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Abstract

This paper studies the recovery of an unknown signal x0 from low dimen-
sional noisy observations y = Φx0 + w, where Φ is an ill-posed linear operator
and w accounts for some noise. We focus our attention to sparse analysis reg-
ularization. The recovery is performed by minimizing the sum of a quadratic
data fidelity term and the `1-norm of the correlations between the sought after
signal and atoms in a given (generally overcomplete) dictionary. The `1 prior
is weighted by a regularization parameter λ > 0 that accounts for the noise
level. In this paper, we prove that minimizers of this problem are piecewise-
affine functions of the observations y and the regularization parameter λ. As a
byproduct, we exploit these properties to get an objectively guided choice of λ.
More precisely, we propose an extension of the Generalized Stein Unbiased Risk
Estimator (GSURE) and show that it is an unbiased estimator of an appropri-
ately defined risk. This encompasses special cases such as the prediction risk,
the projection risk and the estimation risk. We also discuss implementation is-
sues and propose fast algorithms. We apply these risk estimators to the special
case of sparse analysis regularization. We finally illustrate the applicability of
our framework on several imaging problems.
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risk estimation.

1. Introduction

1.1. Linear Inverse Problems

In many applications, the goal is to recover an unknown signal x0 ∈ RN
from noisy and degraded observations y ∈ RQ. The forward observation model

y = Φx0 + w, (1)

assumes that the degradation is linear. The noise is a deterministic vector
w ∈ RQ for the contributions detailed in Section (2.1), and a zero-mean white
Gaussian noise w ∼ N (0, σ2IdQ) for the contributions of Sections 2.2, 2.3 and
2.4. The mapping Φ : RN → RQ is a bounded linear operator which is typically
ill-behaved since it models an acquisition process that entails loss of informa-
tion so that Q 6 N . In image processing, typical cases covered by the above
degradation model are entry-wise masking (inpainting), convolution (acquisition
blur), Radon transform (tomography) or a random sensing matrix (compressed
sensing).

Linear inverse problems are among the most active fields in signal and image
processing [1]. In order to regularize them and reduce the space of candidate
solutions, one has to incorporate some prior knowledge on the typical structure
of the original signal or image x0. This prior information accounts for the
smoothness of the solution and can range from uniform smoothness assumption
to more complex geometrical priors.

1.2. Variational Regularizations

Variational analysis gives a framework to inverse linear problems such as (1).
The general method reads

x?(y) ∈ argmin
x∈RN

F (x, y) + λR(x). (2)

where F is a so-called data fidelity term, R a regularization of the recovered
signal and λ > 0 a regularization parameter. This term allows one to balance
the impact of the regularization in the minimization. In this paper, we consider
a least square error term which reads

F (x, y) =
1

2
||y − Φx||22, (3)

and corresponds in a bayesian framework to a Gaussianity assumption on the
noise w. Tikhonov regularization makes use of a quadratic prior R(x) =
〈x, Kx〉, where K is a symmetric positive definite kernel. This typically en-
forces some kind of uniform smoothness of the recovered vector. To capture the
complexity of image structures, non-quadratic priors are required, among which
sparse regularizations using the `1 is the most popular choice.
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1.3. Sparse Analysis Regularization

We call a dictionary D = (di)
P
i=1 a collection of P atoms di ∈ RN . This

collection may be redundant in RQ, whose span may be RN or only a subset of
it. It can also be viewed as a linear mapping from RP to RN which is used to
synthesize a signal x ∈ Span(D) ⊆ RN as x = Dα =

∑P
i=1 αidi, where α is not

uniquely defined if D is a redundant dictionary.
The analysis regularization with respect to a dictionary D corresponds to

using R = RA in (2) where

RA(x) = ||D∗x||1. (4)

This leads us to the following minimization problem which is the focus of this
paper

x?(y) ∈ min
x∈RN

1

2
||y − Φx||22 + λ||D∗x||1. (Pλ(y))

Note that the set of (global) minimizers of Pλ(y) is nonempty and compact if,
and only if,

Ker Φ ∩KerD∗ = {0}, (H0)

since the objective function is proper, continuous and convex (see for in-
stance [2]). All throughout this paper, we suppose that this condition holds.

