
HAL Id: hal-00687821
https://hal.science/hal-00687821

Submitted on 15 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex amplitudes tracking loop for multipath slow
fading channel estimation in OFDM systems

Laurent Ros, Hussein Hijazi, Eric Pierre Simon

To cite this version:
Laurent Ros, Hussein Hijazi, Eric Pierre Simon. Complex amplitudes tracking loop for multipath slow
fading channel estimation in OFDM systems. 2012. �hal-00687821�

https://hal.science/hal-00687821
https://hal.archives-ouvertes.fr


1

Complex amplitudes tracking loop for multipath slow fading channel estimation in OFDM systems

Laurent ROS1, Hussein HIJAZI2 and Eric-Pierre SIMON2

April 13, 2012,
Research Report (technical note) of the Gipsa-lab laboratory

1: GIPSA-lab, Image and Signal Department, BP 46 - 38402 Saint Martin d’Hères - FRANCE
2: Lebanese International University (LIU), Beirut, LEBANON

3: IEMN lab, TELICE group, 59655 Villeneuve d’Ascq, University of Lille, FRANCE
E-mail: laurent.ros@gipsa-lab.inpg.fr, hijazi.hussein@liu.edu.lb, eric.simon@univ-lille1.fr

Abstract

This Gipsa-lab research report1 deals with channel estimation for Orthogonal Frequency Division Multiplexing
systems over slowly-varying multi-path fading channels. Most of the conventional methods exploit the frequency-
domain correlation in estimating the channel at pilot subcarriers position, and then interpolating it over the entire
frequency grid. More advanced algorithms exploit the time-domain correlation as well, by employing Kalman
filter based on the approximation of the time-varying (assumed Rayleigh with Jakes’spectrum) channel. Adopting
a parametric approach and assuming a primary acquisition ofdelay related information, channel estimator has to
track the Complex Amplitudes (CAs) of the channel paths. In this perspective, we propose a reduced complexity
algorithm compared to Kalman methods, based on a second-order CA Tracking Loop. Inspired by Phase-Locked
Loops, an error signal is built from the pilot-aided Least-Squares (LS) estimate of the CAs, and is integrated by the
loop to carry out the final CAs estimate. We derive closed-form expressions of the Mean Square Error (MSE) of the
algorithm, and of the corresponding optimal loop coefficients. Simulation results show that our algorithm outperforms
the conventional (frequency-domain interpolation) method and has almost the same performance as a second-order
Kalman based algorithm. Moreover, efficiency of a second-order versus first-order approach is demonstrated for the
slow-fading case, with a MSE closer to the Bayesian-Cramer-Rao-Bound.

Index Terms

OFDM, Channel estimation, Rayleigh multi-path channel, Jakes’spectrum, Tracking Loop, Phase Locked Loop,
Kalman filter, Auto-Regressive model.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is an effective technique for alleviating frequency-selective
channel effects in wireless communication systems. In thistechnique, a wideband frequency-selective channel is
converted to a number of parallel narrow-band flat fading subchannels which are free of Intersymbol Interference
(ISI) and free (assuming negligible channel time variation within one OFDM symbol periodT ) of Inter-Carrier
Interference (ICI). For coherent detection of the information symbols, reliable estimation of the gain of each
subchannel in the OFDM system is crucial.

A. Some approaches to channel estimation in OFDM

Most of the conventional methods work in a symbol-by-symbolscheme [1] [2] [3] by using the correlation of
the channel only in the frequency-domain (FD),i.e. the correlation between subchannels. Generally, they consist of
estimating the channel at pilot frequencies and then interpolating the channel frequency response [1]. The channel
estimation at the pilot frequencies can be based on the Least-Squares (LS) criterion, or for better performance
on the Linear-Minimum-Mean-Square-Error (LMMSE) criterion [2].In [3], Low-Pass Interpolation (LPI) has been
shown to perform better than all interpolation techniques used in channel estimation.

1The final revised form of this paper was written November 15, 2010 (after an initial version on July 14th 2010), and a part of this work
was presented in the conference [18] (ISCCSP, Limassol, Cyprus, March 2010). The goal of the on-line posting of this manuscript is to
provide analytical results about the so-calledfirst algorithmproposed in [18].
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Though the conventional methods can operate with time-varying channels, the information of the time-domain
correlation is not exploited. However, we have shown in [4] through on-line Bayesian Cramer-Rao-Bound (BCRB)
analysis, how much the channel estimation process of the current symbol can be improved by using the previous
OFDM symbols. Some works have addressed the time-domain dynamics of the fading process to obtain an updated
channel estimate. Chen and Zhang proposed in [5] a structure which uses a Kalman filter estimator for each
subchannel (exploits the time-domain correlation) and a linear combiner to refine the estimate of each subchannel
(exploits the frequency-domain correlation). The complexity of the proposed structure increases with the number
of subcarriers. However in practice, only a subset of (pilot) subcarriers can be used to perform the per-subchannel
Kalman filter, and the global frequency response of the channel can still be obtained by LPI interpolation. Other
works using Kalman filter to exploit time and frequency correlation for OFDM channel estimation are based on
additional assumptions or different approaches. Assumingthe availability of the power delay profile, a data-aided
Kalman estimator (derived from the Expectation-Maximization algorithm framework) is employed in [6] to track
the discrete-time impulse response of the channel (i.e in Time-Domain (TD)). And a low-complexity parameter
reduction approach based on the eigenvalues decompositionof the auto-correlation matrix of the channel (in FD) is
proposed in [7]. It tracks the channel coefficients in the dominant eigenvectors subspace basis, before performing
eigenvalues interpolation to compute the channel frequency response.

In the same idea of reducing the signal subspace dimension, we now focus on the class of parametric channel
estimator [8] [9]. Assuming a multi-path channel structure, estimation can be reduced to the estimation of certain
physical propagation parameters, such as multi-path delays and multi-path Complex Amplitudes (CAs) [8] [10] [11]
[12], summarized in anL-path channel structure. Moreover, in wireless radio channels, the CAs show temporal
variations while the delays are quasi-constant over a largenumber of OFDM symbols, and then can be accurately
estimated by an acquisition procedure. In [8], the acquisition includes the detection of the number of paths based on
the MDL (Maximum Description Length) principle and the acquisition of the initial multipath time delays through
the ESPRIT (Estimation of Signal Parameters by Rotational Invariance Techniques) method. With this information,
a MMSE estimator is derived to estimate the channel frequencyresponse, with a great performance compared to
non-parametric methods. However, the optimal Wiener estimator remains complex and requires the knowledge of
the second-order statistical properties of the channel. In[10], the delay-subspace (assumed invariant over several
symbols) and the fast variation of the CAs are tracked separately by subspace-tracking algorithms. In [11] [12],
we have addressed the problem of paths CA estimation and ICI reduction for the case of fast-varying Rayleigh
channel (normalized Doppler spreadfdT ≥ 10−2). Based on a polynomial modeling of the (Jakes process) CA
variation, we used polynomial estimation over a block of OFDMsymbols in [11], and a Kalman filter based on
Auto-regressive (AR) model of the polynomial coefficients dynamic in [12].

B. Motivation of the work and contributions

The use of Kalman filters for the channel estimation problem hasreceived great attention in recent years in the
wireless communication literature. Various approaches have been developed, as mentioned in the previous examples
[5] [6] [7] [12], and not only of course for OFDM systems [15]. All the aforementioned works based their Kalman
filter on the AR approximation of the widely accepted Rayleighfading channel with Jakes’Doppler spectrum [24],
as developed in [13]. The first-order Gauss-Markov assumption(AR1 model) is often retained [14] [25] [6] [7]
[15] [16]. However, the so-called AR1-Kalman estimator does not ensure to reach the BCRB in the much common
scenario of slowly varying channel (i.e. when ICI is negligible) [17] [18]. Moreover, and above all, the AR1-Kalman
is still a quite complex algorithm even if it employs only a first-order state-space model.

