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The aim of the present work is to extend the concept of interphase and equivalent imperfect interface in the context of viscoplasticity. The interphase takes the form of a thin curved layer of constant thickness, made up of a rigid viscoplastic material located between two other surrounding materials. We aim at representing this interphase by an interface with appropriately devised interface conditions. To reach this objective, a Taylor expansion of the relevant physical fields in the thin region is used. It is shown that, depending of the degree of stiffness of the layer with respect to the neighboring media, this interphase can be replaced by an idealized imperfect interface involving the jump of the velocity field or the traction vector. The first kind of interface model, applicable to soft interphases, is the "spring-type" interface across which the traction are continuous but the velocity field exhibits a discontinuity which is given in term of the traction by a power-law type relation. Moreover, it is shown that the constant of the model can be expressed in terms of the material parameters of the interphase. When the interphase is stiffer than the two surrounding media, one obtain a "stress-type" interface across which the velocity is continuous and a jump condition for the traction is given by a generalization of the so-called Young Laplace model to viscoplastic solids.

Introduction

The properties of a solid can be significantly affected at or near an interface, as it has been shown from atomistic simulations [START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF], [START_REF] Diao | Atomistic simulation of the structure and elastic properties of gold nanowires[END_REF][START_REF] Diao | Atomistic simulations of the yielding of gold nanowires[END_REF]. In the last decades, many works deal about the incorporation of these interfacial effects into the overall properties of elastic composites (see for instance Hashin [START_REF] Hashin | Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli[END_REF], Chen et al. [START_REF] Chen | Fibrous nanocomposites with interface stress: Hill's and Levin's connections for effective moduli[END_REF], Duan et al. [START_REF] Duan | Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[END_REF]). Two kinds of imperfect interface models are commonly used: -the "spring interface" model for which the displacement field is discontinuous and given in terms of the traction vector.

-the "stress interface" model [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF][START_REF] Povstenko | Theoretical investigation of phenomena caused by heterogeneous surface tension in solids[END_REF], in which the jump of the traction vector is given by a generalized Young Laplace equation. A rigorous methodology of construction of imperfect interfaces models has been firstly proposed by Sanchez-Palencia [START_REF] Sanchez-Palencia | Comportement limite d'un problème de transmission à travers une plaque faiblement conductrice[END_REF], Pham Huy and Sanchez-Palencia [START_REF] Huy | Phénomènes de transmission à travers des couches minces de conductivité élevée[END_REF] for thermal conduction problem. It consists in replacing a thin interphase by an idealized imperfect interface. This approach has been later generalized in the case of linear elasticity by Karlbring and Mochvan [START_REF] Klarbring | Derivation of a model of adhesively bonded joints by the asymptotic expansion method[END_REF][START_REF] Klarbring | Asymptotic modelling of adhesive joints[END_REF], Bövik [START_REF] Bövik | On the modelling of thin interface layers in elastic and acoustic scattering problems[END_REF], Hashin [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF] and Benveniste et al. [START_REF] Benveniste | Imperfect soft and stiff interphases in twodimensional elasticity[END_REF][START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF] (see [START_REF] Benveniste | Imperfect soft and stiff interphases in twodimensional elasticity[END_REF][START_REF] Rubina | A Cosserat shell model for interphases in elastic media[END_REF] for a comprehensive list of publications on the subject). In particular, it has been found that the "spring" or "stress" type interfaces appears as the two limit cases of stiff or soft interphases. Recently, some works dealt about the consideration of imperfect interface in the context of non linear composites materials [START_REF] Zhang | Effect of surface energy on the yield strength of nanoporous materials[END_REF][START_REF] Zhang | Effect of surface stress on the asymmetric yield strength of nanowires[END_REF][START_REF] Zhang | Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites[END_REF], [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF]. For instance, Dormieux et al. [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] postulate a plastic interface model to investigate the effect of interfacial stress on the yield strength of nanoporous materials. In the present study, we derive interface models for viscoplastic materials. To reach this objective, we propose to generalize the Taylor expansion approach initiated by Bövik [START_REF] Bövik | On the modelling of thin interface layers in elastic and acoustic scattering problems[END_REF] and formalized in Benveniste [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF]. A thin viscoplastic three dimensional curved layer between two surrounding media is considered. This interphase is replaced by an idealized interface involving the jump of both velocity field and traction vector. The two particular cases of a stiff or soft interphase are investigated and allow us to derive a generalization of the "spring" and "stress" interface models in the non linear context. Finally, it is shown that the interface model postulated in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] appears as a special case of our approach once proper restrictions are applied on the magnitude of the material properties of the interphase.