The most popular analysis sparse regularization is the total variation, which
was first introduced for denoising in [3]. It corresponds to using an operator
D∗ which is a finite differences approximation of the gradient. The correspond-
ing prior RA favors piecewise constant signals and images. A review of total
variation regularization can be found in [4]. The theoretical properties of total
variation for denoising has been extensively studied. A distinctive feature of this
regularization is that it tends to produces a staircasing effect, where disconti-
nuities not present in the original data might be created by the regularization.
This effect has been studied by Nikolova in [5] in 2-D.

When D = Id, the sparse prior RA is coined synthesis regularization. The
corresponding regularization problem is either referred to as the LASSO prob-
lem in the statistics community [6] and basis-pursuit denoising in the signal
community [7]. Despite synthesis and analysis priors both making use of the
`1 norm, their behaviors differ greatly when D is not orthogonal, see for in-
stance [8]. While the theoritical performance of synthesis regularization has
been extensively studied, only a few papers have targeted the analysis case, see
in particular [9, 10].

1.4. Local Variations

Local variations and sensitivity/perturbation analysis of problems in the
form (2) is an important topic in optimization and optimal control. Compre-
hensive monograph on the subject are [11, 12]. In this paper, we focus on the
variations with respect to the regularization parameter λ and the observations
y, i.e we study the set-valued mapping (λ, y) 7→ Mλ(y) whereMλ(y) is the set
of minimizers of (2). We also restrict our attention to first-order properties of
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this mapping, although second-order properties might be of interest as well (see
e.g. [11, 13]).

In the synthesis case (D = Id), the works of [14, 15] prove that the mapping
λ 7→ x?(y) is piecewise affine for a fixed y. This enables the computation of the
set of solutions for all λ using an homoropy algorithm. This result is extended
to the underdetermined case in [16]. The work of [17] proposes a homotopy
algorithm in the overdetermined case for sparse analysis regularization. We
come back to this latter work in Section 3.

1.5. Risk Estimation

This paper is also focussed on unbiased estimation of the `2-risk of recovering
a vector x0 ∈ RN from (1) by solving (2), under the assumption that w is a
Gaussian white noise. These unbiased estimates depend solely on y, without
prior knowledge of x0. This can prove very useful as a basis for automatic ways
to choose the parameters of the reconstruction algorithm, e.g. λ in (2).

Degrees of freedom (DOF) is a familiar phrase in statistics. More generally,
degrees of freedom is often used to quantify the complexity of a statistical mod-
eling procedure. However, there is no exact correspondence between the DOF
and the number of parameters in the model. The DOF plays an important role
in model validation and selection. From the seminal definition of Efron [18], the
degrees of freedom is given by

df(x?) =

Q∑
i=1

cov(yi, (Φx
?(y))i)

σ2
.

Many model selection criteria involve the DOF, e.g. AIC (Akaike information
criterion [19]), BIC (Bayesian information criterion [20]) or GCV (generalized
cross-validation [21]). It allows us to estimate the risk in reconstructing Φx0,
i.e. the prediction risk R = Ew(||Φx?(y)−Φx0||2). Indeed, Mallows’ Cp statistic

Cp = ||y − Φx?(y)||2 −Qσ2 + 2σ2df(x?)

is an unbiased estimate of R = Ew(Cp). Since the DOF is usually unknown, Cp
cannot be used directly. Instead, an unbiased estimate of the DOF can be used
to unbiasedly estimate the risk through a modified Cp, e.g. the Stein Unbiased
Risk Estimator (SURE) given by [22]:

SURE= ||y − Φx?(y)||2−Qσ2+2σ2d̂f(x?) with d̂f(x?)=tr

(
∂Φx?(y)

∂y

)
(5)

and where Ew(d̂f(x?)) = df(x?).

