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Inversion of higher order isotropic tensors
with minor symmetries and solution of
higher order heterogeneity problems

By VINCENT MONCHIET, GUY BONNET

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle,
LMSME UMRS8208 CNRS, 5 boulevard Descartes, 77454 Marne la Vallée Cedex,
France

In this paper, the derivation of irreducible bases for a class of isotropic (2n)"-
order tensors having particular "minor symmetries” is presented. The methodology
used for obtaining these bases consists in extending the concept of deviatoric and
spherical parts, commonly used for 2"%-order tensors, to the case of a n*"-order
tensor. It is shown that those bases are useful for effecting the classical tensorial
operations and specially the inversion of a 2nt"-order tensor. Finally, the formalism
introduced in this study is applied for obtaining the closed form expression of the
strain field within a spherical inclusion embedded in an infinite elastic matrix and
subjected to linear or quadratic polynomial remote strain fields.

Keywords: Isotropic tensors, irreducible basis, inclusion problem

1. Introduction

Some specific problem in mechanics take the form of linear equations between two
tensors having an order higher than n = 2. For instance, the theories of general-
ized continuum (Toupin 1962, Mindlin 1964, Mindlin & Eshel 68, Suiker & Chang
2000) introduce higher order gradients of the displacement for the description of the
continuum. The generalized gradient elastic constitutive equation introduces then
tensors of order 6, 8... More recently such considerations were extended to nonlinear
elasticity (Dell'Isola et al. 2009). From another point of view, the problem of an
elastic inclusion embedded in an infinite elastic medium and subjected to a polyno-
mial remote strain field has been studied by Asaro & Barnett 1975, Mura 1987. It
has been shown that the complete solution requires to solve a linear system involv-
ing the inversion of tensors of order 6,8, ... However, there are no explicit known
closed forms for the inverses of such higher order tensors.

To summarize, in all the problems quoted above, two nt"-order tensors a and b are
related through a linear relation which takes the form:

b=AG,a (1.1)
Where A is a tensor of order 2n. We assume that the components of a and b are

symmetric according to their two first indices a;;p..q = Gjip..q, bijp..q = bjip..q and
are invariant by any permutation of their n — 2 last indices p..q. For instance, in
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2 V. Monchiet, G. Bonnet

the case n = 3,4, 5 one has:
n=o: Qijp = Qjip
n=4: Qijpq = QAjipq
Qijpg = Qijgp (1.2)
n=>5: Qijpgr = Ajipgr

Qijpgr = Qijprq = Qijqpr = Qijqrp = Qijrpg = Jijrqp
etc.

In relation (1.1), ®,, denotes the nt" contraction between A and a such that bijp.q =
Aijp..gkir..s0kir..s- Due to the symmetries of @ and b, A;jp. grir..s is invariant by any
permutation of indices (4, 7), (k,1), (p,..,q) and (r,..,s). Through this paper, these
symmetries are called "minor symmetries”. Note that A does not necessarily possess
the "major symmetry”, namely A;;p qkir..s 7 Akir. sijp..q-

In the present study, we assume that tensor A is isotropic and we denote by Fo,
the space of isotropic 2nt-order tensors having the minor symmetries. We propose
to build the inverse of A, namely the tensor B such that:

a=B@,b (1.3)

In the case n = 2, A is an isotropic tensor of 4" order. Due to symmetries mentioned
above, A depends on two independent coefficients a; and as and can be expressed as
A = a1J+a2K. Tensors J and K are defined by Jijx = 0i;011/3, Kijri = Lijri — Jijrl
and Iijr = (0;x0;1 + 0:10;%)/2 where 6;; is the Kronecker symbol. J and K are two
projectors which define an irreducible basis for isotropic tensors having the minor
symmetries. The use of these two tensors produces easily the inversion of A since
B = 1/a1J+ ]./CLQK.

We aim at extending this basis in the case of higher order isotropic tensors. The
paper is organized as follows: in section 2, we first state about the case n = 3. An
irreducible basis, constituted of six independent tensors, is obtained and appears
to be convenient for effecting the classical tensorial operations and specially the
inversion. The methodology applied for obtaining this basis is clearly depicted in
this section. It consists in generalizing the concept of deviatoric and spherical part,
commonly used for second order tensors, to the case of a tensor of order 3. This
approach is afterwards applied to the case of a 8"-order tensor. Its generalization
to the case of a tensor of order up to 2n = 8 is addressed in section 4. In fine, the
application of the methodology to the inclusion problem is performed.

2. A basis for 6!"-order isotropic tensors

In this section, we first consider the case n = 3 in (1.1), @ and b are then two
third-order tensors while A is a sixth order isotropic tensor. A has the symmetries:
Aijipgr = Ajikpgrs Aijkpgr = Aijkgpr- Tensor A is invariant under the orthogonal
group Os, consequently:

Ainj = Qip-'quAp-~q (2'1)
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Inversion of higher order isotropic tensors 3

Qip--Qjq are the orthogonal matrices of the group Os, which satisfy Q1 Qjx = 0i;
and det(Q) = £1. Every isotropic tensor of order 2n (n being an integer) can be
expressed in terms of the Kronecker symbol. Particularly, a sixth order isotropic
tensor can be read as a linear combination of:

0ij0krOpq: 0ijOkpOqrs 0ijOkqOpr; 0ik0jrdpq; OikjpOgr
0ik0jq0prs 0ipOjkOqrs Oip0jrOkgs Oip0igOkr, Oigljkdpr (22)
5iq5jr(5kpa 5iq5jp5kra §ir5jk5pqa §ir5jp5kqa 5ir5jq5kp
For a tensor having the minor symmetries, only six tensors are needed. They are
denoted: T4, ..., T¢ and their components are:
(T1)ijkpgr = 6i50pgOkrs  (T2)ijkpgr = LijpqOkr

(T3)ijkpq7‘ = ijkr(qua (T4)ijkpq7‘ = qur6ij (23)

1 1
(T5)ijkpqr = §(Iijm5kq + Iijqr(skp)v (TG)ijkpqr = §(Ipqir§jk + Iqur‘sik)

where it is recalled that I;ji = (0;x051 + 0:10,%)/2.

The triple contraction between two tensors taken from (T, .., Tg) are given in table
1. (T4, ..., Tg) constitute a basis for all tensors A € Eg. However, this basis is not
convenient for the inversion of 6"-order tensors since it leads to a complex linear
system of dimension 6.

©3 T, Ty Ts Ty Ts Tg
T, 3T, T, T, 3Ty Ty Ty
To T, Ty Ts Ty Ts Te
Ts 3T5 Ts Ty 3Tg Tg Tg
T, T, T, 2T, T, | L(Ty+Ty) 2T,
Ts Ts Ts | 3(Ty+ Ts) Te 3(T2 +Ts) | 5(T4+ Ts)
Te T3 Te 2T3 Ts (T3 + Ts) 2T

Table 1: The triple contraction between T, and T,,

In order to provide a simplified basis, we first introduce the spherical part, S(a),
and the deviatoric part, D(a), of a 3"?-order tensor a as follows:

D(a) =a — S(a)
S(a) = %<2appk - akpp)éij (24)

+ %0(3‘”14' — Qppi )0k + Tlo(?’ajpp — Qppj )ik

S(a) has the properties: (S(a))ipp = aipp and (S(a))ppi = appi. Consequently,
all contractions of indices of (D(a)) are null : (D(a))ipp = (D(@))ppi = 0. It is
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4 V. Monchiet, G. Bonnet

therefore natural to consider D(a) as the generalization to third-order tensors of the
deviatoric part, which is well known for second order tensors. This decomposition
suggests introducing the 6t"-order tensors J, K and I given by:

J=1@T —T3—Ts+3Te), K=1-J, 1=T, (2.5)

These tensors are such that D(a) = K®sza , S(a) =J©3a ,a =103 a. Here, I is
the identity for the triple contraction ®3 and J and K produce the deviatoric and
spherical parts of a. From another point of view, every 6t order isotropic tensor
A, having the minor symmetries is defined by 6 independent coefficient. Due to the
previous relations it is natural to introduce the decomposition: A = A ; + A g where
Ay =J03 A and Agx = K©®3 A. It is easy to show that tensor A is defined by 4
independent coefficients. It suggests therefore that there exist four tensors J,, with
n =1,2,3,4 such that: Ay = a1J1 + asls +a3ls +asJs and Koz J,, = J, ©3K=0
whatever the value of n. In other words, we search J,, defined by J, = >, a,T,
such that: J, ©3 K = K®3J, = 0and J, ®3J = J ®3 J, = J,. For its part,
tensor Ay is defined by 2 independent coefficients. It suggests that there exist two
tensors K; and Ky such that Ax = a1K; 4+ asKy and J 03 K,, = K,, ©3J = 0,
Koz K, =K, ©3 K =K, whatever n =1, 2.

The following expressions were found for J,, and K,:

Ji=302T1 - Ty), J2=1£(3T4—Ty)

J3 = £(2T3 —Tg), Js = (3T — T3) (2.6)

Ky = (T2 +2T5) — 2(J1 +J2) — 2(J5 + Ja)

W=

Ko = 2(Ty — Ts) — 2(2J1 + J4) + 3 (J2 + 2T3)

Note that J = Jl +J4 and K = K]_ + KQ.
In addition, the triple contraction between the different tensors J,, and K,, are given
in table 2:

O3 Ky | Ko | Ju | J2 | T3 | Ja
Ky Ky | O 00| 0710
Ko 0 |Ke| O] 00O
Iy O | 0 |Ju|J2| 0|0
Ja 0 0 0|0 |J1|Jd2
Ja 0 0 |Js|JdJsa| O 0
J4 0 0 0|0 |Js|Jds

Table 2: Triple contraction between J, and K,
These results call the following remarks:

e It can be observed that, (Eg, ®3,1) define a monoid (an algebraic structure
with a single associative binary operation and an identity element). I is the
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Inversion of higher order isotropic tensors 5

identity for the composition @3 and is defined by (2.5). The six elements
(KyyJm) for n = 1,2 and m = 1,2,3,4 constitute an irreducible basis for
(Eg, ©@3,1). Every tensor A € Fg can be read:

A = a1Ky + aoKy + a3l + asla + asJs + asls (2.7)

e Introducing Kg, the space of isotropic 6!"-order tensors given by A = a;K; +
a9y, it can be also shown from table 2, that (Kg, ®3, K) define a sub-monoid.
Tensor K = K; 4+ K5 is the unit element of K¢ for the composition @j3.

e Introducing Js the space of isotropic 6t"-order tensors given by A = aJ; +
asJs + azls + asly, it can be also shown from table 1, that (Jg, ®3,J) define
a sub-monoid. J = J; + J4 is the unit element of Jg for the composition ®3.

