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Inversion of higher order isotropic tensors

with minor symmetries and solution of

higher order heterogeneity problems

By Vincent Monchiet, Guy Bonnet

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle,
LMSME UMR8208 CNRS, 5 boulevard Descartes, 77454 Marne la Vallée Cedex,

France

In this paper, the derivation of irreducible bases for a class of isotropic (2n)th-
order tensors having particular ”minor symmetries” is presented. The methodology
used for obtaining these bases consists in extending the concept of deviatoric and
spherical parts, commonly used for 2nd-order tensors, to the case of a nth-order
tensor. It is shown that those bases are useful for effecting the classical tensorial
operations and specially the inversion of a 2nth-order tensor. Finally, the formalism
introduced in this study is applied for obtaining the closed form expression of the
strain field within a spherical inclusion embedded in an infinite elastic matrix and
subjected to linear or quadratic polynomial remote strain fields.

Keywords: Isotropic tensors, irreducible basis, inclusion problem

1. Introduction

Some specific problem in mechanics take the form of linear equations between two
tensors having an order higher than n = 2. For instance, the theories of general-
ized continuum (Toupin 1962, Mindlin 1964, Mindlin & Eshel 68, Suiker & Chang
2000) introduce higher order gradients of the displacement for the description of the
continuum. The generalized gradient elastic constitutive equation introduces then
tensors of order 6, 8... More recently such considerations were extended to nonlinear
elasticity (Dell’Isola et al. 2009). From another point of view, the problem of an
elastic inclusion embedded in an infinite elastic medium and subjected to a polyno-
mial remote strain field has been studied by Asaro & Barnett 1975, Mura 1987. It
has been shown that the complete solution requires to solve a linear system involv-
ing the inversion of tensors of order 6, 8, ... However, there are no explicit known
closed forms for the inverses of such higher order tensors.
To summarize, in all the problems quoted above, two nth-order tensors a and b are
related through a linear relation which takes the form:

b = A⊙n a (1.1)

Where A is a tensor of order 2n. We assume that the components of a and b are
symmetric according to their two first indices aijp..q = ajip..q, bijp..q = bjip..q and
are invariant by any permutation of their n − 2 last indices p..q. For instance, in
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2 V. Monchiet, G. Bonnet

the case n = 3, 4, 5 one has:

n = 3 : aijp = ajip

n = 4 : aijpq = ajipq

aijpq = aijqp

n = 5 : aijpqr = ajipqr

aijpqr = aijprq = aijqpr = aijqrp = aijrpq = qijrqp

etc.

(1.2)

In relation (1.1), ⊙n denotes the nth contraction between A and a such that bijp..q =
Aijp..qklr..saklr..s. Due to the symmetries of a and b, Aijp..qklr..s is invariant by any
permutation of indices (i, j), (k, l), (p, .., q) and (r, .., s). Through this paper, these
symmetries are called ”minor symmetries”. Note that A does not necessarily possess
the ”major symmetry”, namely Aijp..qklr..s ̸= Aklr..sijp..q.
In the present study, we assume that tensor A is isotropic and we denote by E2n

the space of isotropic 2nth-order tensors having the minor symmetries. We propose
to build the inverse of A, namely the tensor B such that:

a = B⊙n b (1.3)

In the case n = 2, A is an isotropic tensor of 4th order. Due to symmetries mentioned
above, A depends on two independent coefficients a1 and a2 and can be expressed as
A = a1J+a2K. Tensors J and K are defined by Jijkl = δijδkl/3, Kijkl = Iijkl−Jijkl
and Iijkl = (δikδjl + δilδjk)/2 where δij is the Kronecker symbol. J and K are two
projectors which define an irreducible basis for isotropic tensors having the minor
symmetries. The use of these two tensors produces easily the inversion of A since
B = 1/a1J+ 1/a2K.
We aim at extending this basis in the case of higher order isotropic tensors. The
paper is organized as follows: in section 2, we first state about the case n = 3. An
irreducible basis, constituted of six independent tensors, is obtained and appears
to be convenient for effecting the classical tensorial operations and specially the
inversion. The methodology applied for obtaining this basis is clearly depicted in
this section. It consists in generalizing the concept of deviatoric and spherical part,
commonly used for second order tensors, to the case of a tensor of order 3. This
approach is afterwards applied to the case of a 8th-order tensor. Its generalization
to the case of a tensor of order up to 2n = 8 is addressed in section 4. In fine, the
application of the methodology to the inclusion problem is performed.

2. A basis for 6th-order isotropic tensors

In this section, we first consider the case n = 3 in (1.1), a and b are then two
third-order tensors while A is a sixth order isotropic tensor. A has the symmetries:
Aijkpqr = Ajikpqr, Aijkpqr = Aijkqpr. Tensor A is invariant under the orthogonal
group O3, consequently:

Ai..j = Qip..QjqAp..q (2.1)
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Inversion of higher order isotropic tensors 3

Qip..Qjq are the orthogonal matrices of the group O3, which satisfy QikQjk = δij
and det(Q) = ±1. Every isotropic tensor of order 2n (n being an integer) can be
expressed in terms of the Kronecker symbol. Particularly, a sixth order isotropic
tensor can be read as a linear combination of:

δijδkrδpq, δijδkpδqr, δijδkqδpr, δikδjrδpq, δikδjpδqr

δikδjqδpr, δipδjkδqr, δipδjrδkq, δipδjqδkr, δiqδjkδpr

δiqδjrδkp, δiqδjpδkr, δirδjkδpq, δirδjpδkq, δirδjqδkp

(2.2)

For a tensor having the minor symmetries, only six tensors are needed. They are
denoted: T1, ...,T6 and their components are:

(T1)ijkpqr = δijδpqδkr, (T2)ijkpqr = Iijpqδkr

(T3)ijkpqr = Iijkrδpq, (T4)ijkpqr = Ipqkrδij

(T5)ijkpqr =
1

2
(Iijprδkq + Iijqrδkp), (T6)ijkpqr =

1

2
(Ipqirδjk + Ipqjrδik)

(2.3)

where it is recalled that Iijkl = (δikδjl + δilδjk)/2.
The triple contraction between two tensors taken from (T1, ..,T6) are given in table
1. (T1, ...,T6) constitute a basis for all tensors A ∈ E6. However, this basis is not
convenient for the inversion of 6th-order tensors since it leads to a complex linear
system of dimension 6.