In this paper, we propose a simplified on-line recursive algorithm for the multi-path CAs estimation problem under
the slow channel variations scenario (fdT ≤ 10−2). It is developed for OFDM systems into the class of parametric
channel estimators, exploiting the availability of delay related information (assuming a primary acquisition procedure
as in [8] [11] [12]) for tracking the CA variations. But, it could be also directly applied to the more basic single-
carrier flat fading channel estimation problem, or adapted for other approaches than parametric approach. Our main
motivations for the work presented in this paper are the following:

• to obtain a reduced complexity algorithm compared to Kalmanfilter based algorithms, with quasi same
asymptotic MSE performance (for a same model order),
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• to obtain a closed-form and usable expression of the performance in MSE with respect to the channel
state (Doppler spread, power-delay profile, SNR), derived from theoretical analysis under “Rayleigh-Jakes”
assumption.

• to measure the advantage of choosing a proper 2nd-order model to approach slow fading variation, versus a
first-order model.

The proposed algorithms is based on a Complex Amplitudes Tracking Loop (CATL) structure. This structure
is inspired by the “prediction-correction” principle of the Kalman filter [30], and by second-order digital Phase-
Locked Loops (PLL) [19] [22] [26]. Therefore,increments(or drifts ) into the CAs variations are also estimated in
order to improve the CAs prediction for the next iteration, exploiting the time-domain correlation and especially the
fact that CAs exhibit strong trend behavior (i.e. they continue in some direction during several OFDM symbols).
The error signal that feeds the loop is based on the (per current symbol) LS estimate of the paths CA, obtained
from the pilot-subcarriers. A theoretical analysis of the CATL combined with this specific error signal (leading
to the proposed LS-CATL algorithm) is derived. Three natural references (the AR1-Kalman filter, a 2nd-order
Kalman filter, and the BCRB) useful to appreciate the MSE of our algorithm with the same (parametric modeling)
assumptions are also presented. Simulation results compared to these obvious references and also to other literature
algorithms validate the proposed algorithm and the theoretical analysis.

The paper is organized as follows: Section II describes the system model. Section III derives the two suboptimal
algorithms, whereas Section IV recalls the Kalman algorithmand the BCRB references. Finally, the different results
are discussed in Section V.

Notations:[x]k denotes thekth entry of the vectorx, and[X]k,m the [k,m]th entry of the matrixX (indices begin
from 1). IN is aN ×N identity matrix. The notation diag{x} stands for a diagonal matrix withx on its diagonal,
diag{X} is a vector whose elements are the elements of the diagonal ofX, and blkdiag{X,Y} is a block diagonal
matrix with the matricesX andY on its diagonal. The superscripts(·)T , (·)H , | · |, and Tr(·) stand respectively for
transpose and Hermitian operators, determinant and trace operations.J0(·) is the zeroth-order Bessel function of
the first kind.∇x represents the first partial derivatives operatori.e., ∇x = [ ∂

∂x1

, ..., ∂
∂xN

]T .

II. SYSTEM MODEL

A. OFDM Transmission over multi-path channel

Consider an OFDM system withN sub-carriers, and a cyclic prefix lengthNg. The duration of an OFDM symbol
is T = vTs, whereTs is the sampling time andv = N+Ng. Let x(n) =

[

x(n)[−
N
2 ], x(n)[−

N
2 +1], ..., x(n)[

N
2 −1]

]T
be

thenth transmitted OFDM symbol, where{x(n)[b]} are normalized QAM symbols. After transmission over a multi-
path channel and FFT demodulation, thenth received OFDM symboly(n) =

[

y(n)[−
N
2 ], y(n)[−

N
2 +1], ..., y(n)[

N
2 −

1]
]T

is given by [8] [11]:

y(n) = H(n) x(n) + w(n) (1)

wherew(n) is aN × 1 zero-mean complex circular Gaussian noise vector with covariance matrixσ2IN , andH(n)

is aN ×N diagonal matrix with diagonal elements given by

[H(n)]k,k =
1

N

L
∑

l=1

[

αl(n) × e−j2π( k−1

N
− 1

2
)τl
]

(2)

L is the total number of propagation paths,αl is the lth CA of varianceσ2
αl

(with
∑L

l=1 σ
2
αl

= 1), andτl × Ts is
the lth delay (τl is not necessarily an integer, butτL < Ng). TheL individual elements of{αl(n)} are uncorrelated
with respect to each other. Using (2), the observation modelin (1) for thenth OFDM symbol can be re-written as

y(n) = diag{x(n)}F α(n) + w(n) (3)

whereα(n) = [α1(n), ..., αL(n)]
T andF is aN ×L Fourier matrix depending on the delays distribution, definedby

[8]:

[F]k,l = e−j2π( k−1

N
− 1

2
)τl (4)

3
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Fig. 1. Equivalent structure of the second-order complex amplitude tracking loop, inspired by second-order digital PLL

The algorithm proposed in this paper can work without explicit a priori model for the paths CA variation.
However, we will provide theoretical expressions for the case of the widely accepted Rayleigh model with the
so-called Jakes’ power spectrum [24] with Doppler frequency fd, named “Rayleigh-Jakes” model in this paper. It
means that theL CA αl(n) are independent wide-sense stationary narrow-band zero-mean complex circular Gaussian
processes, with correlation coefficients for a time-lagp given by

R(p)
αl

= E[αl(n)αl(n−p)
H ] = σ2

αl
J0(2πfdTp) (5)

B. Pilot Pattern

TheNp pilot subcarriers are evenly inserted into theN subcarriers at the positionsP = {ps | ps = (s− 1)Lf +
1, s = 1, ..., Np} with Lf the distance between two adjacent pilots. The received pilotsubcarriers can be written
as

yp(n) = K(n)α(n) + wp(n) (6)

whereyp andwp areNp × 1 vectors, and where we have defined theNp × L matrix

K(n) = diag{xp(n)}Fp (7)

that can be computed for each symbol periodn from the knowledge of theNp × 1 data pilot vectorxp(n) and the
delays{τl} through theNp × L Fourier transform matrixFp with elements given by

[Fp]k,l = e−j2π(
pk−1

N
− 1

2
)τl (8)

III. C OMPLEX AMPLITUDE TRACKING ALGORITHM

The proposed tracking algorithm, called LS based-CATL algorithm, is built from a general second-order recursive
structure (CATL), and a specific error signal (based on LS criterion) that conditions one element of the structure.

A. Structure of the algorithm: CA Tracking Loop

1) Structure: The purpose is to estimate the channel coefficientsα. The estimate ofα(n), denotedα̂(n|n), is
updated at a symbol rate by the computation of a loop error signal v

ǫ(n), which is next filtered by a digital loop
filter. Inspired by the Phase-Locked-Loop (PLL) design [26], we use asecond-order closed-loop to get the ability
to track potential time linear drifts of the parameters to beestimated. The general recursive equations can be given

4
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by the way of two stages:
Measurement Update Equations

v
ǫ(n) = function of { yp(n); α̂(n|n−1) } (9)

α̂(n|n) = α̂(n|n−1) + µ1.vǫ(n) (10)

Time Update equations

vLag(n) = vLag(n−1) + v
ǫ(n) (11)

α̂(n+1|n) = α̂(n|n) + µ2.vLag(n) (12)

whereµ1, µ2 are the (real positive) loop coefficients.