For a given 3"%order tensor, the contractions J,, ®s a provide four spherical tensors
, which can be named partial spherical parts of a:

(S1(a))ijn = 5(2appk — arpp)dijs  (S2(@))ije = 5 (Bakpp — appr)di;
(953(@))ije = 15 (2appi — ipp)Fjk + 15 (2app; — Ajpp)dik (2.8)
(Ss(@))ijr = %(&Lipp — Qppi)djk + %(3‘11'1)11 — pp;)0ik
Operators S,, have the properties: S, (S,(a)) = Sp(a) for n = 1 and n = 4 but
Sn(Sp(a)) =0 for n = 2 and n = 3. In another hand, the deviatoric part of a can

be decomposed into the partial deviatoric parts of a, Di(a) and Dy(a), which are
defined by:

(D1(a))ijr = 3(Aijk + Airj + Ajri) — %[(sl(a))ijk + (SQ(G))U,,C}
=3 |(Ss(@))in + (Sa(a))ize
(

+3 [(52(‘1))17‘1@ + (SS(a))ijk}

(2.9)

™)

2(@))ige = $(2Aun — Auj = Ajei) = 2051 (@) + (Sa(@)ize|

These partial spherical and deviatoric parts have the properties D, (S, (a)) =
Sm(Drn(a)) = 0 whatever n = 1,2 and m = 1,2,3,4. As a consequence every
374-order tensor a can be decomposed into:

a = Di(a) + Ds(a) + Si(a) + Si(a) (2.10)

Remark : A decomposition of a third order symmetric tensor (called SFH decom-
position) has been introduced by Smyshlyaev & Fleck (1996), formalized by Fleck
& Hutchinson (1997) and used more recently in the context of gradient plasticity
by Gurtin & Anand (2005). The SFH decomposition of a third order tensor reads:
a =a +a® + a® where the expressions of a(™ for n = 1,2, 3 are recalled in
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6 V. Monchiet, G. Bonnet

appendix A. The concept of spherical and deviatoric part of a third order tensor
has not been used by the authors. There are close relations with our approach be-
cause it can be shown that ) = D;(a), a/® = Dy(a) and a® = S(a). However,
the SFH decomposition uses only three terms whereas in the present study a is
decomposed into four terms: two spherical parts and two deviatoric parts as shown
in equation (2.10).

Similarly, a definition of the deviatoric part of a fourth order tensor has been pro-
posed in Lubarda & Krajcinovic (1993). However, the definition introduced by these
authors can be used only for a tensor which is invariant by any permutation of its
indices , while, in our paper, the considered fourth order tensor i symmetric only
according to its two first ant two last indices. The 3"%-order tensor b = A ®3 a can
be decomposed into its partial spherical and deviatoric parts which are related to
the ones of a by:

(2.11)

In which a;..a¢ are the components of A in the basis (K, J,,,) as defined in equation
(2.7).

Consider two 6!"-order tensors (A,B) € Eg. We denote by aq,..a¢ and by, ..bg their
components within the basis (K,,J,,). The triple contraction between A and B
leads to:

AOB=a1b;K; + asbsKq + (a3b3 + a4b5)J1 + (a3b4 + a4b6).,]]2
(2.12)

+ (a5b3 + a6b5)J3 + (a5b4 + a6b6)J4

It is now possible to look for an inverse of A € Fg. Let B € Eg be the inverse of A
defined by B ®3 A = A ®3 B = I. Note that Js[) K¢ = {0} and consequently the
inverse of A € Ejg is the sum of By = K ®3 B, the inverse of Ax = K ©3 A € K,
and B; = J ©®3 B, the inverse of A; = J ®3 A € Jg. Finally, the components of B
are given by:

1 1 1
B=—K; +—Ky+ — [agjh —a4ds + aslls — a3J4] (2.13)
ay as AJ

with: Ay = azag —asas. As a consequence, the condition for A having an inverse is:
a1a2Ay # 0. The tensors which comply with this condition constitute a submonoid
which has the properties of a group. The production of the inverse, if it exists, of
any 6'"-order isotropic tensor having minor symmetries is a clear advantage of the
basis (K,,,J.,), compared to the basis T,. The following section is devoted to the
construction of a similar basis for 8!"-order isotropic tensors.