Statement of the problem

Consider a three dimensional medium constituted of two media separated by a thin layer, called interphase or coating, whose thickness is denoted by h. The thin interphase is delimited by two parallel perfectly bonded interfaces, denoted by S 1 and S 2 , the "middle" surface, at half distance between S 1 and S 2 , being denoted by S 0 (see figure 1). All points within the interphase are represented in the curvilinear coordinates system (x 1 , x 2 , x 3 ). The iso-x 3 surfaces define surfaces which are parallel to S 0 . The surface x 3 = h/2 defines the interface between coating and medium "2", namely S 2 whereas the surface x 3 = -h/2 defines the interface S 1 . The interphase is assumed to be made up of a homogeneous rigid-viscoplastic material whose properties differ from the ones of the two surrounding media. The equations of the model are summarized below:

div(σ) = 0 d = 1 2 [ grad(v) + grad T (v) ] d = ∂ψ ∂σ , ψ(σ) = σ 0 ε0 1 + n ( σ eq σ 0 ) 1+n , tr(d) = 0 (1) 
or, dually:

σ = pi + 2σ 0 3ε 0 ( d eq ε0 ) m-1 d (2)
In the above expressions, v is the velocity field, d and σ are the local strain rate and stress tensors. By p, we denote the local pressure, p = tr(σ)/3, i represent the second order identity tensor. σ eq and d eq are the equivalent "von Mises" stress and strain rate and σ 0 and ε0 are two material parameters. The two exponents n and m are classically related by n = 1/m and are defined such that: 0 ≤ m ≤ 1 and 1 ≤ n ≤ +∞. The particular case of an incompressible linear viscous material corresponds to n = m = 1 whereas the limited case n = +∞ (and then m = 0) corresponds to a rigid ideally-plastic material.

We aim now at replacing this interphase by an idealized surface and at deriving the constitutive equations giving the jump of the velocity and of the traction across S 0 . As previously mentioned, the approach uses the Taylor expansion and is detailed in section 4.

Preliminaries

Let us introduce the unit normal vector n taken on each iso-x 3 surfaces and the associated two orthogonal projectors π and π ⊥ defined by:

π = i -n ⊗ n, π ⊥ = n ⊗ n ( 3 
)
where i is the second order identity tensor. The strain rate is decomposed into:

d = d s + g s ⊗ n + n ⊗ g s + g n π ⊥ (4)
where:

d s = π.d.π, g s = π.d.n, g n = d : π ⊥ Due to the incompressibility, one has g n = -tr(d s )
, consequently the strain rate can also be written:

d = d s -tr(d s )π ⊥ + g s ⊗ n + n ⊗ g s (5) 
The equivalent strain rate can be put into the form:

d eq = (D 2 s + G 2 s ) 1/2 (6) 
with:

D s = [ 2 3 ( d s : d s + tr(d s ) 2 ) ] 1/2 , G s = [ 4 3 g s : g s ] 1/2 (7) 
Similarly, the stress field σ is decomposed into:

σ = σ s + t s ⊗ n + n ⊗ t s + t n π ⊥ (8) with: σ s = π.σ.π, t s = π.σ.n, t n = σ : π ⊥
There are two kinds of quantities which enter into the expression of the strain rate (5) and of the stress (8):

-quantities which are continuous across a perfectly bonded interface: d s , t s and t n , -quantities which are discontinuous across a perfect interface: σ s and g s . We aim at expressing σ s and g s as function of d s , t s and t n . To do that, we decompose the stress-strain relation as follows:

                           σ s = 2σ 0 3ε 0 ( d eq ε0 ) m-1 d s + pπ t s = 2σ 0 3ε 0 ( d eq ε0 ) m-1 g s t n = - 2σ 0 3ε 0 ( d eq ε0 ) m-1 tr(d s ) + p (9)
From the second relation in ( 9), one has:

t s .t s = σ 2 0 3ε 2 0 ( d eq ε0 ) 2m-2 G 2 s ( 10 
)
Introducing into the above equation

T s = √ 3t s .t s ( 11 
)
it can be observed that G s is solution of the following non linear equation in z:

(z 2 + D 2 s ) m-1 - ( εm 0 σ 0 ) 2 T 2 s z 2 = 0 (12) 
A closed form solution of the above equation can be found in the special case of a linear viscous material (m = 1) and of a perfectly plastic material (m = 0) (see sections 5 and 7) or in the case of specific rational values of m =1 2 and m = 1 3 . In any case 0 < m < 1, we formally denote the solution 1 by z = Z where Z depends on D s , T s and on the material parameters ε0 , σ 0 . The equivalent strain reads:

d eq = (D 2 s + Z 2 ) 1/2
, and from the second relation in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF], one has:

g s = 3ε 0 2σ 0 ( (D 2 s + Z 2 ) 1/2 ε0 ) 1-m t s ( 13 
)
The pressure p, can be eliminated from the first and the last relation in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF]. It leads to:

σ s = 2σ 0 3ε 0 ( (D 2 s + Z 2 ) 1/2 ε0 ) m-1 (d s + tr(d s )π) + t n π (14)
In ( 13) and ( 14), the quantities g s and σ s are only expressed in terms of quantities d s , t s and t n .

The Taylor expansion approach

As explained in the introduction of the paper, an imperfect interface can be seen as the limit case of a thin stiff or soft interface. The connection between the properties of the interphase and of the equivalent interface model has been amply studied by Benveniste [START_REF] Benveniste | Imperfect soft and stiff interphases in twodimensional elasticity[END_REF] in the case of a two dimensional elastic curved surface and has been later generalized in the three dimensional context [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF].

In order to establish the connection between the properties of the thin interphase and of the imperfect interface, two methods have been applied in past studies. The first one uses the asymptotic expansion. This method has been initiated by Sanchez-Palencia [START_REF] Sanchez-Palencia | Comportement limite d'un problème de transmission à travers une plaque faiblement conductrice[END_REF] and Pham Huy and Sanchez-Palencia [START_REF] Huy | Phénomènes de transmission à travers des couches minces de conductivité élevée[END_REF] for conductivity, and applied by Klarbring et al. [START_REF] Klarbring | Derivation of a model of adhesively bonded joints by the asymptotic expansion method[END_REF][START_REF] Klarbring | Asymptotic modelling of adhesive joints[END_REF], Avila-Pozos et al. [START_REF] Avila-Pozos | Asymptotic model of orthotropic highly inhomogeneous layered structure[END_REF] and Benveniste [START_REF] Benveniste | Imperfect soft and stiff interphases in twodimensional elasticity[END_REF] in the context of linear elasticity. The second method has been initiated by Bövik [START_REF] Bövik | On the modelling of thin interface layers in elastic and acoustic scattering problems[END_REF] and formalized by Hashin [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF] and Benveniste [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF]. It uses the Taylor expansion and adequate surface differential operators which make possible to derive the general expressions of the jumps of the physical fields. In the special cases of a plane layer [START_REF] Klarbring | Asymptotic modelling of adhesive joints[END_REF][START_REF] Avila-Pozos | Asymptotic model of orthotropic highly inhomogeneous layered structure[END_REF] and of a two dimensional curved layer [START_REF] Benveniste | Imperfect soft and stiff interphases in twodimensional elasticity[END_REF], the results obtained by the asymptotic expansion method are consistent with the one derived form the Taylor expansion approach [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF].

Although it has not yet been proven, it is likely that this equivalence between the two methods remains true in the general case of an anisotropic three dimensional curved layer.

Of course, the use of the Taylor expansion based method suppose that the physical fields which are expanded are continuously differentiable, defined and regular everywhere in the thin layer. Such conditions are not needed when the asymptotic expansion method is use, it constitutes the main difference between the two methods. However, the advantage of the Taylor expansion approach over the asymptotic one is that it leads to a compact representation in which the particular cases of "spring interface" and of "stress interface" appear as limit cases.

In the prensent paper we extend the Taylor expansion method to the context of viscoplasticity. The first step consist in expanding the velocity field, v, and the traction vector t at the mid surface, S 0 , about the lower interface S 1 or upper interface S 2 :

v| S 0 = v| S 1 + h 2 grad n (v)| S 1 + o(h 2 ) v| S 0 = v| S 2 - h 2 grad n (v)| S 2 + o(h 2 ) ( 15 
)
where grad n (v) = grad(v).n are the derivatives of v along the x 3 direction. In [START_REF] Klarbring | Asymptotic modelling of adhesive joints[END_REF] the series is truncated at the first order, higher terms are neglected in the present work. It supposes that the thickness of the layer is small compared to the characteristic length of the microstructure, as for example the size of the inclusions for a composite material. A combination of the two equations in [START_REF] Klarbring | Asymptotic modelling of adhesive joints[END_REF] gives:

v| S 2 -v| S 1 = h 2 [ grad n (v)| S 1 + grad n (v)| S 2 ] + o(h 2 ) (16) 
Similarly, an equivalent equation can be written for the traction vector t:

t| S 2 -t| S 1 = h 2 [ grad n (t)| S 1 + grad n (t)| S 2 ] + o(h 2 ) (17) 
In ( 15) and ( 17), we are dealing with continuously differentiable fields, defined and regular everywhere in the thin layer. Following the lines of Benveniste [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF] we aim at expressing the differential operators, grad n (v) and grad n (t) in ( 16) and ( 17) as functions of the surface derivatives of the velocity, grad s (v) = grad(v).π and of the traction, t. Once those operators are determined, the derivation of the interface equations will be easier. Firstly, the normal and tangential components of grad n (v) are given by:

grad n (v).n = g n = -tr(d s ) grad n (v).π = 2g s -n. grad s (v) (18) 
where g s is given by [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF]. It follows that:

grad n (v) = 3ε m 0 σ 0 (D 2 s + Z 2 ) (1-m)/2 t s -n. grad s (v) -tr(d s )n ( 19 
)
Using now the equilibrium equation, one has:

grad n (t) = grad(σ) : π ⊥ = -grad(σ) : π (20)
In the above expression, the decomposition ( 8) is used, in which σ s is replaced by [START_REF] Klarbring | Derivation of a model of adhesively bonded joints by the asymptotic expansion method[END_REF]. It follows that:

grad n (t) = -grad { 2σ 0 3ε m 0 ( D 2 s + Z 2 ) (m-1)/2 (d s + tr(d s )π) +t s ⊗ n + n ⊗ t s + t n i } : π (21)
In ( 19) and ( 21) the "normal" gradient of v and t are given in term of v and t and their surface derivatives which are equal to their corresponding quantities in the surrounding media "1" and "2".

In the configuration of figure 1, the interphase has been eliminated and replaced by an idealized interface S 0 . Equations ( 16), ( 17) with ( 19) and ( 21) provide the general expressions for the jump of the velocity field and traction across the equivalent imperfect interface S 0 . We aim now at examining the special cases of a soft or stiff interphase for which explicit expressions of the interface model can be derived.

The linear case: m = 1

Consider the particular case of a linear viscous material, n = m = 1. Expressions ( 19) and ( 21) become:

grad n (v) = 1 µ t s -n. grad s (v) -tr(d s )n grad(t).n = -grad {2µ(d s + tr(d s )π) + t s ⊗ n + n ⊗ t s + t n i} : π (22) 
in which we have introduced µ = σ 0 /(3ε 0 ). The traction vector and the gradient of the velocity are assumed to takes finite values at the interfaces S 1 and S 2 . Consequently, if µ remains finite when the limit h → 0 is taken, the terms at the right of the equality in ( 16) and ( 17) vanishes when h → 0. The term containing h/2 in both expressions ( 16) and ( 17) does not vanish when h → 0 int the following special cases:

-If µ is assumed to be of the same magnitude of the width h, the interphase is soft and can be replaced by a "spring interface" model which involves a jump of the velocity:

[v] S 0 = 1 μ t s , [t] S 0 = 0 (23) 
where μ = hµ. It can be observed that only the tangential components of the velocity field are discontinuous across the interface whereas the normal components remain continuous, this is a consequence of the material incompressibility. The above results are consistent with the one provided in [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF] when a linear incompressible interphase is considered.

-When µ is of the order of magnitude of 1/h, the interphase is stiff and can be replaced by "stress interface" model which involves a jump of the traction:

[v] S 0 = 0, [t] S 0 = -grad(τ ) : π, τ = 2µ(d s + tr(d s )π) (24) 
with μ = µ/h and τ is called interfacial stress. The jump of the traction takes the form of a generalized Young Laplace Law. Again, The above results are consistent with the one provided in [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF] for an elastic incompressible interphase.