⊙3 T1 T2 T3 T4 T5 T6

T1 3T1 T1 T1 3T4 T4 T4

T2 T1 T2 T3 T4 T5 T6

T3 3T3 T3 T3 3T6 T6 T6

T4 T1 T4 2T1 T4
1
2 (T1 + T4) 2T4

T5 T3 T5
1
2 (T1 + T3) T6

1
2 (T2 + T5)

1
2 (T4 + T6)

T6 T3 T6 2T3 T6
1
2 (T3 + T6) 2T6

Table 1: The triple contraction between Tn and Tm

In order to provide a simplified basis, we first introduce the spherical part, S(a),
and the deviatoric part, D(a), of a 3rd-order tensor a as follows:

D(a) = a− S(a)

S(a) = 1
5 (2appk − akpp)δij

+ 1
10 (3aipp − appi)δjk + 1

10 (3ajpp − appj)δik

(2.4)

S(a) has the properties: (S(a))ipp = aipp and (S(a))ppi = appi. Consequently,
all contractions of indices of (D(a)) are null : (D(a))ipp = (D(a))ppi = 0. It is
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therefore natural to considerD(a) as the generalization to third-order tensors of the
deviatoric part, which is well known for second order tensors. This decomposition
suggests introducing the 6th-order tensors J, K and I given by:

J = 1
5 (2T1 − T3 − T4 + 3T6), K = I− J, I = T2 (2.5)

These tensors are such that D(a) = K⊙3 a , S(a) = J⊙3 a , a = I⊙3 a. Here, I is
the identity for the triple contraction ⊙3 and J and K produce the deviatoric and
spherical parts of a. From another point of view, every 6th order isotropic tensor
A, having the minor symmetries is defined by 6 independent coefficient. Due to the
previous relations it is natural to introduce the decomposition: A = AJ +AK where
AJ = J ⊙3 A and AK = K ⊙3 A. It is easy to show that tensor AJ is defined by 4
independent coefficients. It suggests therefore that there exist four tensors Jn with
n = 1, 2, 3, 4 such that: AJ = a1J1 + a2J2 + a3J3 + a4J4 and K⊙3 Jn = Jn ⊙3 K = 0
whatever the value of n. In other words, we search Jn defined by Jn =

∑
n anTn

such that: Jn ⊙3 K = K ⊙3 Jn = 0 and Jn ⊙3 J = J ⊙3 Jn = Jn. For its part,
tensor AK is defined by 2 independent coefficients. It suggests that there exist two
tensors K1 and K2 such that AK = a1K1 + a2K2 and J ⊙3 Kn = Kn ⊙3 J = 0,
K⊙3 Kn = Kn ⊙3 K = Kn whatever n = 1, 2.
The following expressions were found for Jn and Kn:

J1 = 1
5 (2T1 − T4), J2 = 1

5 (3T4 − T1)

J3 = 1
5 (2T3 − T6), J4 = 1

5 (3T6 − T3)

K1 = 1
3 (T2 + 2T5)− 1

3 (J1 + J2)− 2
3 (J3 + J4)

K2 = 2
3 (T2 − T5)− 1

3 (2J1 + J4) + 1
3 (J2 + 2J3)

(2.6)

Note that J = J1 + J4 and K = K1 +K2.
In addition, the triple contraction between the different tensors Jn and Kn are given
in table 2:

⊙3 K1 K2 J1 J2 J3 J4

K1 K1 0 0 0 0 0

K2 0 K2 0 0 0 0

J1 0 0 J1 J2 0 0

J2 0 0 0 0 J1 J2

J3 0 0 J3 J4 0 0

J4 0 0 0 0 J3 J4
Table 2: Triple contraction between Jn and Kn

These results call the following remarks:

• It can be observed that, (E6,⊙3, I) define a monoid (an algebraic structure
with a single associative binary operation and an identity element). I is the
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identity for the composition ⊙3 and is defined by (2.5). The six elements
(Kn, Jm) for n = 1, 2 and m = 1, 2, 3, 4 constitute an irreducible basis for
(E6,⊙3, I). Every tensor A ∈ E6 can be read:

A = a1K1 + a2K2 + a3J1 + a4J2 + a5J3 + a6J4 (2.7)

• Introducing K6, the space of isotropic 6
th-order tensors given by A = a1K1 +

a2K2, it can be also shown from table 2, that (K6,⊙3,K) define a sub-monoid.
Tensor K = K1 +K2 is the unit element of K6 for the composition ⊙3.

• Introducing J6 the space of isotropic 6th-order tensors given by A = a1J1 +
a2J2 + a3J3 + a4J4, it can be also shown from table 1, that (J6,⊙3, J) define
a sub-monoid. J = J1 + J4 is the unit element of J6 for the composition ⊙3.

