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Abstract

The aim of the present work is to extend the concept of interphase and equiva-
lent imperfect interface in the context of viscoplasticity. The interphase takes the
form of a thin curved layer of constant thickness, made up of a rigid viscoplastic
material located between two other surrounding materials. We aim at representing
this interphase by an interface with appropriately devised interface conditions. To
reach this objective, a Taylor expansion of the relevant physical fields in the thin
region is used. It is shown that, depending of the degree of stiffness of the layer with
respect to the neighboring media, this interphase can be replaced by an idealized
imperfect interface involving the jump of the velocity field or the traction vector.
The first kind of interface model, applicable to soft interphases, is the ”spring-type”
interface across which the traction are continuous but the velocity field exhibits a
discontinuity which is given in term of the traction by a power-law type relation.
Moreover, it is shown that the constant of the model can be expressed in terms of
the material parameters of the interphase. When the interphase is stiffer than the
two surrounding media, one obtain a ”stress-type” interface across which the veloc-
ity is continuous and a jump condition for the traction is given by a generalization
of the so-called Young Laplace model to viscoplastic solids.
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1 Introduction

The properties of a solid can be significantly affected at or near an interface,
as it has been shown from atomistic simulations [16], [7,8]. In the last decades,
many works deal about the incorporation of these interfacial effects into the
overall properties of elastic composites (see for instance Hashin [12], Chen et
al. [6], Duan et al. [10]).
Two kinds of imperfect interface models are commonly used:
- the ”spring interface” model for which the displacement field is discontinuous
and given in terms of the traction vector.
- the ”stress interface” model [11,18], in which the jump of the traction vector
is given by a generalized Young Laplace equation.
A rigorous methodology of construction of imperfect interfaces models has
been firstly proposed by Sanchez-Palencia [20], Pham Huy and Sanchez-Palencia
[17] for thermal conduction problem. It consists in replacing a thin interphase
by an idealized imperfect interface. This approach has been later generalized
in the case of linear elasticity by Karlbring and Mochvan [14,15], Bövik [5],
Hashin [13] and Benveniste et al. [2,3] (see [2,19] for a comprehensive list of
publications on the subject). In particular, it has been found that the ”spring”
or ”stress” type interfaces appears as the two limit cases of stiff or soft inter-
phases.
Recently, some works dealt about the consideration of imperfect interface
in the context of non linear composites materials [21–23], [9]. For instance,
Dormieux et al. [9] postulate a plastic interface model to investigate the effect
of interfacial stress on the yield strength of nanoporous materials.
In the present study, we derive interface models for viscoplastic materials. To
reach this objective, we propose to generalize the Taylor expansion approach
initiated by Bövik [5] and formalized in Benveniste [3]. A thin viscoplastic
three dimensional curved layer between two surrounding media is considered.
This interphase is replaced by an idealized interface involving the jump of
both velocity field and traction vector. The two particular cases of a stiff or
soft interphase are investigated and allow us to derive a generalization of the
”spring” and ”stress” interface models in the non linear context. Finally, it
is shown that the interface model postulated in [9] appears as a special case
of our approach once proper restrictions are applied on the magnitude of the
material properties of the interphase.

2 Statement of the problem

Consider a three dimensional medium constituted of two media separated by
a thin layer, called interphase or coating, whose thickness is denoted by h.
The thin interphase is delimited by two parallel perfectly bonded interfaces,
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denoted by S1 and S2, the ”middle” surface, at half distance between S1 and
S2, being denoted by S0 (see figure 1).
All points within the interphase are represented in the curvilinear coordinates
system (x1, x2, x3). The iso-x3 surfaces define surfaces which are parallel to S0.
The surface x3 = h/2 defines the interface between coating and medium ”2”,
namely S2 whereas the surface x3 = −h/2 defines the interface S1. The inter-
phase is assumed to be made up of a homogeneous rigid-viscoplastic material
whose properties differ from the ones of the two surrounding media.
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The equations of the model are summarized below:

div(σ) = 0

d =
1

2

[
grad(v) + gradT (v)