As in a Kalman filter, the Time Update Equations can be thought ofpredictor equations, while the Measurement
Update Equations can be thought of corrector equations.

The Measurement Update Equations are responsible for the feedback,i.e., for incorporating a new measurement
yp(n) into the a priori estimateα̂(n|n−1) to obtain an improveda posteriori estimateα̂(n|n). More specifically in
our imposed structure (10), the output estimateα̂(n|n) is obtained from the predicted vector̂α(n|n−1), thanks to
the additive correction of the error signal vectorv

ǫ(n). And v
ǫ(n) can be regarded as the output of an equivalent

“Complex Amplitude Error Detector” (CAED), to be defined in (9) from the new measurementyp(n) and the
predicted valueŝα(n|n−1).

The Time Update Equations are responsible for projecting forward (in time) the current statêα(n|n) to obtain the
a priori estimates for the next time step,α̂(n+1|n). More specifically in our imposed structure (12), the prediction
α̂(n+1|n) is obtained from the current estimation̂α(n|n) by adding a component proportional to the vectorvLag(n).
And vLag(n) defined in (11) is a digital accumulation of the error signal vector v

ǫ(n). Note that at each iteration,
we get in fact inµ2 · vLag an estimate of thespeed evolution(or slope) of the parameterα, useful to predict the
parameter evolution for the next iteration.

2) Similitude and difference with a digital PLL structure:From equations (12)&(10), we haveα̂(n+1|n) =
α̂(n|n−1)+µ1.vǫ(n)+µ2.vLag(n). This means that the predicted estimateα̂(n|n−1) can be regarded as the output of
a “Complex Amplitude Locked Loop” (CALL). The CALL contains in cascade a “CA Error Detector” (instead of
“Phase Error Detector” in a PLL) deliveringv

ǫ(n), a standard first-order Lead / Lag loop filterFPLL(z) = µ1+
µ2

1−z−1

deliveringv
c(n) = µ1.vǫ(n) + µ2.vLag(n), and a “Numerically Controlled CA Generator” (instead of a Numerically

Controlled Oscillator in a PLL) deliverinĝα(n+1|n) = α̂(n|n−1)+v
c(n). The figure 1 gives an equivalent scheme of

our “Complex Amplitude Tracking Loop” (CATL), which permits torecognize the similitude with a second order
digital PLL structure [19]. But our final estimate is not directly the CALL output α̂(n|n−1), but thea posteriori
estimate (or CATL output)̂α(n|n).

B. Error signal specific to the LS-CATL algorithm

1) Motivation: for one OFDM symbol, the (instantaneous) Squared Distance SD (or squares error) between
noisy received pilot subcarriers and corresponding model is defined by

S(α̂(n)) = d
H
(n).d(n) (13)

where theNp × 1 error vector is
d(n) = yp(n) −K(n)α̂(n) (14)

for any estimator̂α(n) of α(n). The LS-estimator ofα(n) permits to minimize the SD (13) and can be computed
from the observed pilots by

αLS(n) = G(n)yp(n) (15)

with
G(n) =

(

K
H
(n)K(n)

)−1
K

H
(n) (16)

where we recall thatK(n) = diag{xp(n)}Fp. We see thatNp must fulfill the requirementNp ≥ L in order to
allow the pseudo-inverse computation (16) ( butNp < L could be used with a MMSE criterion instead of the

5
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LS criterion). On the other hand, it should be noted that the matrix inversion in (16) has to be done only once
when using the same set of pilots from one OFDM symbol to another, or also in the case of 4-QAM symbols. For
4-QAM symbols, the matrix inversion is indeed independent to the indexn: G(n) =

(

FH
p Fp

)−1
FH

p diag{xp(n)}
H .

After LS estimation, we obtain from (15)&(16)&(6):

αLS(n) = α(n) + ǫw(n) (17)

whereǫw(n) is a zero-mean complex Gaussian noise vector.

2) Error signal: we use the difference between the LS estimatorαLS(n) for the nth OFDM block and the
predicted vector parameter for this block,α̂(n|n−1). The error signal vector is then:

v
ǫ(n) = G(n)yp(n) − α̂(n|n−1) (18)

The specific error signal vector defined in (18) can be expressed in using (15)&(17) versus the prediction error
ǫPred(n) = α(n) − α̂(n|n−1) in the most simple linear form:

v
ǫ(n) = kd.{α(n) − α̂(n|n−1)}+N(n) (19)

The real coefficientkd is the so called gain of the equivalent CAED, reduced to one here

kd = 1 (20)

And N(n) = [N1(n), ..., NL(n)]
T is a (temporally uncorrelated) zero-mean disturbance due to the additive thermal

noise wp(n) in input of the CAED, and represents the so-called (input) loop noise (i.e. in input of the loop
but in output of the CAED). With this specific LS-based error signal, we haveN(n) = ǫw(n) = G(n)wp(n),

with a correlation matrixE{N(n).N
H
(n)} = σ2.

(

FH
p Fp

)−1
, and a mean variance (per branch or per path,σ2

N =
1
L .
∑L

l=1 σ
2
Nl

):

σ2
N =

σ2

Np
× λN (21)

with λN =
1

L
.Tr{

(

1

Np
.FH

p Fp

)−1

} ≥ 1 (22)

whereNp is the number of pilot sub-carriers. It should be noted that the (input) loop noise variance is minimum
(σ2

N (min) = σ2

Np
and λN = 1) if N(n) is uncorrelated from one path to another,i.e when FH

p Fp is a diagonal
matrix (this condition depends on the delays distribution).
Special case of first-order loop:if the loop coefficientµ2 = 0, the on-line estimation algorithm is reduced to an
AR1 low-pass filtering of the LS estimatorαLS(n):

α̂(n|n) = (1− µ1).α̂(n−1|n−1) + µ1.αLS(n) (23)

C. General properties and theoretical MSE analysis

1) Second-order closed-loop transfer function:The estimation error of the tracking algorithm is defined as

ǫ(n) = α(n) − α̂(n|n) (24)

We want to get the transfer function between the true vector parameter and the estimate. Combining equations (12)
and (10), we have that:

α̂(n|n) = α̂(n−1|n−1) + µ1.vǫ(n) + µ2.vLag(n−1) (25)

By using (11), the Z-domain transform of (25) leads to

α̂(z).[1− z−1] = [µ1 +
µ2.z

−1

1− z−1
].vǫ(z) (26)

Combining the general loop equation (26) with the specific (LS based) error signal (19) rewritten versus the
estimation error as

6
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v
ǫ(n) =

kd
1− kdµ1

.{α(n) − α̂(n|n)}+
1

1− kdµ1
.N(n) (27)

leads in the Z-transform domain to

α̂(z) = L(z).α(z) +
L(z)

kd
.N(z) (28)

whereL(z) is the transfer function of the CATL defined by

L(z) =

kd

1−kdµ1

F (z)

(1− z−1) + kd

1−kdµ1

F (z)
(29)

with respect toF (z) = µ1 +
µ2.z−1

1−z−1 . Hence, the CATL transfer function can be written versus the loop coefficients
(µ1, µ2) as

L(z) =
kd[(z − 1)2.µ1 + (z − 1).(µ1 + µ2) + µ2]

(z − 1)2 + (z − 1).kd(µ1 + µ2) + kdµ2
(30)

or rewritten in a more interpretable form2 as a function of the couple natural pulsationωn (or natural frequency
fn = ωn

2π ), and damping factorζ as

L(z) =
2ζωn.(1− z−1) + ω2

n

(1− z−1)2 + 2ζωn.(1− z−1) + ω2
n

(31)

with: (ωnT )
2 =

kdµ2

1− kdµ1
(32)

2ζωnT =
(µ1 − µ2)kd
1− kdµ1

(33)

And from (32) and (33), one given couple (ωn, ζ) of the second-order low-pass transfer function can be obtained
in tuning (µ1, µ2) as

µ1 =
1

kd
.

