same performance (both are based
on the same scheme: “FD-pilots based estimatiorCAs = FD-all subcarriers”, but with a time-integration by
the Kalman filter performed in first or second position). The latslity of the delay related information permits a
strong improvement compared to conventional methods,Hauptice to be paid is the requirement of an accurate
delays acquisition procedure.

C. Robustness of the LS-CATL algorithm to an imperfect delawlkdge

Fig. 10 measures the effect of an imperfect delay knowledgehenBER performance of our second-order
proposed algorithm. SD denotes the standard deviation ofirtie delay errors (modeled as zero mean Gaussian
variables). As expected (common drawback to any parametrannel estimator), the algorithm performance
decreases with respect to the delay error. However, theitgois not very sensitive to a delay err6iD) < 0.057
in low SNR, andSD < 0.02T7; in high SNR, despite a weak number of pilot subcarridts = 8. And when
increasing the number of pilot subcarriers(§ = 16, sensibility to delay error is weak fa$D < 0.17§ in low
SNR, and forSD < 0.0575 in high SNR. These required performance for the delays admuiscan well be
obtained when using high resolution algorithms [8], thattkthe quasi invariance of the delays (with respect to the
scale of the sampling tim&) during a large number of OFDM symbols, especially in the sfading case (see
also performance in [11] Fig. 10, or in [12] obtained by the ESPRIgthod [8] for the same channel and pilot
scheme than here but a more unfavorable scenario due torhightglity f;7° = 0.1, or 0.3). In conclusion, when
combined with an accurate delay acquisition procedure ptbposed algorithm still provides interesting increase
in performance compared to conventional methods based on LPI.

VI. CONCLUSION

Channel paths complex amplitude estimator over slow-fadimannels has been proposed and analyzed. It can
be directly useful for (Data Aided or Data Directed) monoriga systems over flat fading channel. Applied to
OFDM systems (with pilot subcarriers), it belongs to the sla$ algorithms that performs the tracking of the
CAs of a multi-path channel, from the delays related infdioma(assuming therefore a previous delays acquisition
procedure). The proposed algorithm is based on a second+@tlgsive loop, that integrates an error signal built
from the (pilot based) LS estimates of the CAs. It permits tpl@k the time-domain correlation of the channel in
a simple manner, compared to Kalman based methods thateegairix inversion (to compute the Kalman gain
matrix) at each iteration. Simulation results show that theBvperformance of the 2nd-order proposed algorithm
is very close to that of a Kalman estimator based on a 2nd-apleroximation of the true channel. Moreover, our
2nd-order algorithm outperforms the more complex Kalmamedor when the later is based only on a first-order
Auto-Regressive approximation, which emphasizes thedatdor the 2nd-order versus 1st-order methods in case of
slow fading variation ;7 < 10~2). We have given closed form expressions of the optimal ahftequency of the
loop, and corresponding minimum MSE (assuming Rayleigleslakannel). It is demonstrated that the MSE of our
2nd-order algorithm decreases proportionally to ¢§1§e power of the SNR, and increases proportionally to (tglb
power of the normalized Doppler frequerfg§’. Finally, BER comparison through simulation has shown that th
proposed algorithm outperforms the basic conventionahotebased on LPI interpolation in the frequency domain.
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Moreover, simulations have also shown that the proposeatitiign is rather robust to a reasonable mismatch in
the knowledge of the delays.
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