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Résumé

The paper presents a FFT based-method for obtaining the permeability of a periodic
micro-porous medium. The periodic medium is constituted of a rigid solid matrix
saturated by a viscous fluid. The flow obeys the Stokes equations and a slip condition
at the surface of the rigid skeleton is considered. The permeability is obtained from
the homogenization of periodic media and an extension of the FFT method used
for composite elastic media. The incorporation of the slip condition is made trough
the introduction of an interphase between the fluid and the solid. The method of
solution uses the classical expansion along Neumann series of the velocity field of
the periodic problem and Green’s tensor in Fourier space.
To cite this article :

Résumé

Cet article présente une méthode basée sur la FFT pour la détermination de la
perméabilité d’un milieu poreux périodique. Le milieu poreux est constitué d’une
matrice solide indéformable saturée par un fluide visqueux. L’écoulement obéit aux
équations de Stokes et une condition de glissement sur la surface du squelette so-
lide est également considérée. La perméabilité est alors obtenue en résolvant les
équations issues de l’homogénéisation de milieux périodiques et par une extension
de la méthode FFT utilisée pour les matériaux composites élastiques périodiques. La
prise en compte de la condition de glissement est effectuée en introduisant une inter-
phase entre le fluide visqueux et le solide. La méthode repose sur une représentation
du champ de vitesses en séries de Fourier et sur l’expression explicite du tenseur de
Green dans l’espace de Fourier. Pour citer cet article :
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1 Introduction

The determination of the effective properties of porous media, and particularly
the permeability, is of fundamental importance in several practical problems
in geomechanics, biomechanics, among others, and it has been the subject of
many studies. Fluid flow through porous media is usually modeled using a
volume-averaged approach and Darcy’s law is valid for fluid flows with pore
Reynolds numbers less than one. For forced flows, Darcy’s law reads:

Qi = −kij
µ
∇jP (1)

where Qi and ∇iP are respectively the components of the flux and of the pres-
sure gradient. µ is the dynamic viscosity and kij the components of the perme-
ability tensor of the considered medium. The determination of the permeabil-
ity of a periodic porous medium knowing the geometry of the microstructure
has been studied by many authors, see for instance [1], [2], [3], [4]. The methods
to obtain a solution of the problem at the microscopic scale include expansion
into series of eigenfunctions, finite element methods, etc. However, in many
instances, as in the case of rarefied gases when the Knudsen number is small, a
slip may occur at the surface of the skeleton. A semi-numerical method for the
determination of the permeability in the case of a slip of flow the velocity field
has been proposed by [5] but such a method is limited to specific inclusions.
The aim of the present paper is to propose a FFT-based method to compute
the permeability of a periodic porous medium including the slip effect. The
Fourier based-method has been firstly introduced by Moulinec and Suquet [6]
for the determination of the effective properties of elastic composites on the
basis of previous works [7,8]. However the case of infinite contrast such as
the case of rigid inclusions cannot be handled easily by the first method and
so, the authors have proposed an alternate scheme based on augmented La-
grangian method [9]. The case of rigid inclusions can also be solved by using
the dual formulation [10] which is extended to the case of porous media in the
present paper. The consideration of a slip condition introduces a discontinuity
in the velocity field at the surface of the rigid inclusions. Following [11], this
discontinuity is introduced by considering an interphase of lower viscosity, be-
tween the fluid and the rigid inclusions. In fine, it is shown that the obtained
iterative scheme takes a form similar to the one used for linear composites.
The differences lie in the consideration of the first term introduced in this
iterative scheme and in the recovering of the velocity field in our case, while
elasticity problems need only deformation and stress fields. The methodology
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used to build this first term is depicted in section 4 and consists in introducing
body forces in the rigid inclusion. An application to the case of aligned rigid
cylinders is proposed in the last part of the paper.

2 Statement of the problem

Following [12,13,14,15] and [16,17] for slip flow, we consider a periodic medium
made up of a rigid skeleton and of an incompressible viscous fluid obeying the
Stokes equations with a slip condition:


µf∆v(x) +∇p(x) = 0, div v∗(x) = 0, ∀x ∈ Vf

v∗n(x) = 0, v∗t (x) = c∇nvt(x) ∀x ∈ Γ
(2)

where c is the ”slip coefficient” function of the nature of the fluid and the solid,
v∗(x) and p(x) are the local velocity field and pressure, respectively. Γ defines
the surface of the solid and n is the normal unit vector taken on the surface Γ.
I8n (2), Vf is volume of occupied by the fluid. By v∗n(x) and v∗t (x), we denote
the normal and tangential components of the velocity field v∗(x) respectively.
By ∇n, we denote the normal gradient operator defined by ∇n = ∇.n. The
flow of the fluid is generated by a prescribed macroscopic pressure gradient,
denoted by G = ∇P . The local pressure reads p(x) = Gkxk + p∗(x), p∗(x)

t2

t3

t4

t5

t6
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2b1
2b2

rigid inclusion
interphase

viscous fluid

Figure 1. Periodic unit cell of the porous medium.