1.6. Applications of (G)SURE

Applications of SURE emerged for choosing the smoothing parameters in
families of linear estimates [23] such as for model selection, ridge regression,
smoothing splines, etc. It has been extensively used in the statistical community
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as a competitor to other model selection techniques, e.g. AIC, BIC and GCV.
In some setting, it has been shown that it offers better accuracy than GCV
and related non-parametric selection techniques [24]. Compared to GCV, the
drawback of SURE is that it requires the knowledge of the noise variance σ2.

After its introduction in the wavelet community with the SURE-Shrink algo-
rithm [25], it has been widely used for various image denoising problems, e.g. in
sparse regularization [26, 27, 28] and in non-local filtering [29, 30, 31]. In the
context of inverse problems, the minimizers of the prediction risk can sometimes
be far away from the minimizers of the estimation risk E(||x?(y) − x0||2) [32].
In [27], the authors proposed an approximation of the estimation risk that relies
on a stabilized approximation of the inverse of Φ. In general, either Φ should
have full rank or x0 should belong to ker(Φ)⊥ to guarantee the existence of an
unbiased estimator of the estimation risk [33].

A generalized SURE (GSURE) has been developed for noise models within
the multivariate canonical exponential family [34]. It allows one to estimate
the risk on a projected version of x?. Indeed, in the scenario where Φ is rank-
deficient or redundant, the GSURE can at best estimate the projection risk
E(||Πx?(y)−Πx0)||2) where Π is the orthogonal projector on ker(Φ)⊥.

1.7. Organization of this Paper

Section 2 details our three contributions. Section 3 draws some connections
with relevant previous works. Section 4 illustrates our results using numerical
examples. The proofs are deferred to Section 5 awaiting inspection by the
interested reader.

2. Contributions

The contributions at the heart of this paper are the following:

(i) Local affine parameterization: a solution of Pλ(y) is a piecewise affine
function of (y, λ).

(ii) GSURE: an unifying framework to compute unbiased estimates of several
risks, including the prediction risk, the projection risk and the estimation
risk.

(iii) Sparse Analysis Estimation Risk: the previous framework is instan-
tiated for sparse analysis-based estimators.

(iv) Numerical Computation of GSURE: sparse analysis DOF and
GSURE can be approximated by solving a simple linear system.

Each contribution is rigorously described in the following sub-sections.
We start with some notations used in the sequel. The sign vector sign(α) of

α ∈ RP is

∀k ∈ {1, · · · , P}, sign(α)k =


+1 if αk > 0,

0 if αk = 0,

−1 if αk < 0.
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The support of α ∈ RP is

supp(α) = {i ∈ {1, · · · , P} \ αi 6= 0} .

For a set I, |I| denotes the cardinal of I. The matrix MJ for J a subset of
{1, . . . , P} is the submatrix whose columns are indexed by J . Similarly, the
vector sJ is the reduced dimensional vector built upon the components of s
indexed by J . The matrix Id is the identity matrix, where the underlying space
is implicitly defined from the context. For any matrix M , M+ is the Moore–
Penrose pseudoinverse of M and M∗ is the adjoint matrix of M .

2.1. Local Affine Parameterization

In this section, the noise w ∈ RQ is a deterministic vector. Our first contri-
bution gives a local affine parameterization of solutions of Pλ(y).

Recall that D is a dictionary of RN×P . We define the D-support I (resp.
D-cosupport J) of a vector x ∈ RN as I = supp(D∗x) (resp. J = Ic). Given J
a subset of {1 · · ·P}, the cospace GJ is defined as

GJ = KerD∗J .

For some cosuport J , it is important to ensure the invertibility of Φ on GJ . This
is achieved by imposing

Ker Φ ∩ GJ = {0}. (HJ)

Note that there is always a solution of Pλ(y) such that (HJ) holds as shown in
Lemma 6.

Definition 1. Let J be a D-cosupport. Suppose that (HJ) holds. We define
the operator Γ[J] as

Γ[J] = U (U∗Φ∗ΦU)
−1
U∗. (6)

where U is a matrix whose columns form a basis of GJ .