For a given 3rd-order tensor, the contractions Jn⊙3a provide four spherical tensors
, which can be named partial spherical parts of a:

(S1(a))ijk = 1
5 (2appk − akpp)δij , (S2(a))ijk = 1

5 (3akpp − appk)δij

(S3(a))ijk = 1
10 (2appi − aipp)δjk + 1

10 (2appj − ajpp)δik

(S4(a))ijk = 1
10 (3aipp − appi)δjk + 1

10 (3ajpp − appj)δik

(2.8)

Operators Sn have the properties: Sn(Sn(a)) = Sn(a) for n = 1 and n = 4 but
Sn(Sn(a)) = 0 for n = 2 and n = 3. In another hand, the deviatoric part of a can
be decomposed into the partial deviatoric parts of a, D1(a) and D2(a), which are
defined by:

(D1(a))ijk = 1
3 (Aijk +Aikj +Ajki)− 1

3

[
(S1(a))ijk + (S2(a))ijk

]
−2

3

[
(S3(a))ijk + (S4(a))ijk

]
(D2(a))ijk = 1

3 (2Aijk −Aikj −Ajki)− 1
3

[
2(S1(a))ijk + (S4(a))ijk

]
+1

3

[
(S2(a))ijk + (S3(a))ijk

]
(2.9)

These partial spherical and deviatoric parts have the properties Dn(Sm(a)) =
Sm(Dn(a)) = 0 whatever n = 1, 2 and m = 1, 2, 3, 4. As a consequence every
3rd-order tensor a can be decomposed into:

a = D1(a) +D2(a) + S1(a) + S4(a) (2.10)

Remark : A decomposition of a third order symmetric tensor (called SFH decom-
position) has been introduced by Smyshlyaev & Fleck (1996), formalized by Fleck
& Hutchinson (1997) and used more recently in the context of gradient plasticity
by Gurtin & Anand (2005). The SFH decomposition of a third order tensor reads:
a = a(1) + a(2) + a(3) where the expressions of a(n) for n = 1, 2, 3 are recalled in
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6 V. Monchiet, G. Bonnet

appendix A. The concept of spherical and deviatoric part of a third order tensor
has not been used by the authors. There are close relations with our approach be-
cause it can be shown that a(1) = D1(a), a

(2) = D2(a) and a(3) = S(a). However,
the SFH decomposition uses only three terms whereas in the present study a is
decomposed into four terms: two spherical parts and two deviatoric parts as shown
in equation (2.10).

Similarly, a definition of the deviatoric part of a fourth order tensor has been pro-
posed in Lubarda & Krajcinovic (1993). However, the definition introduced by these
authors can be used only for a tensor which is invariant by any permutation of its
indices , while, in our paper, the considered fourth order tensor i symmetric only
according to its two first ant two last indices. The 3rd-order tensor b = A⊙3 a can
be decomposed into its partial spherical and deviatoric parts which are related to
the ones of a by: 

D1(b) = a1D1(a)

D2(b) = a2D2(a)

S1(b) = a3S1(a) + a4S2(a)

S4(b) = a5S3(a) + a6S4(a)

(2.11)

In which a1..a6 are the components of A in the basis (Kn, Jm) as defined in equation
(2.7).
Consider two 6th-order tensors (A,B) ∈ E6. We denote by a1, ..a6 and b1, ..b6 their
components within the basis (Kn, Jm). The triple contraction between A and B
leads to:

A⊙ B = a1b1K1 + a2b2K2 + (a3b3 + a4b5)J1 + (a3b4 + a4b6)J2

+ (a5b3 + a6b5)J3 + (a5b4 + a6b6)J4
(2.12)

It is now possible to look for an inverse of A ∈ E6. Let B ∈ E6 be the inverse of A
defined by B ⊙3 A = A ⊙3 B = I. Note that J6

∩
K6 = {0} and consequently the

inverse of A ∈ E6 is the sum of BK = K ⊙3 B, the inverse of AK = K ⊙3 A ∈ K6,
and BJ = J ⊙3 B, the inverse of AJ = J ⊙3 A ∈ J6. Finally, the components of B
are given by:

B =
1

a1
K1 +

1

a2
K2 +

1

∆J

[
a6J1 − a4J2 + a5J3 − a3J4

]
(2.13)

with: ∆J = a3a6−a4a5. As a consequence, the condition for A having an inverse is:
a1a2∆J ̸= 0. The tensors which comply with this condition constitute a submonoid
which has the properties of a group. The production of the inverse, if it exists, of
any 6th-order isotropic tensor having minor symmetries is a clear advantage of the
basis (Kn, Jm), compared to the basis Tn. The following section is devoted to the
construction of a similar basis for 8th-order isotropic tensors.

3. A basis for 8th-order isotropic tensors

We now consider in (1.1) the case n = 4. Consequently a and b are now two
4th-order tensors while A is a 8th-order tensor. In the general case of an isotropic
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8th-order tensor having no symmetries, it can be decomposed into a linear combi-
nation of 105 isotropic tensors whose components are obtained by the permutation
according to indices i, j, k, l, p, q, r, s of δijδklδpqδrs. In fact, 91 independent tensors
are needed (Kearsley & Fong 1975). Now, tensors A of components Aijklpqrs are
assumed to be symmetric according to indices (i, j), (k, l), (p, q) and (r, s) (called
minor symmetries). So, among the 105 isotropic tensors quoted above, we can define
17 isotropic tensors having these four minor symmetries which are given by:

(T1)ijklpqrs = δijδklδpqδrs

(T2)ijklpqrs = δijδklIpqrs, (T3)ijklpqrs = δijδpqIklrs

(T4)ijklpqrs = δijδrsIklpq, (T5)ijklpqrs = δklδpqIijrs

(T6)ijklpqrs = δklδrsIijpq, (T7)ijklpqrs = δpqδrsIijkl

(T8)ijklpqrs = δijIklpqrs, (T9)ijklpqrs = δklIijpqrs

(T10)ijklpqrs = δpqIijklrs, (T11)ijklpqrs = δrsIijklpq

(T12)ijklpqrs = IijklIpqrs, (T13)ijklpqrs = IijpqIklrs

(T14)ijklpqrs = IijrsIklpq

(T15)ijklpqrs =
1

4
(IijprIklqs + IijpsIklqr + IijqrIklps + IijqsIklpr)

(T16)ijklpqrs =
1

4
(IijkrIpqls + IijksIpqlr + IijlrIpqks + IijlsIpqkr)

(T17)ijklpqrs =
1

4
(IijkpIrslq + IijkqIrslp + IijlpIrskq + IijlqIrskp)

(3.1)

Note that a more refined analysis of the 17 tensors defined above show that they
do not constitute an irreducible basis for 8th-order tensor. More precisely, those
tensors comply with the following relation:

−T1 + T2 + T3 + T4 + T5 + T6 + T7 − 2(T8 + T9 + T10 + T11)

−(T12 + T13 + T14) + 2(T15 + T16 + T17) = 0
(3.2)

All 8th-order isotropic tensor having the minor symmetries is defined by 16 indepen-
dent coefficients and then can be decomposed as a linear combination of 16 tensors
chosen among those of (3.1). As for the case of a 6th-order tensor, a basis made up
of tensors Tn is not useful for doing the classical tensorial operations and specially
the inversion since Tn ⊙ Tm ̸= 0 whatever n,m = 1..17.
The methodology used is the same as the one applied through the previous sec-
tion. The first step consists in splitting a 4th-order tensor a into its deviatoric and
spherical parts:

a = D(a) + S(a) (3.3)
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8 V. Monchiet, G. Bonnet

where D(a) is the deviatoric part of a such that: [D(a)]ijpp = [D(a)]ppij =
[D(a)]ipjp = 0. Now, for a 4th-order tensor, it is possible to find tensors for which
the contraction over two indices , which defines the deviatoric part, is not zero, but
for which the double contraction over indices is null. Let us call first spherical part
S1(a) such tensors, which comply to [S1(a)]ppqq = [S1(a)]pqpq = 0. Now, a can be
decomposed as:

a = D(a) + S1(a) + S2(a) (3.4)

where the second spherical part S2(a) = S(a) − S1(a) has been introduced. The
components of D(a), S1(a) and S2(a) are given by:

[
S2(a)

]
ijkl

=
1

15
(2appqq − apqpq)δijδkl +

1

15
(3apqpq − appqq)Iijkl[

S1(a)
]
ijkl

=
5

7
(αijδkl + αklδij)−

4

7
(βijδkl + βklδij)

−2

7
(αikδjl + αilδjk + αjkδil + αjlδik)

+
3

7
(βikδjl + βilδjk + βjkδil + βjlδik)

+
1

5
(ηikδjl + ηilδjk + ηjkδil + ηjlδik)

+
1

3
(γijδkl − γklδij)

D(a) = a− S1(a)− S2(a)

(3.5)

with:

αij =
1

2
(aijpp + appij)−

1

3
appqqδij

βij =
1

2
(aipjp + ajpip)−

1

3
apqpqδij

γij =
1

2
(aijpp − appij), ηij =

1

2
(aipjp − ajpip)

(3.6)

α, β, γ and η are traceless. S1(a) and S2(a) have the properties:

[
S2(a)

]
ppqq

= appqq,
[
S2(a)

]
pqpq

= apqpq[
S1(a) + S2(a)

]
ijpp

= aijpp,
[
S1(a) + S2(a)

]
ppij

= appij[
S1(a) + S2(a)

]
ipjp

= aipjp

(3.7)

We introduce J1, J2, K, and I such that S1(a) = J1 ⊙4 a, S2(a) = J2 ⊙4 a,
D(a) = K⊙4 a and a = I⊙4 a. These tensors can be expressed in the basis Tn as
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Inversion of higher order isotropic tensors 9

follows:

J2 =
1

15
(2T1 − T2 − T7 + 3T12)

J1 =
1

21
(−10T1 + 8T2 + 11T3 + 4T4 + 4T5 + 11T6 + 8T7)

−2

7
(2T8 + 2T9 + 2T10 + 2T11 − 3T16 − 3T17)

I = T13, K = I− J1 − J2

(3.8)

Let us decompose A ∈ E8 as follows: A = AJ2 + AJ1 + AK where AJ2 = J2 ⊙4 A,
AJ1 = J1 ⊙4 A and AK = K ⊙4 A. As for the case of a 6th-order, tensor AJ2 is
defined by 4 independent coefficients. This suggests that there exist four tensors J2n
for n = 1, 2, 3, 4 such that AJ2 = a1J21 + a2J22 + a3J23 + a4J24, J1 ⊙4 J2n = J2n ⊙4 J1 =
J2n ⊙4 K = J2n ⊙4 K = 0, and J2n ⊙4 J2 = J2 ⊙4 J2n = J2n whatever the value of
n = 1, 2, 3, 4. These tensors read:

J21 =
1

15
(2T1 − T2), J22 =

1

15
(3T2 − T1)

J23 =
1

15
(2T7 − T12), J24 =

1

15
(3T12 − T7)

(3.9)

Note that J2 = J21+J24. The quadruple contraction between the different tensors J2n
for n = 1, 2, 3, 4 are given in table 3:

⊙4 J21 J22 J23 J24

J21 J21 J22 0 0

J22 0 0 J21 J22

J23 J23 J24 0 0

J24 0 0 J23 J24

Table 3 : The quadruple contraction between the J1n for n = 1..10

It can be observed that the structure of the composition of all J2n has the same
properties as the one obtained for Jn in the last section.
Now it is possible to show that tensors AJ1 constitute a vector space having dimen-
sion 8. Therefore AJ1 has 10 independent coefficients, which suggests the existence
of 10 tensors J2n such that AJ1 = a1J11+ ...+a10J110, J2⊙4J1n = J1n⊙4J2 = J1n⊙4K =
J1n ⊙4 K = 0, and J1n ⊙4 J1 = J1 ⊙4 J1n = J1n whatever the value of n = 1..10. These
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10 V. Monchiet, G. Bonnet

tensors read:

J11 =
1

3
T3 −

1

9
T1, J12 =

1

3
T4 −

1

9
T1

J13 = T8 +
2

9
T1 −

1

3
(T2 + T3 + T4)

J14 =
1

3
T5 −

1

9
T1, J15 =

1

3
T6 −

1

9
T1

J16 = T9 +
2

9
T1 −

1

3
(T2 + T5 + T6)

J17 =
4

7

[
T10 +

2

9
T1 −

1

3
(T3 + T5 + T7)

]
J18 =

4

7

[
T11 +

2

9
T1 −

1

3
(T4 + T6 + T7)

]
J19 =

1

7

[11
9
T1 −

1

3
(T2 + T7)−

5

3
(T3 + T4 + T5 + T6)

+ 2(T8 + T9 + T10 + T11)− T12 + 3(T13 + T14)− 6T15

]
J110 =

2

5
(T17 − T16)

(3.10)

The contraction between the different tensors J1n for n = 1..10 are given below:

⊙4 J11 J12 J13 J14 J15 J16 J17 J18 J19 J110

J11 J11 J12 J13 0 0 0 0 0 0 0

J12 0 0 0 J11 J12 J13 0 0 0 0

J13 0 0 0 0 0 0 J11 J12 J13 0

J14 J14 J15 J16 0 0 0 0 0 0 0

J15 0 0 0 J14 J15 J16 0 0 0 0

J16 0 0 0 0 0 0 J14 J15 J16 0

J17 J17 J18 J19 0 0 0 0 0 0 0

J18 0 0 0 J17 J18 J19 0 0 0 0

J19 0 0 0 0 0 0 J17 J18 J19 0

J110 0 0 0 0 0 0 0 0 0 J110
Table 4: The quadruple contraction between the J1n for n = 1..10

Note that J1 = J11 + J15 + J19 + J110.
Finally, AK is within a vector space having dimension 2. So we introduce Kn such
that AK = a1K1 + a2K2, Jp ⊙4 Kn = Kn ⊙4 Jp = 0, and Kn ⊙4 K = K⊙4 Kn = Kn
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whatever the value of n = 1..2. These tensors read:

K1 =
1

6
(T4 + T5 − T3 − T6) +

1

2
(T13 − T14) +

2

5
(T16 − T17)

K2 =
1

35
(12T1 − 11T2 − 11T7 + 13T12)−

5

14
(T3 + T4 + T5 + T6)

+
4

7
(T8 + T9 + T10 + T11) +

1

2
(T13 + T14)−

6

7
(T16 + T17)

(3.11)

Note that K = K1 +K2.
The contraction between the different tensors Kn for n = 1..2 are given below:

⊙4 K1 K2

K1 K1 0

K2 0 K2

Table 5: The quadruple contraction between the Kn for n = 1..2

Note that the table of products is the same as for the case of 6th-order tensors.
All 8th-order tensors A having the minor symmetries can be decomposed by using
the irreducible basis (J1n, J2m,Kp). Appendix B produces the relations allowing to
obtain the components of any 8th-order tensor within basis (J1n, J2m,Kp) from its
components in the basis Ti). As for the case of a 6th-order tensor, (E4,⊙4, I) define
a monoid for the composition ⊙4, the unit tensor for ⊙4 being I = T13.
The following decomposition of the space E8 = J1

8

∪
J2
8

∪
K8 is used where J2

8

define the sub-space of isotropic 8th-order tensors which can be decomposed in the
basis of tensors J2n for n = 1..4, the sub-space J1

8 and K8 being respectively associ-
ated to J1n for n = 1..10 and Kn for n = 1..2. It can be observed that (K8,⊙4,K)
define a commutative sub-monoid, while (J2

8 ,⊙4, J2) and (J1
8 ,⊙4, J1) define two

sub-monoids.
Let us decompose A ∈ E8 by using the new basis:

A = a1K1 + a2K2 + a4J11 + a5J12 + a6J13 + a7J14 + a8J15 + a9J16
+a10J17 + a11J18 + a12J19 + a13J110 + a13J21 + a14J22 + a15J23 + a16J24

(3.12)

Let us do the same with a second tensor B, its components within the new basis
being denoted by bi for i = 1..16. Defining now C by C = A ⊙4 B, its components
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within the new basis are given by:

c1 = a1b1, c2 = a2b2

c3 = a3b3 + a4b6 + a5b9, c4 = a3b4 + a4b7 + a5b10

c5 = a3b5 + a4b8 + a5b11, c6 = a6b3 + a7b6 + a8b9

c7 = a6b4 + a7b7 + a8b10, c8 = a6b5 + a7b8 + a8b11

c9 = a9b3 + a10b6 + a11b9, c10 = a9b4 + a10b7 + a11b10

c11 = a9b5 + a10b8 + a11b11, c12 = a12b12

c13 = a13b13 + a14b15, c14 = a13b14 + a14b16

c15 = a15b13 + a16b15, c16 = a15b14 + a16b16

(3.13)