3. A basis for 8"-order isotropic tensors

We now consider in (1.1) the case n = 4. Consequently a and b are now two
4th_order tensors while A is a 8'"-order tensor. In the general case of an isotropic
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Inversion of higher order isotropic tensors 7

8th_order tensor having no symmetries, it can be decomposed into a linear combi-
nation of 105 isotropic tensors whose components are obtained by the permutation
according to indices 4, 7, k, 1, p, q,7, s of 8;;0k10pqdrs. In fact, 91 independent tensors
are needed (Kearsley & Fong 1975). Now, tensors A of components A;jxipgrs are
assumed to be symmetric according to indices (i, 7), (k,{), (p,q) and (r,s) (called
minor symmetries). So, among the 105 isotropic tensors quoted above, we can define
17 isotropic tensors having these four minor symmetries which are given by:

(Tl)ijklpqrs = 5ij5kl6pq§rs

T2)ijklpqrs = 6ij6kllpqrsy

T4 ijklpgrs — 6ij5rslklp(p

Ty ijklpgrs — Jijlklpqrm

TlO)ijklpqrs = 6quijklrsy

TS)ijk:lpqrs = 6ij6pqlklrs
TS)ijklpqrs = 5k15pqlijrs
Tg)ijklpqrs = 5k:lliqu7"s

Tll)ijklpqrs = 6rinjklpq

( (
(T4) (
(T6)ijkipars = Oridrslijpgs  (T7)ijhipgrs = OpgOrslijhi
(Ts) (
( (
( (

PEl2)ijklpqrs = ijkllpqr87 T13)ijklpqrs = Iiqulklrs
(T14)ijklpqrs = Iijrs—[klpq

1
(T15)ijklpq7"s = Z(Iijprlqus + Iijpslqur + IiquIklps + Iiqulklm“)

1
(T16)ijklpqrs = Z(Iijkrlpqls + Iijkslpqlr + Iijlrlqus + Iijlstqkr)

1
(T17)ijklpqrs = Z(Iijkp-[rslq + Iijqurslp + IijlpIrskq + Iijqurskp)

Note that a more refined analysis of the 17 tensors defined above show that they
do not constitute an irreducible basis for 8"-order tensor. More precisely, those
tensors comply with the following relation:

—T1 4+ Ty + Ts + Ty + Ts5 + T + T7 — 2(Ts + Ty + T10 + T11)
—(T12 + T3+ T14) + 2(T15 + Ti6 + T17) =0

(3.2)

All 8"-order isotropic tensor having the minor symmetries is defined by 16 indepen-
dent coefficients and then can be decomposed as a linear combination of 16 tensors
chosen among those of (3.1). As for the case of a 6!"-order tensor, a basis made up
of tensors T, is not useful for doing the classical tensorial operations and specially
the inversion since T,, ® T,,, # 0 whatever n,m = 1..17.

The methodology used is the same as the one applied through the previous sec-
tion. The first step consists in splitting a 4*"-order tensor a into its deviatoric and
spherical parts:

a=D(a)+ S(a) (3.3)
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8 V. Monchiet, G. Bonnet

where D(a) is the deviatoric part of a such that: [D(a)lijpp = [D(@)lppi; =
[D(a)]ipjp = 0. Now, for a 4t"-order tensor, it is possible to find tensors for which
the contraction over two indices , which defines the deviatoric part, is not zero, but
for which the double contraction over indices is null. Let us call first spherical part
S'(a) such tensors, which comply to [S*(a)]ppeq = [S*(@)]pgpq = 0. Now, a can be
decomposed as:

a = D(a) + S*(a) + S*(a) (3.4)

where the second spherical part S%(a) = S(a) — S'(a) has been introduced. The
components of D(a), S*(a) and S%(a) are given by:

1 1
[52 (G)ijl = B(Qappqq — Qpapq)0ijOri + B(Z)’apqpq — Appgq)Lijhl
5 4
[Sl(a)LW = §(Oéij5kz + apdij) — ?(61’]'61@[ + Bridij)
2
—7(0%53‘1 + 1055 + 0idi + ordir)
3
+§(ﬁik5ﬂ + Budjr + Bijrdu + Bjidix) (3.5)

1

+g(77ik5jl + nidjk + njkdi + 1n510k)
1

+§(’Yij5kl — Yk10ijz)

D(a) = a — S*(a) — S?(a)

with:
1
Qij = §<aijpp + appij) — gappqqéij
Bij = 5 @ipjp + ajpip) = 5 papg0ij (3.6)
1 1
Vis = 5 @igpp = appig)s  Mij = 5(aipjp — ajpip)
a, 3, v and n are traceless. S'(a) and S?(a) have the properties:
[Sz(a)]ppqq = Appqg> [SQ(G)}pqpq = Qpgpq
[Sl(a') + 52(0’)] ijpp = Qijpp, [Sl(a) + S2(a)]ppij = Qppij (37)

[S'(a) + S’z(a)]ipjp = Qipjp

We introduce J!, J?, K, and I such that S'(a) = J' 04 a, S?(a) = J? &4 a,
D(a) =K ®4 a and a =1®4 a. These tensors can be expressed in the basis T,, as
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Inversion of higher order isotropic tensors 9

follows:

1
7% = B(2"]I‘1 — Ty —T7 + 3T12)
1
It = ﬁ(—1011“1 + 8Ty + 11T5 4 4Ty + 4T5 + 11T + 8T)
(3.8)

2
—?(QTS + 2Tg + 2T1g + 2Ty — 3T — 3T17)

I[=Ty, K=I-J'-J

Let us decompose A € Eg as follows: A = A2 + A1 + Ag where A2 = J? 04 A,
Ap =J' 04 A and Ag = K ®4 A. As for the case of a 6"*-order, tensor A j is
defined by 4 independent coefficients. This suggests that there exist four tensors J2
for n = 1,2,3,4 such that A y2 = a1J? + a2J3 + azJ? + a,J2, JP 04 12 =12 0, JF =
J2osK=J20,K =0, and J2 04 J? = J? ©4 J2 = J2 whatever the value of
n =1,2,3,4. These tensors read:

1 1
J2= (2T - Ty), J2=_—(3T.—-T)
15 15 (3.9)
1 1 ’
J2 = T5(2T7 ~T), Ji= B(3T12 —T7)

Note that J? = J? +J2. The quadruple contraction between the different tensors J2
for n =1,2,3,4 are given in table 3:

@ | B3| B|%
2 |13 lo]o
J3 01| 0 |J%|J2
I3 BIlJ210]|o0
2 010 |J3|J2

Table 3 : The quadruple contraction between the J. for n = 1..10

It can be observed that the structure of the composition of all J2 has the same
properties as the one obtained for J,, in the last section.

Now it is possible to show that tensors A ;1 constitute a vector space having dimen-
sion 8. Therefore A j1 has 10 independent coefficients, which suggests the existence
of 10 tensors J2 such that A 1 = a1J3 +... +a10J}y, J2©4JL = JL 0412 = JL 04K =
JL 04K =0, and J}, ©4 J* = J* ©4 J} = J! whatever the value of n = 1..10. These
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10 V. Monchiet, G. Bonnet

tensors read:

1 1 1 1
1:7'1[‘—711‘ 1:7T_7T
7 513 — gT1, I3 314 —gTh
. 2 1
J3:T8+§T1_§(T2+T3+T4)
1 1 1 1
1:7T—7T 1:7T_7T
Iy 515 — 5T, J5 506 — 5T
. 2 1
JGZT9+§T1—§(T2+T5+T6)
L4 2 1
J; = - [Tm + §T1 - g(Ts +Ts + T7)} (3.10)
4 2 1
1
= 2T+ 2T - Z(Ta 4+ T T]
J5 7[ 11+9 1 3( 1+ Te +T7)
1711 1 5
1
= [ =T = Z(To+Tv) = 2(Ts + Ta+ Ts + T
Jg 7{9 1 3( 2+ T7) 3( 34+ T4+ Ts + Te)

+2(Tg+ To + T1p + T11) — Tiz + 3(Ti3 + Tia) — GTls}

2
Jlo = S(T” —Tis)

The contraction between the different tensors J. for n = 1..10 are given below:

O VRN I N E S B 08 I A U 7S 30 O I R A E
I BBl |jlojojlolo|o0o|0] O
I3 O[O0 [0 |[JH|J3|T5|0]0]|0O
J3 oO|lojo|O0|O|0O|J ]I |}

ool n|i]lolololo|0]|o0
It 0|00 |J|I|[JE|0]0]0
I¢ 0] 0|0[0|0][0]|Ji|J]J}
oo Ii |35 olololo|0]|o0
I3 010 |0 |J|IE|[I5| 0] 010
I3 0/ 0|0[0 |00 /|J[I|[I]| O

o | O | o | o | o |o | o

Jo ojojofjo0o|lO0]O0O]|O0O[O0]|O0/|J

Table 4: The quadruple contraction between the J. for n = 1..10
Note that J' = Ji + Ji + J§ + Ji,.

Finally, Ak is within a vector space having dimension 2. So we introduce K,, such
that Ag = a1Ky + Ko, JP 04 K, = K,, ©4JP =0, and K,, 0, K=K o4, K, =K,
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Inversion of higher order isotropic tensors 11

whatever the value of n = 1..2. These tensors read:

2

1 1
K, = 6(T4 + T5 — T3 —Tg) + §(T13 — T14) + =(T16 — T17)

ot

1 5
Kp = 5=(12T1 — 11Ty — 11T7 + 13T12) — 77 (Ts + Ty + Ts + To) (3.11)

4 1 6
+ 7(T8 + Ty + Ty + T11) + §(T13 + T4) — ?(Tw + Ty7)

Note that K = K; + K.
The contraction between the different tensors K,, for n = 1..2 are given below:

®4 K | Ko

K Ky | O

Ky 0 | Ko

Table 5: The quadruple contraction between the K, for n =1..2

Note that the table of products is the same as for the case of 6t"-order tensors.

All 8*"-order tensors A having the minor symmetries can be decomposed by using
the irreducible basis (J},J2,,K,). Appendix B produces the relations allowing to
obtain the components of any 8"-order tensor within basis (JL,J2,,K,) from its
components in the basis T;). As for the case of a 6/"-order tensor, (Ey, ®4,1) define
a monoid for the composition ®4, the unit tensor for ®4 being I = T13.

The following decomposition of the space Eg = Jg|JJZ|J Ks is used where J3
define the sub-space of isotropic 8"-order tensors which can be decomposed in the
basis of tensors J2 for n = 1..4, the sub-space J¢ and Ky being respectively associ-
ated to J. for n = 1..10 and K,, for n = 1..2. It can be observed that (Kg, ®4, K)
define a commutative sub-monoid, while (JZ, ®4,J?) and (Jg, ®4,J1) define two
sub-monoids.