]
d =

∂ψ

∂σ
, ψ(σ) =

σ0ε̇0
1 + n

(
σeq

σ0

)1+n

, tr(d) = 0

(1)

or, dually:

σ = pi+
2σ0

3ε̇0

(
deq
ε̇0

)m−1

d (2)

In the above expressions, v is the velocity field, d and σ are the local strain
rate and stress tensors. By p, we denote the local pressure, p = tr(σ)/3, i
represent the second order identity tensor. σeq and deq are the equivalent ”von
Mises” stress and strain rate and σ0 and ε̇0 are two material parameters. The
two exponents n andm are classically related by n = 1/m and are defined such
that: 0 ≤ m ≤ 1 and 1 ≤ n ≤ +∞. The particular case of an incompressible
linear viscous material corresponds to n = m = 1 whereas the limited case
n = +∞ (and then m = 0) corresponds to a rigid ideally-plastic material.
We aim now at replacing this interphase by an idealized surface and at deriving
the constitutive equations giving the jump of the velocity and of the traction
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across S0. As previously mentioned, the approach uses the Taylor expansion
and is detailed in section 4.

3 Preliminaries

Let us introduce the unit normal vector n taken on each iso-x3 surfaces and
the associated two orthogonal projectors π and π⊥ defined by:

π = i− n⊗ n, π⊥ = n⊗ n (3)

where i is the second order identity tensor. The strain rate is decomposed
into:

d = ds + g
s
⊗ n+ n⊗ g

s
+ gnπ

⊥ (4)

where: ds = π.d.π, g
s
= π.d.n, gn = d : π⊥

Due to the incompressibility, one has gn = − tr(ds), consequently the strain
rate can also be written:

d = ds − tr(ds)π
⊥ + g

s
⊗ n+ n⊗ g

s
(5)

The equivalent strain rate can be put into the form:

deq = (D2
s +G2

s)
1/2 (6)

with:

Ds =
[
2

3

(
ds : ds + tr(ds)

2
)]1/2

, Gs =
[
4

3
g
s
: g

s

]1/2
(7)

Similarly, the stress field σ is decomposed into:

σ = σs + ts ⊗ n+ n⊗ ts + tnπ
⊥ (8)

with: σs = π.σ.π, ts = π.σ.n, tn = σ : π⊥

There are two kinds of quantities which enter into the expression of the strain
rate (5) and of the stress (8):
- quantities which are continuous across a perfectly bonded interface: ds, ts
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and tn,
- quantities which are discontinuous across a perfect interface: σs and gs.
We aim at expressing σs and g

s
as function of ds, ts and tn. To do that, we

decompose the stress-strain relation as follows:



σs =
2σ0

3ε̇0

(
deq
ε̇0

)m−1

ds + pπ

ts =
2σ0

3ε̇0

(
deq
ε̇0

)m−1

g
s

tn = −2σ0

3ε̇0

(
deq
ε̇0

)m−1

tr(ds) + p

(9)

From the second relation in (9), one has:

ts.ts =
σ2
0

3ε̇20

(
deq
ε̇0

)2m−2

G2
s (10)

Introducing into the above equation

Ts =
√
3ts.ts (11)

it can be observed that Gs is solution of the following non linear equation in
z:

(z2 +D2
s)

m−1 −
(
ε̇m0
σ0

)2
T 2
s

z2
= 0 (12)

A closed form solution of the above equation can be found in the special case
of a linear viscous material (m = 1) and of a perfectly plastic material (m = 0)
(see sections 5 and 7) or in the case of specific rational values of m = 1

2
and

m = 1
3
. In any case 0 < m < 1, we formally denote the solution 1 by z = Z

where Z depends on Ds, Ts and on the material parameters ε̇0, σ0.
The equivalent strain reads: deq = (D2

s +Z2)1/2, and from the second relation
in (9), one has:

g
s
=

3ε̇0
2σ0

(
(D2

s + Z2)1/2

ε̇0

)1−m

ts (13)