We now look for the inverse of a 8th-order tensor A. The components of B, solution
of the equations B⊙4 A = A⊙4 B = I are:

b1 =
1

a1
, b2 =

1

a2

b3 =
a7a11 − a8a10

∆J1

, b4 =
a5a10 − a4a11

∆J1

, b5 =
a4a8 − a5a7

∆J1

b6 =
a8a9 − a6a11

∆J1

, b7 =
a3a11 − a5a9

∆J1

, b9 =
a5a6 − a3a8

∆J1

b9 =
a6a10 − a7a9

∆J1

, b10 =
a4a9 − a3a10

∆J1

, b11 =
a3a7 − a4a6

∆J1

b12 =
1

a12
, b13 =

a16
∆J2

, b14 = − a14
∆J2

, b15 = − a15
∆J2

, b16 =
a13
∆J2

(3.14)

with:
∆J2 = a13a16 − a14a15

∆J1 = a3a7a11 + a4a8a9 + a5a6a10 − a3a8a10 − a4a6a11 − a5a7a9
(3.15)

The condition for A having an inverse is: a1a2a12∆J1∆J2 ̸= 0

4. The case of higher order isotropic tensors

We aim at generalizing the methodology proposed in the previous sections to the
case of 2nth-order tensor for n ≥ 5. To this aim, consider a nth order tensor a, its
components being denoted by aijk..l. This tensor is assumed symmetric according
to its two first indices aijk..l = ajik..l and also according to its n − 2 last indices
k..l. Tensor a can be decomposed as follows:

a = D(a) +
[
S1(a) + S2(a)...+ Sp(a)

]
(4.1)

with n = 2p if n is an even number but n = 2p+ 1 if n is an odd number. D(a) is
the deviatoric part of a such that [D(a)]ppk..l = [D(a)]ijppk..l = [D(a)]ipjpk..l = 0.
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In the expression above, Sp(a) denotes nth spherical part of p. Tensors Sp(a) have
the properties:

[
S1(a) + S2(a)...+ Sp(a)

]
ijppk..l

= aijppk..l[
S1(a) + S2(a)...+ Sp(a)

]
ppijk..l

= appijk..l[
S1(a) + S2(a)...+ Sp(a)

]
ipjpk..l

= aipjpk..l[
S2(a)...+ Sp(a)

]
ijppqqk..l

= aijppqqk..l[
S2(a)...+ Sp(a)

]
ppijqqk..l

= appijqqk..l[
S2(a)...+ Sp(a)

]
ipjpqqk..l

= aipjpqqk..l

etc...

(4.2)

Consequently, we introduce tensors K, Jp for p = 1, 2, 3... and I such that: D(a) =
K ⊙n a, Sp(a) = Jp ⊙n a and I ⊙n a = a. We can define the independent sub-
spaces K2n, J

p
2n for p = 1, 2, 3.. associated to K, Jp, used for the decomposition

of A . The second step is to apply the decomposition AK = a1K1 + a2K2 + ...,
AJp = a1Jp1 + a2Jp2 + .... Consequently, A, is decomposed as:

A =
∑
n

anKn +
∑
p

∑
n

apmJpn (4.3)

In table 6 are given the number of irreducible tensors Kn, Jpn for 2 ≤ n ≤ 6.

K2n J1
2n J2

2n J3
2n J4

2n ...

2n = 4 1 1 0 0 0

2n = 6 2 4 0 0 0

2n = 8 2 10 4 0 0

2n = 10 3 13 9 0 0

2n = 12 2 13 17 4 0

...

Table 6: Number of irreducible elements of the sub-space K2n and Jp
2n

5. Higher order inhomogeneity problem: the spherical
inclusion in an infinite matrix subjected to a polynomial

remote strain field

The Eshelby’s ”inhomogeneity problem”(Eshelby 1957) is well known for the case of
a given constant strain field at infinity: it gives the strain field inside an ellipsoidal
inclusion having elastic properties which are different from the material outside
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the inclusion. This problem uses the solution of the ”inclusion problem” for which
a constant free deformation is given within an ellipsoidal part of an homogeneous
material. The inclusion problem can be extended to the case of free deformations
which have a polynomial form, but the solution of the ”inhomogeneity problem” for
the case of polynomial strain fields at infinity needs the inversion of higher order
tensors. In this section, the method used for obtaining the inverse of higher order
tensors is used for solving the ”inhomogeneity problem” in the case of spherical
inhomogeneities made up of an isotropic material and located within an infinite
isotropic medium. Let us consider a spherical inclusion located at xi = 0 made up
of an isotropic elastic material of rigidity Cijkl embedded in an infinite isotropic
elastic matrix whose rigidity is C0

ijkl. We denote by λ, µ, ν (resp. λ0, µ0, ν0) the
Lamé moduli and the Poisson ratio of the inclusion (respectively of the matrix). The
inclusion is subjected to a polynomial remote strain field ε∞(x) = eij + eijkxk +
eijklxkxl. It has been proved (see Mura 1987 in the case of an infinite isotropic
medium and the work of Asaro & Barnett 1975 in the anisotropic context) that the
strain field within the inclusion is also a polynomial and reads:

aij(x) = aij + aijkxk + aijklxkxl... (5.1)

In the following a series for aij(x) at the second order is considered, aij , aijk and
aijkl are solutions of:

eij =
[
Iijpq − P 0

ijmnδCmnpq

]
apq + cij

eijk =
[
Iijpqδkr − P 0

ijkmnrδCmnpq

]
apqr

eijkl =
[
IijpqIklrs − P 0

ijklmnrsδCmnpq

]
apqrs

etc...