Let us decompose A € FEg by using the new basis:

A = a1 Ky + a2Ky + agi + a5J5 + a6J3 + a7Jj + asl} + aolg (3.12)

+G,10J% + allq]]él; + alzjé + algaﬂio + algﬂ% + a14J§ + CL15J;2), + alGJi

Let us do the same with a second tensor B, its components within the new basis
being denoted by b; for ¢ = 1..16. Defining now C by C = A &4 B, its components
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within the new basis are given by:

c1 =aiby, c2 = asby

c3 = aszbs + asbg + asby, ¢4 = azby + asbr + asbio

c5 = aszbs + asbg + asbi1, ce = agbs + arbs + agby

c7 = agbs + arby + agbig, c¢s = agbs + arbs + agbi (3.13)
cg = agbz + aipbe + ai1bg, c10 = agby + aipbz + ai1bio

c11 = agbs + aipbs + ai1bi1, ci2 = ai2bi2

c13 = a13b13 + a1ab15, €14 = a13b14 + a14b16

c15 = a15b13 + ai16b15, c16 = aisbia + aiebie

We now look for the inverse of a 8*-order tensor A. The components of B, solution
of the equations B4 A = A ©4 B =1 are:

with:

1 1
bi=—, by=—
ai a3z
__ Grai; — asgaio Q5010 — Q40711 __ a4ag — asar
by = LT8Oy, o TOTW0 T AL, - A8 00T
AJl AJl AJl
agag — aed11 a3ail — asag a5a¢ — azasg
b= ————— b= — 22 pyg= 22 20 (3.14)
AJ] AJ] AJl
ae10 — A70a9 aqa9 — azaio aza7 — 406
bg = —-——, bpo=——7r—, bu=-—p——
A A A
1 _ae Gy _ ags T
bio=—, big=—, biu=—-—, bis=———, big=
a2 AJ2 AJQ AJ2 AJQ
A2 = a13a16 — 14015
(3.15)

Ay = azarain + asagag + asasaio — azagaio — A406a11 — A5a709

The condition for A having an inverse is: ajasai12A 1Ay #0

4. The case of higher order isotropic tensors

We aim at generalizing the methodology proposed in the previous sections to the
case of 2nt"-order tensor for n > 5. To this aim, consider a n*" order tensor a, its
components being denoted by a;jx..;. This tensor is assumed symmetric according
to its two first indices a;jx..; = ajir.. and also according to its n — 2 last indices
k..l. Tensor a can be decomposed as follows:

a = D(a)+ |S'(a) + S*(a)... + SP(a) (4.1)

with n = 2p if n is an even number but n = 2p + 1 if n is an odd number. D(a) is
the deviatoric part of a such that [D(a)]ppk..i. = [D(@)]ijppk... = [D(@)]ipjpk..1 = 0.
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In the expression above, SP(a) denotes n*" spherical part of p. Tensors SP(a) have
the properties:

[S'(a) + S*(a)... + SP(a)]
[S'(a) + S*(a)... + S*(a)]

ijppk?“l = a/’ijppk..l

ppljk?l = appijk..l

[S'(a) + S*(a)... + S*(a)]

ipjpk..l = Qipjpk..l

[S%(@)-e: + S7(@)] ; pugts = Giippagk.. (4.2)
[Sz(a)... + Sp(a)]ppijqqk“l = Qppijqqk..l

(S*(a)... + Sp(a)]ipquqk“l = Qipjpqqk..l

etc...

Consequently, we introduce tensors K, JP for p = 1,2,3... and I such that: D(a) =
K ®, a, SP(a) = J? ®, a and I ®,, a = a. We can define the independent sub-
spaces Koy, Jb for p = 1,2,3.. associated to K, JP, used for the decomposition
of A . The second step is to apply the decomposition Ax = a1K; + asKs + ...,
A = a1J8 + axJb + ... Consequently, A, is decomposed as:

A=) aKn+) D apml, (4.3)
n P n

In table 6 are given the number of irreducible tensors K,,, JP for 2 < n < 6.

2n =4 1 1 0 0 0

2n = 2 4 0

2n =8 2 10 4

2n =10 3 13 9

-~ o | O | ©
o | o | o | o

2n =12 2 13 17

Table 6: Number of irreducible elements of the sub-space Ko, and J%,

5. Higher order inhomogeneity problem: the spherical
inclusion in an infinite matrix subjected to a polynomial

The Eshelby

Yo

S

remote strain field

inhomogeneity problem” (Eshelby 1957) is well known for the case of

a given constant strain field at infinity: it gives the strain field inside an ellipsoidal
inclusion having elastic properties which are different from the material outside
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the inclusion. This problem uses the solution of the ”inclusion problem” for which
a constant free deformation is given within an ellipsoidal part of an homogeneous
material. The inclusion problem can be extended to the case of free deformations
which have a polynomial form, but the solution of the "inhomogeneity problem” for
the case of polynomial strain fields at infinity needs the inversion of higher order
tensors. In this section, the method used for obtaining the inverse of higher order
tensors is used for solving the “inhomogeneity problem” in the case of spherical
inhomogeneities made up of an isotropic material and located within an infinite
isotropic medium. Let us consider a spherical inclusion located at z; = 0 made up
of an isotropic elastic material of rigidity Cj;x; embedded in an infinite isotropic
elastic matrix whose rigidity is C?jkl. We denote by A, p, v (resp. Ao, o, Vo) the
Lamé moduli and the Poisson ratio of the inclusion (respectively of the matrix). The
inclusion is subjected to a polynomial remote strain field > (z) = e;; + €2k +
eijkiZrx;. It has been proved (see Mura 1987 in the case of an infinite isotropic
medium and the work of Asaro & Barnett 1975 in the anisotropic context) that the
strain field within the inclusion is also a polynomial and reads:

aij(x) = Q5 + QT + QR TET] - (5.1)