(ωnT )
2 + 2ζωnT

1 + (ωnT )2 + 2ζωnT
(34)

µ2 =
1

kd
.

(ωnT )
2

1 + (ωnT )2 + 2ζωnT
(35)

The strict stability conditions ofL(z) in (30) or (31) will be given in the next subsection for any (µ1, µ2). But
if we impose the constraint that0 < ωn < +∞ and0 < ζ < +∞ to preserve a physical meaning, we deduce from
(34)&(35) that0 < µ2 < µ1 < 1/kd. We can rewriteL(z) in the frequency-domain, by makingz = epT , with
p = j2πf , andf is the frequency variable. Fig. 2 gives the modulus in frequency-domain of the exact functionL
given in (31). Assuming slow reaction of the loop during one OFDM symbolT (i.e. fn.T << 1), the digital loop
transfer function is close (approximationz−1 ≈ 1 − p.T ) to the second-order low-pass transfer function usual in
analog PLL [27]:

L(epT ) ≈
2ζωnp+ ω2

n

p2 + 2ζωnp+ ω2
n

(36)

Special case of first-order loop:if µ2 = 0, the transfer function of the system just depends on a cut-off pulsation
ωc (or cut-off frequencyfc = ωc

2π ), and is reduced to

L(z) =
ωc

(1− z−1) + ωc
(37)

with: (ωcT ) =
kdµ1

1− kdµ1
(38)

2expression ofL(z) is the same than in [18] withβd = kd

1−kd.µ1
, but differs to the closed loop transfer function of a 2nd-order digital

PLL [26].

7
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Fig. 2. (exact) Final transfer functionL(z = ej2πfT ) versus normalized frequencyfT for a second-order loop (continuous line) with
various normalized natural frequencyfnT = 3.10−4 to = 3.10−1 and a damping factorζ = 1

2
, and for a first-order loop (dashed line) with

various normalized cut-off frequencyfcT = 3.10−4 to = 3.10−1 .

and then approximatively (whenfc.T << 1) to an analog first-order low-pass transfer functionL(epT ) ≈ ωc

p+ωc
, as

can be seen in Fig. 2. We have from (38) thatµ1 =
2πfcT

1+2πfcT
.

2) Stability: the condition of stability of the causal rational systemL(z) is obtained when all the roots of the
denominator polynomial are inside the unit circle. For a 2nd-order denominator polynomialp(z) = [1 + c1z

−1 +
c2z

−2], the stability conditions (obtained by the Schur-Cohn test [28]) are:

|c2| < 1 and − 1 <
c1

1 + c2
< 1 (39)

with in our case:
c1 = −2 + kd(µ1 + µ2) and c2 = 1− kdµ1

In summary,L(z) in (30) is stable (for a true second-order system withµ2 6= 0) if and only if:

0 < kdµ1 < 2 (40)

0 < kdµ2 < 4− 2kdµ1 (41)

And for the special case of first-order system (L(z) in (37)), only the first equation (40) has to be verified.

3) Mean Squared Error analysis:the estimator is unbiased since the CA estimation errorǫ(n) defined in (24)
is zero-mean (see (28)). Our aim is to compute the estimationerror varianceσ2

ǫ = 1
L .E{ǫH(n)ǫ(n)} as

σ2
ǫ = σ2

ǫα + σ2
ǫN (42)

whereσ2
ǫα is the dynamic error variance, resulting on the variation ofthe processα, andσ2

ǫN is the static error
variance, resulting on the additive thermal noise. According to (28) and (24), the errorǫ(n) can be expressed in
the Z-domain byǫ(z) = (1 − L(z)).α(z) − k−1

d .L(z).N(z). Then, the two components of the varianceσ2
ǫ can

be easily expressed. The componentσ2
ǫα results from the high-pass filtering(1− L(z)) of the CAs inputα(n):

σ2
ǫα =

∫ + 1

2T

− 1

2T

Γα(f).|1− L(ej2πfT )|2df (43)

8
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Fig. 3. Network of curves of globalσ2

ǫ = σ2

ǫα + σ2

ǫN (continuous line) versusfn/fd (for a fixedfdT = 1.10−3) for a second-order loop
with various damping factorζ = 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2 computed numerically from (43) assuming Jakes model (withσ2

α = 1, L = 6),
and from (44) assumingk2

d = 1 andσ2

N = 6, 25.10−2 (top of figure) orσ2

N = 6, 25.10−4 (bottom of figure). Theoretical reference (dashed
line) given from closed form expressions (45)&(47) for σ2

ǫN , and from (51) forσ2

ǫα

with Γα(f) =
1
L .
∑L

l=1 Γαl
whereΓαl

is the Power Spectrum Density (PSD) ofαl. And the componentσ2
ǫN results

from the low-pass filtering (−k−1
d .L(z)) of the input loop noiseN(n):

σ2
ǫN =

∫ + 1

2T

− 1

2T

ΓN (f).
1

k2d
.|L(ej2πfT )|2df (44)

with ΓN (f) = 1
L .
∑L

l=1 ΓNl
(f) whereΓNl

is the PSD ofNl.

If the statistical properties of the stochastic inputs and loop noise are known, the CAs error variance can be
computed numerically in evaluating the integrals (43) and (44). The couple (fn, ζ) has to be properly chosen for
a good trade-off between gain tracking ability and loop noise reduction, for a given SNR andfdT scenario. Fig.
3 gives some numerical integration results forσ2

ǫ assuming a “Rayleigh-Jakes” model for the CA dynamic, and
a (temporally uncorrelated) input loop noise with two different variancesσ2

N . It is shown that fixingζ = 1
2 and

varying fn can be a strategy to obtain the best minimum ofσ2
ǫ . Our objective now is to give some approximate

closed form expressions forσ2
ǫα andσ2

ǫN , especially forζ = 1
2 (or around).

Static error varianceσ2
ǫN : since the whiteness ofNl(n) can be assumed (withΓN (f) = σ2

NT ) for our algorithm,
(44) reduces to

σ2
ǫN =

σ2
N

k2d
.BL (45)

whereBL represents the (double-sided normalized) noise equivalent bandwidth of the system, defined by

BL = T ×

∫ + 1

2T

− 1

2T

|L(ej2πfT )|2df (46)

An exact analytical expression ofBL can be derived by the method presented by R. Winkelstein in [23] (based
on the book of E.I. Jury [29]) for the second-order loop ((30) or (31)), resulting in

BL =
[8ζ2 + 2](ωnT ) + 6ζ(ωnT )

2 + (ωnT )
3

8ζ + 6ζ.(ωnT ) + (ωnT )3
(47)

If fn.T << 1, the approximation leads to the noise equivalent bandwidthof the analog second-order loop given in

9
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(36):

BL ≈ 2πfnT.(ζ +
1

4ζ
) (48)

And for the first-order loop, the noise equivalent bandwidth is

BL1 =
2πfcT

2πfcT + 2
(49)

and can be approached whenfcT << 1 by BL1 ≈ πfcT .