(5.2)

with:

cij = Q0
ijmnrsδCmnpqapqrs (5.3)

In the expression above δCijkl = Cijkl−C0
ijkl and P 0

ijmn are the components of the
Hill tensor (Hill 1975), which are obtained from the components of the Eshelby’s
tensor and from the components of the inverse Sklmn of the elasticity tensor by
P 0
ijmn = Eijkl.Sklmn. This tensor depends only of the elastic properties of the

infinite medium. Q0
ijmnrs, P

0
ijkmnr, P

0
ijklmnrs are the components of higher-order

Hill-type tensors which are introduced by aijk and aijkl. As for the classical Hill’s
tensor, they are built from the inverse of the elasticity tensor and from higher order
Eshelby’s tensors which can be found in Mura (1987). Those tensors can be derived
within the basis composed of Tn for both case of a sixth and eighth order tensor and
translated into the basis composed of (Kn, Jpn) by using the base change relations
given in appendix. Note that, once aijkl is determined by solving the last equation
in (5.2), one can compute cij for obtaining aij from the first equation in (5.2).
It can be observed that aij , aijk and aijkl are solutions of a linear equation having
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the form:

b =
[
I− P0 ⊙n δC

]
︸ ︷︷ ︸

= A

⊙na
(5.4)

for n = 2, 3, 4. Obviously, a closed-form expression of the strain field within the
inclusion requires the inversion of tensor A = I − P0 ⊙n δC for which it will be
convenient to use the formalism introduced in the last sections.

• In the case where a is a second order tensor, I, P0 and δC are 4th-order isotropic
tensors having the minor symmetries. The components of b are given by bij =
aij − cij . Solution of (5.4) is trivial, and can be found in Mura (1987), for instance.

• Consider now the case of a third order tensor a. The components of the Hill-type
tensor P0 written in the basis (Kn, Jn) given in section 2, are:

P 0
1 =

11− 14ν0
35µ0(1− ν0)

, P 0
2 =

1

10µ0
, P 0

3 =
1− 2ν0

10µ0(1− ν0)

P 0
4 = − ν0

10µ0(1− ν0)
, P 0

5 =
1− 2ν0

5µ0(1− ν0)
, P 0

6 =
5− 7ν0

10µ0(1− ν0)

(5.5)

P 0
1 ..P

0
6 are the components of P0 in the basis (Kn, Jn) as defined in (2.7). The

components of δC are δCijpqδkr. The decomposition in the basis (Kn, Jn) is given
by:

δC = δλT1 + 2δµT2

= δλ
[
3J1 + J2

]
+ 2δµ

[
K1 +K2 + J1 + J4

] (5.6)

The computation of the inverse of A = I− P0 ⊙n δC, denoted B leads to:

B1 = 1 +
4(µ0 − µ)(4λ0 + 11µ0)

16λ0µ+ 19µ0λ0 + 44µ0µ+ 26µ2
0

, B2 =
5µ0

µ+ 4µ0

B3 = 1 + µD1, B4 = D2, B5 = 2µ0D1, B6 =
µ0

µ
(1 + 2D2)

D1 =
2µ0 + 3λ0 − 2µ− 3λ

3λµ+ 2µ0λ+ 2µ2 + 8µ0µ

D2 =
λ0µ− µ0λ

3λµ+ 2µ0λ+ 2µ2 + 8µ0µ

(5.7)
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• In the case n = 4, The Hill-type tensor P0 is decomposed within the basis
(Kn, J1n, J2n) given in section 3. One has:

P 0
1 =

2

7µ0
, P 0

2 =
2(7− 9ν0)

21µ0(1− ν0)
, P 0

3 =
1− 2ν0

3µ0(1− ν0)

P 0
4 =

2(1− 2ν0)

15µ0(1− ν0)
, P 0

5 =
4(1− 2ν0)

21µ0(1− ν0)
, P 0

6 =
1− 2ν0

3µ0(1− ν0)

P 0
7 =

2(4− 5ν0)

15µ0(1− ν0)
, P 0

8 =
2(5− 7ν0)

21µ0(1− ν0)
, P 0

9 =
1− 2ν0

3µ0(1− ν0)

P 0
10 =

5− 7ν0
15µ0(1− ν0)

, P 0
11 =

7− 11ν0
21µ0(1− ν0)

, P 0
12 =

1

µ0

P 0
13 =

1− 2ν0
5µ0(1− ν0)

, P 0
14 =

2(1− 2ν0)

5µ0(1− ν0)
, P 0

15 =
2(1− 2ν0)

5µ0(1− ν0)

P 0
16 =

2(1− 2ν0)

5µ0(1− ν0)

(5.8)

P 0
1 ..P

0
16 are the components of P0 in the basis (Kn, J1n, J2n) as defined in (3.12).