In the following a series for a;;(x) at the second order is considered, a;;, a;;x and
ai;k1 are solutions of:

€ij = {Im)q Pijm,nécmnPQ} apq + Cij

J— .. _— 0
Cijk = [prqékr ‘PijkmnrécmnPQ}G’PqT

(5.2)
Cijkl = [Iiqujklrs — nglmmséa,mpq} Apgrs
etc...
with:
Cij = ?jmnrsacmnpqapqrs (53)

In the expression above 6Cjjk = Cijit — C’?j o and Pi(}mn are the components of the
Hill tensor (Hill 1975), which are obtained from the components of the Eshelby’s

tensor and from the components of the inverse Siim,. of the elasticity tensor by

P%mn = FEijki-Skimn. This tensor depends only of the elastic properties of the
infinite medium. QY;,,,,,,5, Pg e P%klmws are the components of higher-order

Hill-type tensors which are introduced by a;;r and a;jr;. As for the classical Hill’s
tensor, they are built from the inverse of the elasticity tensor and from higher order
Eshelby’s tensors which can be found in Mura (1987). Those tensors can be derived
within the basis composed of T,, for both case of a sixth and eighth order tensor and
translated into the basis composed of (K,,,JP) by using the base change relations
given in appendix. Note that, once a;jz; is determined by solving the last equation
in (5.2), one can compute ¢;; for obtaining a;; from the first equation in (5.2).

It can be observed that a;;, a;;x and a;;,; are solutions of a linear equation having
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the form:

b=1|I-P°0®, iC|oLa

S (5.4)
=A

for n = 2,3,4. Obviously, a closed-form expression of the strain field within the
inclusion requires the inversion of tensor A = I — P ®,, §C for which it will be
convenient to use the formalism introduced in the last sections.

e In the case where a is a second order tensor, I, PY and §C are 4"-order isotropic
tensors having the minor symmetries. The components of b are given by b;; =
a;j — ¢;;. Solution of (5.4) is trivial, and can be found in Mura (1987), for instance.

e Consider now the case of a third order tensor a. The components of the Hill-type
tensor PO written in the basis (K,,J,) given in section 2, are:

po_ 1w ) o 12
35u0(1 — 1)’ 1040’ 87 10p0(1 — 1) (5.5)
0 140} 0 1-— QVO 0 5 — 71/0 '

Pl Pl= =— 2
4 1040 (1 — vp) > Buo(l —vo) 67 1001 — vp)

P)..PY are the components of P’ in the basis (K,,J,) as defined in (2.7). The
components of C are 6C;jpqdxr. The decomposition in the basis (K,,,J,) is given
by:

5C = AT, + 20uTs

(5.6)
= 6A[301 + Jo| + 20u[Ky + Ko + Iy + 1]
The computation of the inverse of A =1 —P° ®,, 6C, denoted B leads to:
B 1 4(po — p) (420 + 11p0) 9 _ _OHo
! 160/ + 190 Ao + 44puop + 262 1+ 4po
By =1+ puDy, By=D,, Bs=2uDi, Bs= %(1 +2D;,)
5.7
Dl — 200 + 3Xo — 21 — 3 (5.7)
VT 3A A+ 210 + 202 + 8piop
D, Aopt — poA

- 3+ 200X + 2u% + 8oy
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e In the case n = 4, The Hill-type tensor P° is decomposed within the basis
(KH,J}” J%) given in section 3. One has:

po_ 2 po_ 2AT—9w) o 1-2
Tpo’ 21p0(1 — 1)’ 5 Bpe(1 —wo)
2(1 - 21/0) 0 4(1 — 21/0) 0 1-— 2V0

PO = 5 = 5 = —-——
T 15u0(1 — 1) 5 21ue(1 — 1) 67 3uo(1 — vp)

o 2(4—5w) o 25— Tw) 0 1 —2u
T Regao .y Beg s
15/},0(1 — 1/0) 21/1()(1 — VQ) 3”0(1 — Vo)

(5.8)
o 5—Ty o _ Tl 1
0= 5 N = o7 12 =
1540(1 — vo) 21p0(1 — vo) Ho
po_ 1= 0 _ 20-2w) o 2(1-2w)
13 ) 14 ’ 15
5p0(1 —10) 5p0(1 —10) 5p0(1 —10)

o _ 2(1-2w)
7 Buo(1 - o)

P..Pfs are the components of P* in the basis (K,,J.,J2) as defined in (3.12).
0C;j11 is replaced by an equivalent 8t"_order tensor whose components are given by
0C;jkilpgrs which reads, in the basis (K, JLJ%):

(SC = 6>\T2 + 25,UJT13

(5.9)
= 30A[13 + 203] + 200Ky + Ko + I} + I + I + Il + 3% + I3
Components of B are given by:
o, Ap = po) _ 4(p — po) (50 + 14p0)