1 Equation (12) gives a positive and a negative real solution but also complex
solutions, here the solution Z makes reference to the positives real solution.
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The pressure p, can be eliminated from the first and the last relation in (9).
It leads to:

σs =
2σ0

3ε̇0

(
(D2

s + Z2)1/2

ε̇0

)m−1

(ds + tr(ds)π) + tnπ (14)

In (13) and (14), the quantities g
s
and σs are only expressed in terms of

quantities ds, ts and tn.

4 The Taylor expansion approach

As explained in the introduction of the paper, an imperfect interface can be
seen as the limit case of a thin stiff or soft interface. The connection between
the properties of the interphase and of the equivalent interface model has been
amply studied by Benveniste [2] in the case of a two dimensional elastic curved
surface and has been later generalized in the three dimensional context [3].
In order to establish the connection between the properties of the thin inter-
phase and of the imperfect interface, two methods have been applied in past
studies. The first one uses the asymptotic expansion. This method has been
initiated by Sanchez-Palencia [20] and Pham Huy and Sanchez-Palencia [17]
for conductivity, and applied by Klarbring et al. [14,15], Avila-Pozos et al. [1]
and Benveniste [2] in the context of linear elasticity. The second method has
been initiated by Bövik [5] and formalized by Hashin [13] and Benveniste [3].
It uses the Taylor expansion and adequate surface differential operators which
make possible to derive the general expressions of the jumps of the physical
fields. In the special cases of a plane layer [15,1] and of a two dimensional
curved layer [2], the results obtained by the asymptotic expansion method
are consistent with the one derived form the Taylor expansion approach [3].
Although it has not yet been proven, it is likely that this equivalence between
the two methods remains true in the general case of an anisotropic three di-
mensional curved layer.
Of course, the use of the Taylor expansion based method suppose that the
physical fields which are expanded are continuously differentiable, defined and
regular everywhere in the thin layer. Such conditions are not needed when the
asymptotic expansion method is use, it constitutes the main difference between
the two methods. However, the advantage of the Taylor expansion approach
over the asymptotic one is that it leads to a compact representation in which
the particular cases of ”spring interface” and of ”stress interface” appear as
limit cases.
In the prensent paper we extend the Taylor expansion method to the context
of viscoplasticity. The first step consist in expanding the velocity field, v, and
the traction vector t at the mid surface, S0, about the lower interface S1 or
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upper interface S2:

v|S0 = v|S1 +
h

2
gradn(v)|S1 + o(h2)

v|S0 = v|S2 −
h

2
gradn(v)|S2 + o(h2)

(15)

where gradn(v) = grad(v).n are the derivatives of v along the x3 direction. In
(15) the series is truncated at the first order, higher terms are neglected in the
present work. It supposes that the thickness of the layer is small compared
to the characteristic length of the microstructure, as for example the size of
the inclusions for a composite material. A combination of the two equations
in (15) gives:

v|S2 − v|S1 =
h

2

[
gradn(v)|S1 + gradn(v)|S2

]
+ o(h2) (16)

Similarly, an equivalent equation can be written for the traction vector t:

t|S2 − t|S1 =
h

2

[
gradn(t)|S1 + gradn(t)|S2

]
+ o(h2) (17)

In (15) and (17), we are dealing with continuously differentiable fields, defined
and regular everywhere in the thin layer. Following the lines of Benveniste [3]
we aim at expressing the differential operators, gradn(v) and gradn(t) in (16)
and (17) as functions of the surface derivatives of the velocity, grads(v) =
grad(v).π and of the traction, t. Once those operators are determined, the
derivation of the interface equations will be easier.
Firstly, the normal and tangential components of gradn(v) are given by:

gradn(v).n = gn = − tr(ds)

gradn(v).π = 2g
s
− n. grads(v)