6 The viscoplastic case: 0 < m < 1

The value of the exponent m is now arbitrary taken in the interval ]0, 1[. We first consider the case for which ε0 is proportional to 1/h, and we put ε0 = ε0 /h. σ 0 and ε0 are assumed to remains finite when h → 0. The non linear equation ( 12) become:

(z 2 + D 2 s ) m-1 - 1 h 2m-2 ( εm 0 σ 0 ) 2 T 2 s z 2 = 0 (25)
When low values of h are considered in equation ( 12), the solution for z is obtained by using an asymptotic expansion. The solution z is taken as: z = z -1 /h + z 0 + z 1 h + .... The computation of z -1 , z 0 ... gives:

z -1 = ε0 ( T s σ 0 ) n , z 0 = 0, z 1 = 1 2 (1 -n) D 2 s ε0 ( T s σ 0 ) -n , etc. ( 26 
)
Only the higher order term, z -1 is kept in the expansion of z, as a consequence:

Z = ε0 h ( T s σ 0 ) n + o(h) ( 27 
)
Replacing this expression in [START_REF] Rubina | A Cosserat shell model for interphases in elastic media[END_REF] and [START_REF] Zhang | Effect of surface energy on the yield strength of nanoporous materials[END_REF], and taking in ( 16) and ( 17) the limit h → 0 leads to:

[v] S 0 = 3ε 0 σ 0 ( T s σ 0 ) n-1 t s , [t] S 0 = 0 (28)
Dually, we suppose that the reference stress σ 0 of the coating is proportional to 1/h and we put σ 0 = σ0 /h, (σ 0 and ε0 are assumed to remains finite when h → 0). When low values of h are considered in equation ( 12), the solution z can be taken into the form: z = z 1 h + z 2 h 2 + .... Only the term z 1 is kept in the expansion of z, and solution for Z can be read:

Z = hε m 0 D 1-m s T s σ 0 + o(1) (29) 
Taking in ( 16) and ( 17) the limit h → 0 leads to:

[v] S 0 = 0, [t] S 0 = -grad(τ ) : π with: τ = 2σ 0 3ε 0 ( D s ε0 ) m-1 (d s + tr(d s )π) (30) 
As in the linear case, the jump of the traction takes the form of a Young Laplace law. However, the relation giving the interfacial stress, τ as a function of the surface strain rate is given by a surface viscoplastic law under plane stress conditions.

7 The plastic case: m = 0

We now look for the particular case of a rigid perfectly-plastic case corresponding to n = +∞ or m = 0. Equation ( 12) can be explicitly solved and gives:

Z = T s D s √ σ 2 0 -T 2 s (31)
Replacing (31) in ( 19) and ( 21) leads to:

grad n (v) = 3D s √ σ 2 0 -T 2 s t s -n. grad s (v) -tr(d s )n grad(t).n = -grad    2 3 √ σ 2 0 -T 2 s D s (d s + tr(d s )π) +t s ⊗ n + n ⊗ t s + t n i} : π (32)
Since the material parameter ε0 vanishes in the case of a plastic material, the conditions [v] S 0 ̸ = 0 and [t] S 0 = 0 cannot be obtained as the limit case of a thin plastic layer. However, when the reference stress is chosen as σ0 = σ 0 /h, the above equations gives:

grad n (v) = o(1) grad(t).n = - 1 h grad { 2σ 0 3D s (d s + tr(d s )π) } : π + o(1) (33) 
The limit h → 0 is taken in ( 16) and ( 17), giving: The obtained model coincides with the one postulated in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF].

[v] S 0 = 0, [t] S 0 = -div s (τ ), τ = 2σ 0 3D s (d s + tr(d s )π) (34 

Conclusion

Interface models, commonly used in elasticity, have been generalized, in this paper, to the context of viscoplasticity. The methodology, applied to derive the constitutive equations of the interface, uses the concept of equivalent interphase model and Taylor expansions. It has been shown that, when the thickness of the coating, h, is very small compared with the characteristic length of the microstructure, the coating can be replaced by an idealized interface involving the jump of the velocity field and of the traction vector. Two particular cases has been investigated: -When the interphase is soft compared with the surrounding media, the obtained interface model involves a jump of the velocity field whereas the traction vector remains continuous. The jump of the velocity field across the interface is given in terms of the surface component of the traction vector and takes the form of a power-law type relation.

-When a stiff interphase is considered, the equivalent interface model involves a jump of the traction vector whereas the velocity field remains continuous. The relation giving the jump across the interface takes the form of the Young-Laplace equation. However, the interfacial stress-strain relation is given by a viscoplastic law under plane stress conditions. These interface models can be applied for taking into account the surface effects in viscoplastic composites.

) 2 (

 2 The dissipation reads τ : d s = σ 0 D s . The surface strain rate, d s , can be eliminated in the relation giving τ as a function of d s : 3

Equation (12) gives a positive and a negative real solution but also complex solutions, here the solution Z makes reference to the positives real solution.