being periodic. At the local scale, the components of the velocity field v∗i (x)
linearly depends on the components of the macroscopic pressure gradient :

v∗i (x) = Aij(x)Gj (3)
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where Aij(x) depends on the position vector, x. As shown in the framework of
the homogenization applied to porous media [13], the average value over the
unit cell of the velocity field reads:

< v∗i (x) >V=
1

V

∫
V
v∗i (x)dV =< Aij(x) >V Gj = −kij

µ
Gj (4)

where kij are the components of the permeability tensor. So, the computation
of the permeability requires to determine the local velocity v∗(x). That can
be done by using a FFT based-method. However, the slip condition implies to
introduce a discontinuity in the velocity field at the surface Γ of the inclusion.
To take into account the slip condition, we introduce an interphase located
between the rigid inclusions and the viscous fluid (see figure 1). This interphase
is defined by a layer which has a constant thickness denoted e. The dynamic
viscosity of this layer is denoted µe. The local problem (2) is replaced by :

µ(x)∆v∗(x) +∇p(x) = 0, div v∗(x) = 0, v∗(x) = 0 ∀ x ∈ Γ (5)

where the velocity field is null on the the surface Γ, µ(x) = µf in the fluid
and µ(x) = µe in the interphase. The dynamic viscosity µe is chosen on the
form µe = (eµf )/c which allows to introduce a slip on the form given by (2)
when e/a → 0, a being a representative lengthscale of the inclusions (see [11]
for more details about the method).

3 The stress formulation of the problem and its solution

In this section, a ”stress based” formulation of the problem is depicted. Its
solution is given in the Fourier space. We suppose first that the interphase has
a finite thickness and the limited case, e → 0 is examined secondly.
In the fluid, the local stress can be put into the form σ = Σ + σ∗ where σ∗

ij

is a periodic stress field and Σij is given in terms of the macroscopic pressure
gradient, Σij = Gkxkδij. In the rigid solid, the stress is undefined. However,
we propose to make a continuation by continuity of σ∗ and Σ within the solid.
We also introduce:

M(x) =


Mf in the fluid

Ms = 0 in the solid

Me in the interphase

with: Mα =
1

2µα

K (α = f, s, e)(6)
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where µs → +∞ within the solid, K = I−J where I is the fourth order identity
tensor and Jijkl = δijδkl/3. The local problem (5) can thus be cast under the
following form:

div(σ∗) + f(x) = 0, ε∗(x) = M(x) : σ∗(x), ε∗(x) = grads(v
∗) (7)

where ε∗ are the components of the strain rate and fi = Σij,j. Introducing a
reference medium defined by the dynamic viscosity µ0 and the fourth-order
tensor M0 = K/(2µ0) (see [10] for more details) it is easy to show that the
periodic stress field complies with :

σ∗(ξ) = −Ω(ξ).f(ξ)−∆0(ξ) :
[
ε∗(ξ)−M0 : σ∗(ξ)

]
(8)

where ∆0(ξ) is the periodic fourth-order Green’s operator for the stress asso-
ciated to the reference medium M0. Ω(ξ) is a third order tensor whose com-
ponents are given by:

Ωijk(ξ) =
i

|ξ|4
[
(δijξk + δikξj + δjkξi)|ξ|2 − 2ξiξjξk

]
(9)

where |ξ| denotes the norm of the wave vector |ξ| = (ξiξi)
1/2. The periodic

strain field, ε∗(ξ), is defined by:

ε∗(ξ) =
∑
α

1

2µα

[
Iα(ξ) ∗ σ∗(ξ)

]
with : Iα(ξ) =

1

V

∫
Vα

exp(iξ.x)dx (10)

In the last relation Iα(ξ)∗σ∗(ξ) denotes the convolution product between Iα(ξ)
and σ∗(ξ). The slip condition at the surface Γ is accounted for by taking the
limit e/a → 0. It follows that:

ε∗(ξ) =
1

2µf

[
If (ξ) ∗ σ∗(ξ) + γIg(ξ) ∗ σ∗(ξ)

]
(11)

with: Ig(ξ) =
a

V

∫
Γ
exp(iξ.x)dx (12)

in which we have introduced γ = c/a. Note that, in (8), the main difference
with the case of elastic composites lies in the presence of : (i) the body force fi
whose main consequence on the iterative scheme is explained in the following
section, (ii) the slip condition introduced by Ig(ξ).
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4 The FFT based iterative scheme

Relation (8) is the Fourier transform of an integral equation of ”Lippman-
Schwinger-Dyson” type which can be obtained by the use of the equivalent
explicit recurrence process:

σ∗i+1(ξ) = −Ω(ξ).f(ξ)−∆0(ξ) :
[
ε∗i(ξ)−M0 : σ∗i(ξ)

]
(13)

starting from a first term σ∗1 which will be defined later. Using the following
equality:

∆0(ξ) : M0 : σ∗i(ξ) = σ∗i(ξ) + Ω(ξ).f(ξ) (14)

the recurrence relation (13) can also be written in the form:

σ∗i+1(ξ) = σ∗i(ξ)−∆0(ξ) : ε∗i(ξ) (15)

in which the ”body forces”, fi, do not appear. The iterative scheme (15)
takes the same form as in the case of an elastic composite. However, the
main difference lies in the choice of σ∗i at the first step in (15). This stress
tensor must be periodic and must equilibrate the macroscopic gradient of
pressure, of components Gi, within the fluid. It is not therefore divergence
free as for elasticity. However, the associated strain rate field may not comply
with the compatibility equation. Such a field is chosen, in the Fourier space, as
σ∗1(ξ) = −Ω(ξ).f(ξ) where fi = Gi within the fluid but fi remains undefined
within the inclusion. If we consider a uniform ”body force” fi within the
inclusion and considering the equilibrium of the unit cell, < fi >V= 0, it is
easy to check that fi is given by:

fi(x) =


Gi for x ∈ Vf

−1− cs
cs

Gi for x ∈ Vs

(16)

or: fi(ξ) =


−Gi

cs
Is(ξ) ξi ̸= 0

0 ξi = 0
(17)

where cs defines the volume fraction of inclusions. Note that the ”body force”
within the inclusion is necessary in order to fix the inclusion. Note also that
there are other possibilities to fix the inclusion, by considering a line force for
example. The local strain is known at convergence of the iterative process and
then, one can compute the components of the local velocity field as follows:
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v∗i (ξ) =
2i

|ξ|2
ε∗ij(ξ)ξj (18)

At this stage, the velocity field is defined by its Fourier coefficients for all
values of ξi except for ξi = 0. It means that the velocity field is defined up
to an added constant. The reason for such a result is that the condition that
v∗i is null at the surface of the solid has never been taken into account. The
velocity field has to be computed from the one given by (18) but one has to
specify that v∗i = 0 at one point taken within the rigid inclusion.

5 Application

As an application, we consider a periodic porous medium made up of rigid
cylinders (of radius a) aligned in the plane of their cross sections and arranged
along a squared lattice of area 4b2. In the case of a rigid cylinder located at

2b

2b 2a

x2

x1

Figure 2. The unit cell for periodic array of aligned rigid cylinders

xi = 0, the shape coefficients Is(ξ) and Ig(ξ) are given by:

Is(ξ) =
πa

2b2|ξ|
J1(a|ξ|), Ig(ξ) =

πa2

2b2
J0(a|ξ|) (19)

where J0 and J1 are the Bessel functions of the first kind, and zero and first
order, respectively. The flow of the incompressible fluid is due to a prescribed
macroscopic pressure Gi = G1δi1. Due to the squared symmetry of the unit
cell, the second order permeability tensor is isotropic and can be depicted
by a scalar k. The normalized permeability k/(4b2) is plotted in figure 3 as
a function of the ratio a/b for three values of γ (where it is recalled that
γ = c/a, c being the slip coefficient). As a validation, the FFT based solution
(full line) is compared in figure 3, to a Finite Element solution (circles) for
γ = 0. The FEM solution has been obtained by using the COMSOL software,
the computation being performed with 3584 triangular elements. The porosity
is given by ϕ = 1− πa2/(4b2). The maximum theoretically achievable volume
fraction of the cylinders is π/4 ≃ 0.785, when a = b, the porosity is then
given comprised between ϕ = 0.215 and ϕ = 1. It can be observed that the
permeability takes the same value for a = 0 and a = b, whatever the value of
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γ. In the case a = 0 there are no inclusions whereas in the case a/b = 1 no flow
can occurs. However, for intermediate values of a/b, the permeability increases
with γ. On figure 4 is plotted the normalized permeability k(γ = 1) = k(γ =
1)/k(γ = 0) as a function of the ratio a/b. It can be observed that k(γ = 1)
increases with the radius of the cylinders, showing that the permeability is
strongly affected by the slip on the boundary when the cylinders are closely
spaced.
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Figure 3. Normalized permeability k/(4b2) as function of the ratio a/b.
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6 Conclusion

A FFT based-method for computing the permeability of a periodic micro-
porous media saturated by a viscous fluid has been proposed in the present
paper. The components of the permeability are obtained by determining the
velocity field over the unit cell due to a prescribed macroscopic gradient pres-
sure. The slip effect on the permeability, such as in the case of rarefied gases or
micropores, is also studied in this paper. The methodology used to introduce
this slip condition is to consider an interphase between the fluid and the solid
whose thickness tends to zero. As an illustration purpose, the method is ap-
plied for the computation of the permeability of a porous medium made up of
aligned rigid cylinders. The results show that the permeability increases with
the slip coefficient. It has been also shown that the effect of the slip condition
increases with the cylinders radius and is maximal when the inclusions are
closely spaced. The method for taking into account interface effects described
in this paper can be obviously translated to the case of elasticity for studying
nano-composites.
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