δCijkl is replaced by an equivalent 8th-order tensor whose components are given by
δCijklIpqrs which reads, in the basis (Kn, J1n, J2n):

δC = δλT2 + 2δµT13

= 3δλ
[
J21 + 2J22

]
+ 2δµ

[
K1 +K2 + J11 + J15 + J19 + J110 + J21 + J24

] (5.9)

Components of B are given by:

B1 = 1− 4(µ− µ0)

3µ0 + 4µ
, B2 = 1− 4(µ− µ0)(5λ0 + 14µ0)

(λ0µ0 − 14µ2
0 + 20λ0µ+ 56µµ0)

B3 = 1 + 2D1(3µ− 38µ0), B4 = 4D1(2µ− 9µ0)

B5 = −8D1(2µ+ 3µ0), B6 = 10D1(2µ− 9µ0)

B7 = 1− 2D1(32µ+ 21λ0 + 24µ0), B8 = 10D1(4µ+ 3λ0 + 6µ0)

B9 = −14D1(2µ+ 3µ0), B10 = −7D1(4µ+ 3λ0 + 6µ0)

B11 = 1−D1(28µ+ 15λ0 + 42µ0), B12 =
µ0

2µ− µ0

D1 =
2(µ− µ0)

3(−3λ0µ0 + 38λ0µ− 42µ2
0 + 56µ2 + 56µµ0)

B13 = 1 +D2, B14 = B15 = 2D2, B16 = 1 + 4D2

D2 =
2

5

3(λ− λ0) + 2(µ− µ0)

5λ0 + 2µ0 − 6λ− 4µ

(5.10)

These results finalize the closed form solution of the higher order ”heterogeneity
problems”.
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6. Conclusion

The present study deals about the inversion of an isotropic 2nth-order tensor hav-
ing particular symmetries (called ”minor symmetries” in the paper). To reach this
objective, irreducible bases for isotropic 2nth-order tensors has been provided in
the present paper. These bases extend the (J,K) basis used for isotropic 4th-order
tensors. The particular case of 6th-order and 8th-order tensors has been examined in
this paper and higher-order cases has been addressed in section 4. The methodology
used consists in decomposing 3rd-order and 4th-order tensors into their deviatoric
and spherical parts as commonly used in the case of a tensor of order 2. The par-
ticularity with tensors of order n ≥ 4 lies in the definition of spherical parts of
order 1, 2, 3... while for tensors of order n ≤ 3 only one definition of the spherical
part is used (for instance, in the case of a 2nd-order tensor the first spherical part
corresponds to the classical definition). This decomposition of a nth tensor appears
to be useful for obtaining the irreducible bases ”(Kn, Jpn)” for isotropic 2nth-order
tensors.
It it shown that the bases ”(Kn, Jpn)” are useful for effecting the tensorial opera-
tions and particularly for the inversion of a 2nth-order tensor. In order to show the
relevance of this formalism, we derive the closed-form expression of the strain field
within a spherical inclusion subjected to a polynomial remote strain field. This re-
sult is an extension of the well known use of the Eshelby’s tensor for obtaining the
solution of the heterogeneity problem which is the base of numerous homogenization
problems. It suggests that the results of higher order heterogeneity problems could
be used for obtaining the effective properties in the context of gradient elasticity.
This will be developped in a forthcoming paper.

Appendix A. The SFH decomposition

The SFH decomposition of a third order tensor a (symmetric according to its two
first indices) has been introduce by Smyshlyaev & Fleck (1996) and formalized by
Fleck & Hutchinson (1997). It reads:

a = a(1) + a(2) + a(3) (A 1)

with:

a
(1)
ijk = asijk − 1

5
(δija

s
kpp + δika

s
jpp + δjka

s
ipp)

a
(2)
ijk =

1

3
(εkipκ

s
pj + εkjpκ

s
pi)

a
(3)
ijk =

1

3
(εkipκ

a
pj + εkjpκ

a
pi)−

1

5
(δija

s
kpp + δika

s
jpp + δjka

s
ipp)

asijk =
1

3
(aijk + aikj + ajki), κs

pj =
1

2
(κij + κji), κa

pj =
1

2
(κij − κji)

κij = εipqajqp

(A 2)

where εijk is the permutation symbol.
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Appendix B. Base change relations

Let us denote by an for n = 1..6 the components of a sixth order tensor A in the
basis Tn for n = 1..6. Let the bn for n = 1..6 be the components of A in the basis
(Kn, Jn) as defined in (2.7). The relations giving the bn as functions of the an are:

b1 = a2 + a5

b2 = a2 − a5/2

b3 = 3a1 + a2 + a4

b4 = a1 + 2a4 + a5/2

b5 = 3a3 + a5 + a6

b6 = a2 + a3 + a5/2 + 2a6

(B 1)

Let us denote by an for n = 1..16 the components of an eighth order tensor A in
the basis Tn for n = 1..16 and let the bn for n = 1..16 its components in the basis
(Kn, J1n, J2n) as defined in (3.12). The relations giving the bn as function of the an
are:

b1 = a13 − a14

b2 = a13 + a14 + a15

b3 = 3a3 + a8 + a10 + a13 + (a15 + a16)/3

b4 = 3a4 + a8 + a11 + a14 + (a15 + a16)/3

b5 = a8 + (a15 + a16)/3

b6 = 3a5 + a9 + a10 + a14 + (a15 + a16)/3

b7 = 3a6 + a9 + a11 + a13 + (a15 + a16)/3

b8 = a9 + (a15 + a16)/3

b9 = 7(3a10 + a15 + a16)/12

b10 = 7(3a11 + a15 + a16)/12

b11 = a13 + a14 − a15/6 + 7a16/12

b12 = a13 − a14 − 5a16/4

b13 = 9a1 + 3a2 + 3a3 + 3a4 + 3a5 + 3a6 + a8 + a9 + a13 + a14

b14 = 3a1 + 6a2 + a3 + a4 + a5 + a6 + 2a8 + 2a9 + a15/2

b15 = 9a7 + 3a10 + 3a11 + 3a12 + a15 + a16

b16 = 3a7 + a10 + a11 + 6a12 + a13 + a14 + a15/2 + 2a16

(B 2)
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