Bi=1—-——= By=1- 5

3po +4p (Moo — 14p2 + 20X\op + 56p410)
Bg =1+ 2D1(3,U, - 38/10), B4 = 4D1(2/,L - 9#0)
B5 = —8D1(2,u + 3[140)7 B6 = 10D1(2,LL - 9[[1,0)
B7 =1- 2D1 (32/}, + 21)\0 + 24[},0)7 Bg = 1OD1 (4,u + 3)\0 + 6M0)
By = —14D1(2p 4 310), Bio = —7D1(4p + 3Xo + 6p0) (5.10)
B11 =1- D1(28,LL + 15)\0 + 42#0), Blg = Ho

20— po

Dy = 2(p — po)
3(—3Xopo + 38N — 42u + 562 + 56/1410)

B3 =1+ Dy, Byy= Bis=2D;3, Big=1+4D,
_ 23(A = o) +2(4 = po)
5 B + 29 — 6A —4p

These results finalize the closed form solution of the higher order "heterogeneity
problems”.

D,y
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6. Conclusion

The present study deals about the inversion of an isotropic 2n*"-order tensor hav-
ing particular symmetries (called "minor symmetries” in the paper). To reach this
objective, irreducible bases for isotropic 2nt’-order tensors has been provided in
the present paper. These bases extend the (J,K) basis used for isotropic 4*"-order
tensors. The particular case of 6/"-order and 8"-order tensors has been examined in
this paper and higher-order cases has been addressed in section 4. The methodology
used consists in decomposing 3"%-order and 4*"-order tensors into their deviatoric
and spherical parts as commonly used in the case of a tensor of order 2. The par-
ticularity with tensors of order n > 4 lies in the definition of spherical parts of
order 1,2,3... while for tensors of order n < 3 only one definition of the spherical
part is used (for instance, in the case of a 2"%-order tensor the first spherical part
corresponds to the classical definition). This decomposition of a n'” tensor appears
to be useful for obtaining the irreducible bases (K, J?)” for isotropic 2nt"-order
tensors.

It it shown that the bases "(K,,J2)” are useful for effecting the tensorial opera-
tions and particularly for the inversion of a 2n'"-order tensor. In order to show the
relevance of this formalism, we derive the closed-form expression of the strain field
within a spherical inclusion subjected to a polynomial remote strain field. This re-
sult is an extension of the well known use of the Eshelby’s tensor for obtaining the
solution of the heterogeneity problem which is the base of numerous homogenization
problems. It suggests that the results of higher order heterogeneity problems could
be used for obtaining the effective properties in the context of gradient elasticity.
This will be developped in a forthcoming paper.

Appendix A. The SFH decomposition

The SFH decomposition of a third order tensor a (symmetric according to its two
first indices) has been introduce by Smyshlyaev & Fleck (1996) and formalized by
Fleck & Hutchinson (1997). It reads:

a = a(l) + (L(Q) + a(3) (A ]_)
with:

W) _ps L e s s s o
Aijr = Qijr — g( i Opp T 0ikQjpy + Jkaipp)

2 1 s s
az(’jl)c = g(’sz‘p“m’ + 5kjp"ﬁpi)

(3) 1 a a 1 S s s A2)
Gyl = g(ek’ipnpj + 5kjp/fpi) — g(éijakpp + 5ikajpp + 5jkaipp) (

S 1 S a 1
az, = g(aijk + Qikj + jri), Ky = 5('%‘ +Kji), Kpj = 5('%‘ — Kji)

Kij = €ipqQjqgp

where €, is the permutation symbol.
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Appendix B. Base change relations

Let us denote by a,, for n = 1..6 the components of a sixth order tensor A in the
basis T,, for n = 1..6. Let the b,, for n = 1..6 be the components of A in the basis
(K., J,) as defined in (2.7). The relations giving the b,, as functions of the a,, are:

b1 = as + as

by = as —as/2

b3 =3a1 +as + ay

by = a1 + 2a4 + a5/2

bs = 3as + as + ag

b = as + as + as/2 + 2ag

Let us denote by a, for n = 1..16 the components of an eighth order tensor A in
the basis T,, for n = 1..16 and let the b,, for n = 1..16 its components in the basis
(K, J%,J2) as defined in (3.12). The relations giving the b, as function of the a,
are:

by = a3 —au

by = a13 + ais +ass

bs = 3as + as + a0 + a3 + (a15 + a16)/3

by = 3aq + as + a1 + a4 + (a15 + a16)/3

bs = ag + (ai5 + aie)/3

b = 3as + ag + aio + a4 + (a15 + ais)/3

by = 3ag + ag + a1 + a1z + (a15 + a6)/3

bg = ag + (a15 + aig)/3

bg = 7(3a10 + a15 + a16)/12

bio = 7(3a11 + a5 + aie)/12

bi1 = a13 + a4 — a15/6 + Tae/12

bi2 = a13 — a4 — Saie/4

b1z = 9aq + 3as + 3asg + 3a4 + 3as + 3ag + ag + ag + a3 + a4
bis = 3a1 + 6ag + ag + a4 + as + ag + 2as + 2a9 + a15/2
bis = 9ar + 3a10 + 3a11 + 3a12 + a15 + ae

bie = 3ar + a0 + a1 + 6a12 + a1z + a1s + ai5/2 + 2as6
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