(18)

where g
s
is given by (13). It follows that:

gradn(v) =
3ε̇m0
σ0

(D2
s + Z2)(1−m)/2ts − n. grads(v)− tr(ds)n (19)

Using now the equilibrium equation, one has:

gradn(t) = grad(σ) : π⊥ = − grad(σ) : π (20)
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In the above expression, the decomposition (8) is used, in which σs is replaced
by (14). It follows that:

gradn(t) = − grad

{
2σ0

3ε̇m0

(
D2

s + Z2
)(m−1)/2

(ds + tr(ds)π)

+ts ⊗ n+ n⊗ ts + tni
}
: π

(21)

In (19) and (21) the ”normal” gradient of v and t are given in term of v and t
and their surface derivatives which are equal to their corresponding quantities
in the surrounding media ”1” and ”2”.
In the configuration of figure 1, the interphase has been eliminated and re-
placed by an idealized interface S0. Equations (16), (17) with (19) and (21)
provide the general expressions for the jump of the velocity field and traction
across the equivalent imperfect interface S0. We aim now at examining the
special cases of a soft or stiff interphase for which explicit expressions of the
interface model can be derived.

5 The linear case: m = 1

Consider the particular case of a linear viscous material, n = m = 1. Expres-
sions (19) and (21) become:

gradn(v) =
1

µ
ts − n. grads(v)− tr(ds)n

grad(t).n = − grad {2µ(ds + tr(ds)π) + ts ⊗ n+ n⊗ ts + tni} : π

(22)

in which we have introduced µ = σ0/(3ε̇0).
The traction vector and the gradient of the velocity are assumed to takes finite
values at the interfaces S1 and S2. Consequently, if µ remains finite when the
limit h → 0 is taken, the terms at the right of the equality in (16) and (17)
vanishes when h → 0. The term containing h/2 in both expressions (16) and
(17) does not vanish when h→ 0 int the following special cases:
- If µ is assumed to be of the same magnitude of the width h, the interphase is
soft and can be replaced by a ”spring interface” model which involves a jump
of the velocity:

[v]S0
=

1

µ̄
ts, [t]S0

= 0 (23)
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where µ̄ = hµ. It can be observed that only the tangential components of
the velocity field are discontinuous across the interface whereas the normal
components remain continuous, this is a consequence of the material incom-
pressibility. The above results are consistent with the one provided in [3] when
a linear incompressible interphase is considered.
- When µ is of the order of magnitude of 1/h, the interphase is stiff and can
be replaced by ”stress interface” model which involves a jump of the traction:

[v]S0
= 0, [t]S0

= − grad(τ ) : π, τ = 2µ(ds + tr(ds)π) (24)

with µ̄ = µ/h and τ is called interfacial stress. The jump of the traction takes
the form of a generalized Young Laplace Law. Again, The above results are
consistent with the one provided in [3] for an elastic incompressible interphase.

6 The viscoplastic case: 0 < m < 1

The value of the exponent m is now arbitrary taken in the interval ]0, 1[.
We first consider the case for which ε̇0 is proportional to 1/h, and we put
ε̇0 = ε̄0/h. σ0 and ε̄0 are assumed to remains finite when h → 0. The non
linear equation (12) become:

(z2 +D2
s)

m−1 − 1

h2m−2

(
ε̄m0
σ0

)2 T 2
s

z2
= 0 (25)

When low values of h are considered in equation (12), the solution for z is
obtained by using an asymptotic expansion. The solution z is taken as: z =
z−1/h+ z0 + z1h+ .... The computation of z−1, z0... gives:

z−1 = ε̄0

(
Ts
σ0

)n

, z0 = 0, z1 =
1

2
(1− n)

D2
s

ε̄0

(
Ts
σ0

)−n

, etc. (26)

Only the higher order term, z−1 is kept in the expansion of z, as a consequence:

Z =
ε̄0
h

(
Ts
σ0

)n

+ o(h) (27)

Replacing this expression in (19) and (21), and taking in (16) and (17) the
limit h→ 0 leads to:

[v]S0
=

3ε̄0
σ0

(
Ts
σ0

)n−1

ts, [t]S0
= 0 (28)
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Dually, we suppose that the reference stress σ0 of the coating is proportional
to 1/h and we put σ0 = σ̄0/h, (σ̄0 and ε̇0 are assumed to remains finite when
h → 0). When low values of h are considered in equation (12), the solution z
can be taken into the form: z = z1h + z2h

2 + .... Only the term z1 is kept in
the expansion of z, and solution for Z can be read:

Z = hε̇m0 D
1−m
s

Ts
σ0

+ o(1) (29)

Taking in (16) and (17) the limit h→ 0 leads to:

[v]S0
= 0, [t]S0

= − grad(τ ) : π

with: τ =
2σ0

3ε̇0

(
Ds

ε̇0

)m−1

(ds + tr(ds)π)

(30)

As in the linear case, the jump of the traction takes the form of a Young
Laplace law. However, the relation giving the interfacial stress, τ as a function
of the surface strain rate is given by a surface viscoplastic law under plane
stress conditions.

7 The plastic case: m = 0

We now look for the particular case of a rigid perfectly-plastic case corre-
sponding to n = +∞ or m = 0. Equation (12) can be explicitly solved and
gives:

Z =
TsDs√
σ2
0 − T 2

s

(31)

Replacing (31) in (19) and (21) leads to:

gradn(v) =
3Ds√
σ2
0 − T 2

s

ts − n. grads(v)− tr(ds)n

grad(t).n = − grad

2

3

√
σ2
0 − T 2

s

Ds

(ds + tr(ds)π)

+ts ⊗ n+ n⊗ ts + tni} : π

(32)
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Since the material parameter ε̇0 vanishes in the case of a plastic material, the
conditions [v]S0

̸= 0 and [t]S0
= 0 cannot be obtained as the limit case of a

thin plastic layer. However, when the reference stress is chosen as σ̄0 = σ0/h,
the above equations gives:

gradn(v) = o(1)

grad(t).n = −1

h
grad

{
2σ0

3Ds

(ds + tr(ds)π)
}
: π + o(1)

(33)

The limit h→ 0 is taken in (16) and (17), giving:

[v]S0
= 0, [t]S0

= − divs(τ ), τ =
2σ0

3Ds

(ds + tr(ds)π) (34)

The dissipation reads τ : ds = σ0Ds. The surface strain rate, ds, can be
eliminated in the relation giving τ as a function of ds:

3

2

(
τ : τ − 1

3
tr(τ )2

)
= σ2

0 (35)

The obtained model coincides with the one postulated in [9].

8 Conclusion

Interface models, commonly used in elasticity, have been generalized, in this
paper, to the context of viscoplasticity. The methodology, applied to derive
the constitutive equations of the interface, uses the concept of equivalent in-
terphase model and Taylor expansions. It has been shown that, when the
thickness of the coating, h, is very small compared with the characteristic
length of the microstructure, the coating can be replaced by an idealized in-
terface involving the jump of the velocity field and of the traction vector.
Two particular cases has been investigated:
- When the interphase is soft compared with the surrounding media, the ob-
tained interface model involves a jump of the velocity field whereas the traction
vector remains continuous. The jump of the velocity field across the interface
is given in terms of the surface component of the traction vector and takes
the form of a power-law type relation.
- When a stiff interphase is considered, the equivalent interface model involves
a jump of the traction vector whereas the velocity field remains continuous.
The relation giving the jump across the interface takes the form of the Young-
Laplace equation. However, the interfacial stress-strain relation is given by a
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viscoplastic law under plane stress conditions.
These interface models can be applied for taking into account the surface
effects in viscoplastic composites.
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