Dynamic error varianceσ2
ǫα: For the “Rayleigh-Jakes” model (5), the Doppler spectrum,Γα(f) =

σ2

α/L

πfd
√

1−( f

fd
)2

for f ∈]−fd; +fd[, has a bounded support. Therefore, a good tracking will require that the natural frequency of the
second order loopfn is greater thanfd. On the other hand, assuming thatfn << 1/T , we can deduce that only the
Low Frequency (LF) part of the function|1−L(ej2πfT )| is used in the integral (43). According to (36), the squared
modulus of the error transfer function of the second-order loop can be approached in LF (forf ≤ fn << 1/T ) by
|1−L(ej2πfT )|2 ≈ f4

f4
n + f2.f2

n .(4ζ2 −1) . And when moreoverζ ≈ 1
2 , we can use finally the accurate approximation

|1− L(ej2πfT )| ≈ ( f
fn
)2. It results that the CA dynamic error varianceσ2

ǫα in (43) can finally be approached (for
fd < fn << 1/T , andζ ≈ 1

2 ) by

σ2
ǫα ≈

∫ +fd

−fd

Γα(f).

(

f

fn

)4

df (50)

For the “Rayleigh-Jakes”’ model case, a variable changecosθ = (f/fd) permits to evaluate (50) analytically as

σ2
ǫα(Jakes) ≈ (

3

8
).

(

fd
fn

)4

.
σ2
α

L
(51)

And for the first-order loop, using from (37) that|1− L(ej2πfT )| ≈ ( f
fc
) whenf ≤ fd ≤ fc << 1/T , we have

σ2
ǫα(Jakes) ≈ (12).(

fd
fc
)2.σ

2

α

L .

Optimal natural frequency:the dynamic componentσ2
ǫα decreases proportionally to the4th power of fn

according to (51), whereas the static componentσ2
ǫN increases as a function offn, according to (45) and (48).

The componentσ2
ǫα (respectivelyσ2

ǫN ) is the dominant part of the globalσ2
ǫ in the low (respectively large)fn/fd

region, as can be seen in dashed line in the previously mentioned Fig. 3. Now if we fixζ (around 1
2 ), we can

calculate the natural frequencyfn that permits (forfd < fn << 1/T ) to minimize the global MSEσ2
ǫ in (42) as

(
fn
fd

)(Jakes) =

(

3

4
.
1

π
.

1

(ζ + 1
4ζ )

.
1

fdT
.
σ2
α/L

σ2
N/k2d

)
1

5

(52)

And the corresponding optimal MSE results in

σ2
ǫ (Jakes) = λ ·

(

σ2
α

L

)

1

5

·

(

σ2
N

k2d
· fdT

)4/5

(53)

with λ =
15

8
·

[

(ζ +
1

4ζ
) ·

4π

3

]
4

5

(54)

And for the special case of the first-order loop, the optimal MSE(for fd < fc << 1/T ) is reduced toσ2
ǫ (Jakes) =

3
2 .
(

σ2

α

L

)
1

3

.
(

π.σ
2

N

k2

d

.fdT
)2/3

, obtained with

(
fc
fd

)(Jakes) =

(

1

π
.
1

fdT
.
σ2
α/L

σ2
N/k2d

)

1

3

(55)

10
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IV. REFERENCES: KALMAN FILTERS AND BCRB

In the perspective to appreciate the performance of the proposed tracking loop based algorithm, we present in this
section three obvious benchmarks that were also investigated to treat our specific problem. We remind the reader that
we wish to estimate the CAsα(n) assuming the knowledge of pilots subcarriersxp(n) and delaysτ = [τ1, ..., τL]

T .
The estimation is based on the observation model (6) that can be re-formulated asyp(n) = K

(

xp(n), τ
)

α(n)+wp(n).
For this specific (parametric channel modeling based) problem, a Kalman filter with an usual first-order Auto-
Regressive model (called AR1-Kalman) was first investigated. We developed also a Kalman filter using an optimized
second-order model more appropriate under a slow fading channel. In this manuscript, we call this algorithm the
(2nd-order) Or2-Kalman filter. Finally, the Bayesian Cramer Rao Bound (BCRB) that provides lower bound on the
variance achievable by any unbiased estimator is also givenhereafter. Note that other literature channel estimators
that operate over the channel transfer function (i.e non-parametric Frequency-Domain estimators) will also be
discussed in the simulations section.

A. AR1-Kalman filter and (2nd-order) Or2-Kalman filter

We consider first the Kalman Filter algorithm that can deliversin a sequential manner an estimate of the CAs
as proposed in [6]3:

α̂(n|n) = Kalman
(

α̂(n|n−1), yp(n), xp(n), τ
)

For a so-called Linear Gaussian problem [30], the Kalman filterwould give the optimal performance. Exact linear
state evolution equation for the Jakes’ process CAs are not available. However, we have to give an approximate
linear state-space representation of the problem in order to use Kalman filter. In this perspective, the flat fading
Rayleigh channel can first commonly be approached by a first-order Auto-Regressive (AR1) model with Gaussian
assumption (or Gauss-Markov model) [30], leading to an AR1-Kalman filter [14] [16] [25] [15]. However, in case
of slow variations, the CAs variations look like linear during a few symbols, and it could then be more appropriate
to consider also second-order model including a (slightly mobile) linear driftδl. The general model that we consider
to approach the variation of one Jakes’processαl(n) by α̃l(n) is finally:

α̃l(n) = γ.α̃l(n−1) + δl(n−1) (56)

δl(n) = β.δl(n−1) + ul(n) (57)

whereγ and β are two positive scalars (lower than 1),ul(n) is zero mean Gaussian complex circular with a
varianceσ2

ul
.

First, for the special case of AR1-model (no drift), we haveβ = 0, and thenγ = R
(1)
α̃l

/σ2
αl

andσ2
ul

= σ2
αl
(1−γ2).

The standard choice forγ becomesJ0(2πfdT ) if we impose that the autocorrelation coefficientsR(k)
α̃l

of the
approximate process perfectly match the Bessel auto-correlation function of the true Jakes process in (5) for lag
k ∈ {−1; 0; 1} (or for k ∈ {−p; ...; 0; ...; p} for a model with orderp). But we can use a more general choice as
in [13], with:

γ =
J0(2πfdT )

1 + ǫ
(AR1-Kalman)

whereǫ is a possible very small positive amount (<< 1). This slight change can create a moreregular process that
in some sense closely approximates the original process. Thespecific equations of the AR1-Kalman filter applied
to our model can be found in [18].

Secondly, for the second-order model, the coefficientβ is chosen close to one (but lower) to introduce a drift
with time. And the parameters of the model have to be calibrated such that the slope (or drift) of the CA variation,
δl(n), changes slowly with timen, according to the actual value offdT . From the relationship betweenR(2)

α̃l
and

R
(1)
α̃l

obtained from (56)&(57), we find that the coefficientγ can be computed, for a givenβ, by

γ =
R

(2)
α̃l

− βR
(1)
α̃l

R
(1)
α̃l

− β.σ2
αl

(Or2-Kalman)

3considering in [6] the Kalman-(forward-only)-initial estimation based onpilots. More precisely [6] is the Time-Domain channel estimator
that estimates the discrete-time impulse response including both physical channel (CAs at known positionsτ ) and receive filter.

11
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where we can still imposeR(1)
α̃l

=
σ2

αl

(1+ǫ)J0(2πfd.T ), and nowR
(2)
α̃l

= σ2
αl
J0(2πfd.2T ) for lag k = 2. The state-

noise variance isσ2
ul

= σ2
δl
(1 − β2), whereσ2

δl
= σ2

αl
(1 + γ2) − 2γ.R

(1)
α̃l

is the variance of the driftδl. The 2nd-
order model of the CAs evolution can be re-formulated in a state-space model. The state vector to be considered
includes the CA and the drift for each path,a(n) = [aT

1(n),a
T
2(n), ...,a

T
L(n)]

T , whereal(n) = [α̃l(n), δl(n)]
T . The

state evolution matrix isM = blkdiag{M1, ...,ML}, where M l =

[

γ 1
0 β

]

for l = 1...L, and the state-noise

vector is u(n) = [0, u1(n), ..., 0, uL(n)]
T . The observation matrix with sizeNp × 2L is S(n) = K(n)Z, where

Z = [1L, 0L, ..., 1L, 0L], with 1L being a column vector withL ones, and0L with L zeros. From this we obtain
the state evolution (56)&(57) and the observation equation (6) in a state-space formulation as

a(n) = Ma(n−1) + u(n) (58)

yp(n) = S(n)a(n) + wp(n) (59)

The two stages of the so calledOr2-Kalmanfilter are:
Time Update Equations:

â(n|n−1) = M â(n−1|n−1)

P(n|n−1) = MP(n−1|n−1)M
H + U (60)

Measurement Update Equations:

K (n) = P(n|n−1)S
H
(n)

(

S(n)P(n|n−1)S
H
(n) + σ2INp

)−1

â(n|n) = â(n|n−1) + K (n)

(

yp(n) − S(n)â(n|n−1)

)

P(n|n) = P(n|n−1) − K (n)S(n)P(n|n−1) (61)

whereK (n) is the Kalman gain matrix andU = diag
{

0, σ2
u1
, ..., 0, σ2

uL

}

.

B. Bayesian Cramer Rao Bound (BCRB)

The on-line BCRB for the estimation ofα(n) from actual and previous observations over a multi-path Rayleigh
fading channel and OFDM modulation has been derived in [4] forthe Data-Aided or Non Data-Aided contexts.
The adaptation of [4] for our pilot-based observation model[yp(1), ..., yp(n)] implies that for any unbiased estimator
α̂(n) of α(n):

1

L
.E{(α(n) − α̂(n))

H .(α(n) − α̂(n))} ≥ BCRB(n)

where the on-line BCRB reduces to

BCRB(n) =
1

L
.

nL
∑

i=(n−1)L+1

[BCRB(n)]ii (62)

with BCRB(n) =
(

blkdiag{Jm, Jm, ..., Jm} + R−1
α

)−1

whereJm = 1
σ2 FHF is aL×L matrix, and the covariance matrixRα of sizenL×nL is defined by the elements:

[Rα]i(l,p),i(l′,p′) =

{

R(p−p′)
αl

for l′=l ∈[1,L] p,p′∈[0,n−1]

0 for l′ 6=l ′′

with i(l, p) = 1 + (l− 1) + pL and R(p)αl
defined in (5). In the simulation results, we will plot BCRB= BCRB(∞)

as reference.

V. SIMULATIONS

In this section, the performance of the LS-CATL algorithm is evaluated, first confronted with theoretical analysis
and section IV references (AR1-Kalman, Or2-Kalman, BCRB),and next with literature algorithms. By default, we

12
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Fig. 4. Comparison between simulated and theoretical MSE vsfnT for fdT = 10−3, ζ = 0.5, SNR = 0, 20, or 40 dB,Np = 16 for
proposed 2nd-order LS-CATL algorithm. Theoretical values are given from (45)&(47) for σ2

ǫN , and from (51) forσ2

ǫα.

used a 4QAM-OFDM system (but other sizes of QAM modulation arealso considered),N = 128 subcarriers,Ng =
N
8 = 16 samples for the cyclic prefix, and1Ts

= 2MHz. The number of pilot subcarriers wasNp = 6, 8, 16, or 32,
corresponding to a distance between pilot subcarriersLf = 22, 16, 8, or 4 respectively. We used the same set of
pilots for each OFDM symbols. The channel model is a Jakes’spectrum Rayleigh channel model withL = 6 paths
and maximum delayτmax = 10 (expressed as a fraction ofTs), and corresponds to the GSM model [1] [11] recalled
in table I. The performance is evaluated under a slowly time-varying channel withfdT ≤ 10−2 (corresponding to
a vehicle speedVm ≤ 140 km/h for fc = 1GHz), with a default valuefdT = 10−3.

Path number l 1 2 3 4 5 6

σ2
αl/σ

2
α (dB) −3 0 −2 −6 −8 −10

τl 0 1 2 3 4 10

TABLE I
AVERAGE POWERS AND(NORMALIZED) DELAYS OF THE CHANNEL

A. Confrontation with theory and with section IV references

1) Confrontation with theoretical analysis versusfnT : Fig. 4 gives comparison between simulated and theoretical
error variances versusfnT for fdT = 10−3, and SNR = 0, 20, or 40 dB for proposed 2nd-order (LS-CATL)
algorithm, withNp = 16 pilot subcarriers. The simulated dynamic error varianceσ2

ǫα was obtained in forcing the
noisewp(n) to zero, whereas the simulated static error varianceσ2

ǫN was obtained in maintaining the CAs of the
paths to constant values equal to their standard deviationsσl. First of all, we can observe that all the theoretical
curves are very close to the simulated ones. Therefore, the abscissa of the minimum of the simulated MSEσ2

ǫ

matches also very well with the (theoretical closed form (52)) optimal natural frequency (such thatfn/fd (Jakes)
= 3, 7.4 and18.7 respectively forSNR = 0, 20, and 40 dB, withNp = 16). It is interesting to note that there is
a large range around the optimal natural frequency for whichthe MSE remains very close to the minimum value
(for any SNR). Hence, the tuning of natural frequency of the loop coefficients does not need to be very accurate.

2) Performance comparison:In the following, we use the parameters that yield around thebest possible
performance, for the various algorithms. For the proposed LS-CATL algorithm, Tables II(a) and II(b) give the
loop parameters used (theoretical values from (52) are alsogiven) for fdT = 10−3 andfdT = 10−2 respectively,
with Np = 16 pilot subcarriers. According to this tables given as examples, but also more generally, we have
observed that for the 2nd-order proposed algorithm, the optimal fn were very close to the theoretical values for
fdT ≤ 10−3, and still are close up tofdT = 10−2 (so for our slow-fading assumption). And for the 1st-order
version of the algorithm, closed form expressions and observed values of the optimal cut-off frequencyfc match
well only for fdT ≤ 10−3 and low SNR. For the AR1-Kalman and the Or2-Kalman filters, the parameters (γ, β)

13
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used and the correspondingǫ (that yield around the best possible performance) are givenin table III (performance
with ǫ = 0 for the AR1-Kalman will also be plotted in thin dotted lines,as in [18]).

SNR (dB) 0 5 10 15 20 25 30 35 40

fn/fd 3 4 5 6 8 10 12 15 20
(theory (52)) 3 3.7 4.7 5.9 7.4 9.4 11.8 14.8 18.7

fc/fd 7 10 15 22 34 50 80 130 200
(theory (55)) 6.7 9.9 14.5 21.2 31.2 45.7 67.1 98.5 145

(a) for fdT = 10−3

SNR (dB) 0 5 10 15 20 25 30 35 40

fn/fd 2 2.5 3 4 5 6 8 12 15
(theory (52)) 1.9 2.4 3 3.7 4.7 5.9 7.4 9.4 11.8

fc/fd 3 5 7 10 24 30 50 90 400
(b) for fdT = 10−2

TABLE II
LOOP PARAMETERS FOR THE2ND-ORDER LOOP(fn/fd) AND THE 1ST-ORDER LOOP(fc/fd), FORNp = 16 AND fdT = 10−3, 10−2

fdT = 10−3 fdT = 10−2

AR1-Kalman Or2-Kalman AR1-Kalman Or2-Kalman
β 0 0.9992 0 0.98
γ 0.9996 0.9978 0.9921 0.9975

ǫ 4.10−4 9.10−6 8.10−3 8.10−4

TABLE III
PARAMETERS (β, γ) USED (AND CORRESPONDINGǫ) FOR THEAR1-KALMAN AND OR2-KALMAN , FORfdT = 10−3, 10−2

Fig. 5(a) and Fig. 5(b) show the evolution of MSE versus SNR, respectively for fdT = 10−3 andfdT = 10−2.
First of all, the MSE of the 2nd-order (respectively 1st-order) proposed LS-CATL algorithm is very close to the
one obtained by the Or2-Kalman (respectively AR1-Kalman) algorithm. It is gratifying to observe that the reduced
complexity algorithm exhibits quasi the same asymptotic variance than the reference Kalman algorithm, for a same
model order. It was our desired objective, motivated by someinteresting known results for the phase estimation
problem based on PLL. Indeed, some others have previously proved that the PLL can be interpreted as a form of
Kalman filter [20] [31], with equivalent MSE asymptotic performance (in tracking mode4) if a satisfactory dynamic
model is available [21]. Secondly, we observe on the one hand that the performance of the AR1-Kalman algorithm,
despite its complexity, does not reach the BRCB in case of slow channel variation (more notable forfdT = 10−3

than forfdT = 10−2). On the other hand, with a second-order loop (or an Or2-Kalman filter), the MSE becomes
closer to the BCRB. This point reveals the advantage of a second-order loop versus a first-order loop (i.e. µ2 = 0)
in slow fading scenario. It emphasizes the benefit of the integration, that is inherent to the second-order loop, but
not included in the AR1-Kalman algorithm. It allows a higherdecrease of the MSE that is proportional to the(45)
power of the SNR, in full agreement with the closed form expression (53), also validated on these figures (still
more exactly forfdT = 10−3 than forfdT = 10−2).

Fig. 6 (up) shows again the MSE performance improvement achieved by the 2nd-order against 1st order loop,
for a given number of pilot subcarriersNp from 6 (minimum value permitted withL = 6 paths for the LS-
CATL algorithm) to32, or for a given normalized Doppler frequencyfdT from 10−5 to 10−2. This performance
improvement is seen more important for smallestfdT (whereas for high speed channel such thatfdT ≥ 10−1,
the AR1-Kalman would closely approach the BCRB according to[12], Fig. 3). In agreement with the theoretical
analysis (53), the MSE increases proportionally to the(45) power offdT for the 2nd-order loop for all the range
of fdT ≤ 10−2 (versus a power(23) for the 1st-order loop, verified only forfdT ≤ 10−3). On the other hand, it is

4Kalman filter equations can be regarded as equivalent loop equations assoon as the Kalman gain converges and becomes time invariant.

14



Gipsab-lab research report, L. Ros, H. Hijazi, E-P Simon

0 5 10 15 20 25 30 35 40

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E

 

 

proposed LS−CATL (2nd−order)
(theory)
LS−CATL (1st−order)
Or2−Kalman
AR1−Kalman
AR1−Kalman (ε = 0)
BCRB

(a) fdT = 10−3

0 5 10 15 20 25 30 35 40

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E

 

 

proposed LS−CATL (2nd−order)
(theory)
LS−CATL ( 1st−order)
Or2−Kalman
AR1−Kalman
AR1−Kalman (ε = 0)
BCRB

(b) fdT = 10−2

Fig. 5. MSE vs SNR forfdT = 10−3 (a) andfdT = 10−2 (b), with Np = 16

normal to observe that when the number of pilots is increased, the MSE decreases. Fig. 6 (down) informs on the
value of the optimal natural frequencyfn normalized byfd, for a givenNp or a givenfdT . Note that the optimal
fn/fd (52) (and also the optimal MSE (53)) depends on the input loop noise varianceσ2

N (21), which is inversely
proportional toNp but also proportional to a factorλN ≥ 1. For the given channel, this factor still depends onNp

(actuallyλN = 13.7, 3.7, 2.8, 2.7 respectively forNp = 6, 8, 16, 32), and is greater than one because theNp ×Np

matrix FH
p Fp is not diagonal.

Fig. 7 shows the evolution of the Bit Error Rate (BER) in the case of 4-QAM, 16-QAM and 64-QAM modulations
for the previous channel estimators completed by a Zero-Forcing (ZF) frequency-domain equalizer (the channel
frequency response is previously estimated from the CA estimatesα̂(n) by Ĥ(n) = Fα̂(n), before equalization).
For the sake of comparison, we also plotted the BER obtained with perfect knowledge of the channel. The BER
results agree with the previous MSE results, but with lower difference between the curves due to decision process.
Hence, the performance with our 2nd-order LS-CATL algorithm isnow the same in terms of BER than with the
Or2-Kalman algorithm, and is slightly better (for low SNR regions) than with the AR1-Kalman (and then the
1st-order LS-CATL). The BER performances are close to that found with a ZF equalizer using perfect channel
knowledge. When increasing the size of the modulation, the BER curves are obviously shifted toward highest SNR.
And for a given BER, the gap between 1st-order and 2nd-order algorithms (in terms of required SNR) is also
slightly increased with the modulation size.
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Fig. 7. BER comparison for the case of 4-QAM, 16-QAM or 64-QAM modulation for fdT = 10−3 andNp = 8

B. Bench marking

Now, we bench mark the BER performance of the proposed LS-CATL algorithm by other estimators that have
been suggested in literature. Specifically, we consider Frequency Domain (FD) channel estimator described in
introduction section that estimates the frequency response of the channelH(n) for theN subcarriers assuming the
knowledge ofNp pilots subcarriersxp(n). The estimation is based on the observation model (equivalent to (6)):
yp(n) = diag{xp(n)}Hp(n) + wp(n), whereHp(n) = Fpα(n). The algorithms are summarized as follows:

• “conventional” LS(FD)-LPI [2]: employs LS criterion to estimate the channel at pilot frequencies:̂Hp(n) =

diag{xp(n)}
−1yp(n) and then makes LPI interpolation:̂H(n) = LPI {Ĥp(n)}.

• Kalman(FD)-LPI [5]5: employs (per-subchannel) AR-Kalman filter to estimate the channel at pilot frequencies:
Ĥp(n|n) = Kalman

(

Ĥp(n|n−1), yp(n), xp(n)

)

and then makes LPI Interpolation:̂H(n) = LPI {Ĥp(n|n)}.

Moreover, if the knowledge of delaysτ is available, the previous (blind) LPI interpolation can be replaced by a
Delays-Based-Interpolation (DBI),̂H(n) = DBI{Ĥp(n), τ}, consisting in:Ĥ(n) =

(

F
(

FH
p Fp

)−1
FH

p

)

Ĥp(n). This

5the per-subchannel Kalman filter has been adapted to our pilot scheme since [5] considered a full block of pilots
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Fig. 8. BER comparison with various literature methods using equal or greater number of pilot sub-carriersNp than the proposed method,
for fdT = 10−3 (a) and forfdT = 10−2 (b)

procedure leads to the two new versions of the previous algorithms:

• LS(FD)-DBI
• Kalman(FD)-DBI

A last algorithm that requires also the availability of the power-delay profile (in the version we have implemented)
is based on an “eigenvalues interpolation”:

• Kalman-EIG [7] 6: in this parameter reduction approach, the channel frequency response (N subcarriers) is
computed byĤ(n|n) = Vê(n|n), whereV contains theNe << N dominant eigenvectors of the FD channel
correlation matrixRH(τ ) = Fdiag

{

σ2
α1
, ..., σ2

αL

}

FH assumed here perfectly known. The subspace coefficients

are previously estimated by an AR1-Kalman filter:ê(n|n) = Kalman
(

ê(n|n−1), yp(n), xp(n)

)

.

Fig. 8(a) shows forfdT = 10−3 (and Fig. 8(b) forfdT = 10−2) the BER performance, using a ZF equalizer and
a 4-QAM modulation, of the 2nd-order proposed LS-CATL algorithm (and previous AR1-Kalman and Or2-Kalman
references) and three aforementioned literature methods (conventional LS(FD)-LPI, Kalman(FD)-LPI, Kalman-
EIG). It is first of all highly noteworthy that the “first category” of algorithms (proposed algorithm, Or2-Kalman,
AR1-Kalman and Kalman-EIG) greatly outperforms the conventional LS(FD)-LPI method even if the latter uses

6corresponds to the initial (pilot-based) channel estimator in [7]
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Np = 8 or 16)

a greater number7 of pilot subcarriers (Np = 64 versus onlyNp = 8). These results permit to measure the
gain when exploiting time domain correlation, frequency domain correlation, as well as knowledge of the delays-
related information (first category) versus only frequency correlation (conventional). When the conventional symbol
by symbol LS(FD)-LPI method is extended into Kalman(FD)-LPI algorithm to improve the estimation of the
channel at pilot frequency positions (before performing the LPI interpolation in frequency-domain), we can measure
the increase in performance due only to the incorporation oftime correlation over several symbols. The benefit
of the time-filtering is mainly observed in low SNR region, and more notable for the lowerfdT because of a
strongest channel time-correlation. But the resulting performance remains still far from that of the “first category”
of algorithms, unless ifNp = 64 pilot subcarriers are used (i.e. a distanceLf = 2 between two pilot subcarriers).
Hence, the availability or the non-availability of the delay-related information is an assumption that influences
strongly the channel estimator performance, and will be discussed later. Considering now the Kalman-EIG algorithm,
the BER performance is close to that found with perfect channel knowledge, and is the same than that obtained
with the AR1-Kalman algorithm (and then the 1st-order LS-CATL algorithm). It is quite understandable since

7for the LPI interpolation, the number of pilot subcarriers must actually fulfill Np ≥ 10 for our considered scenario if we impose to
satisfy the sampling theorem (with then a sampling rate in frequency domainLf such that [8]: N

Lf
≥

τmax

Ts
= 10 ).
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both algorithms use Kalman filter based on the same AR1 state-space model (we take the same value forǫ)
with 6 dominant eigenvalues tracked in the parameter reduction approach, against L=6 paths CAs tracked in the
AR1-Kalman, and the tracking is performed from a same numberof pilot subcarriersNp = 8.

Fig. 9 compares the BER performance of the previous algorithmswith that achieved when using LS(FD)-DBI and
Kalman(FD)-DBI algorithms, for a same number of pilot sub-carriers fixed toNp = 8. These two algorithms are
respectively the extension of conventional LS(FD)-LPI and Kalman(FD)-LPI by replacing the (blind) interpolation
LPI by the interpolation based on the knowledge of the delays. It permits now to compare algorithms with equivalent
assumptions, contrary to the case of the previous figures. The great performance gap between -LPI and -DPI
versions allows to measure the strong potential improvement in the channel estimation if delay-related information
is available. The improvement due to the a priori knowledge ofthe delays is predominant in large SNR region.
On the other hand, comparison between LS(FD)- and Kalman(FD)- versions permits to measure again the gain in
performance when exploiting time correlation, interesting for low SNR region. It is finally not surprising to observe
that the Kalman(FD)-DBI algorithm and the AR1-Kalman algorithm exhibit the same performance (both are based
on the same scheme: “FD-pilots based estimation⇒ CAs ⇒ FD-all subcarriers”, but with a time-integration by
the Kalman filter performed in first or second position). The availability of the delay related information permits a
strong improvement compared to conventional methods, but the price to be paid is the requirement of an accurate
delays acquisition procedure.

C. Robustness of the LS-CATL algorithm to an imperfect delay knowledge

Fig. 10 measures the effect of an imperfect delay knowledge onthe BER performance of our second-order
proposed algorithm. SD denotes the standard deviation of thetime delay errors (modeled as zero mean Gaussian
variables). As expected (common drawback to any parametricchannel estimator), the algorithm performance
decreases with respect to the delay error. However, the algorithm is not very sensitive to a delay errorSD < 0.05Ts

in low SNR, andSD < 0.02Ts in high SNR, despite a weak number of pilot subcarriersNp = 8. And when
increasing the number of pilot subcarriers toNp = 16, sensibility to delay error is weak forSD < 0.1Ts in low
SNR, and forSD < 0.05Ts in high SNR. These required performance for the delays acquisition can well be
obtained when using high resolution algorithms [8], thanksto the quasi invariance of the delays (with respect to the
scale of the sampling timeTs) during a large number of OFDM symbols, especially in the slowfading case (see
also performance in [11] Fig. 10, or in [12] obtained by the ESPRITmethod [8] for the same channel and pilot
scheme than here but a more unfavorable scenario due to higher mobility fdT = 0.1, or 0.3). In conclusion, when
combined with an accurate delay acquisition procedure, theproposed algorithm still provides interesting increase
in performance compared to conventional methods based on LPI.

VI. CONCLUSION

Channel paths complex amplitude estimator over slow-fading channels has been proposed and analyzed. It can
be directly useful for (Data Aided or Data Directed) mono-carrier systems over flat fading channel. Applied to
OFDM systems (with pilot subcarriers), it belongs to the class of algorithms that performs the tracking of the
CAs of a multi-path channel, from the delays related information (assuming therefore a previous delays acquisition
procedure). The proposed algorithm is based on a second-order recursive loop, that integrates an error signal built
from the (pilot based) LS estimates of the CAs. It permits to exploit the time-domain correlation of the channel in
a simple manner, compared to Kalman based methods that require matrix inversion (to compute the Kalman gain
matrix) at each iteration. Simulation results show that the MSE performance of the 2nd-order proposed algorithm
is very close to that of a Kalman estimator based on a 2nd-oderapproximation of the true channel. Moreover, our
2nd-order algorithm outperforms the more complex Kalman estimator when the later is based only on a first-order
Auto-Regressive approximation, which emphasizes the interest for the 2nd-order versus 1st-order methods in case of
slow fading variation (fdT ≤ 10−2). We have given closed form expressions of the optimal natural frequency of the
loop, and corresponding minimum MSE (assuming Rayleigh-Jakes channel). It is demonstrated that the MSE of our
2nd-order algorithm decreases proportionally to the(45) power of the SNR, and increases proportionally to the(45)
power of the normalized Doppler frequencyfdT . Finally, BER comparison through simulation has shown that the
proposed algorithm outperforms the basic conventional method based on LPI interpolation in the frequency domain.
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Moreover, simulations have also shown that the proposed algorithm is rather robust to a reasonable mismatch in
the knowledge of the delays.
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