The transition space H defined below corresponds to observations y and
scaling parameter λ where the cospace GJ of the solution of Pλ(y) is not stable
with respect to small perturbations of (y, λ).

Definition 2. The transition space H is defined as

H =
⋃

J⊂{1,··· ,P}
(HJ ) holds

⋃
K⊂J

Im Π̃[J] 6⊂ImDKc

⋃
sJc∈{−1,1}|Jc|

⋃
sK∈{−1,1}|K|

HJ,K,sJc ,sK ,

where

HJ,K,sJc ,sK =
{

(y, λ) ∈ RQ × R \ PGKc Π̃[J]y = λ(Ω̃[J]sJc +DKσK)
}
,

where Π̃[J] = Φ∗(ΦΓ[J]Φ∗− Id), Ω̃[J] = Φ∗ΦΓ[J]− Id and PGKc is the orthogonal
projection on GKc .
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The following theorem is our first contribution.

Theorem 1. Let (y, λ) 6∈ H and let x?(y) a solution of Pλ(y). Let I be the
D-support and J the D-cosupport of x?(y) and s = sign(D∗x?(y)). We suppose
that (HJ) holds. We define

∀ȳ ∈ RQ,∀λ̄ ∈ R, x̂λ̄(ȳ) = Γ[J]Φ∗ȳ − λ̄Γ[J]DIsI .

There exists an open neighborhood B ⊂ RQ × R of (y, λ) such that for every
(ȳ, λ̄) ∈ B, x̂λ̄(ȳ) is a solution of Pλ̄(ȳ).

If Pλ(y) admits a unique solution xλ(y) for each λ, this theorem shows that
λ 7→ xλ(y) is a polygonal path in RN .

2.2. Generalized Stein Unbiased Risk Estimator

For the following contributions, the noise is assumed to be a zero-mean white
Gaussian vector w ∼ N (0, σ2IdQ). In this section, we consider an arbitrary
estimator x?(y) such that Φx?(y) is defined without ambiguity. Using this
assumption, we define the quantities

µ?(y) = Φx?(y) and µ0 = Φx0.

We define an extension of GSURE that estimates the risk of reconstructing Aµ0

with an arbitrary matrix A ∈ RM×Q. We introduce this general definition which
allows one to recover the prediction risk (with A = Id), the projection risk when
Φ is rank deficient (with A = Φ∗(ΦΦ∗)+) and the estimation risk when Φ has
full rank (with A = (Φ∗Φ)−1Φ∗).

Definition 3. Let A ∈ RM×Q. We define the Generalized Stein Unbiased Risk
Estimate (GSURE) associated to A as

GSUREA(y) =||A(y − µ?(y))||2 − σ2 tr(A∗A) + 2σ2devA(y) ,

where

devA(y) = tr

(
A
∂µ?(y)

∂y
A∗
)
.

The next theorem is our second contribution, and shows the importance of
this estimator.

Theorem 2. Let A ∈ RM×Q. Suppose y 7→ µ?(y) is weakly differentiable. If
y = Φx0 + w with w ∼ N (0, σ2IdQ), then

Ew
(
GSUREA(y)

)
= Ew

(
||Aµ0 −Aµ?(y)||2

)
.

All estimators of the form GSUREB with B such that BΦ = AΦ share
the same expectation given by Theorem 2. Hence, there are several ways to
estimate the risk in reconstructing Aµ0. For the estimation of the prediction,
the projection and the estimation risks, we introduce the following canonical
estimators (with subscript notations) as direct consequences of Theorem 2:
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• GSUREId provides an unbiased estimate of the prediction risk:

GSUREΦ(y) = ||y − µ?(y)||2 −Qσ2 + 2σ2 tr

(
∂µ?(y)

∂y

)
which coincides with the classical SURE defined in eq. (5).
• When Φ is rank deficient, Π = Φ∗(ΦΦ∗)+Φ is the orthogonal projector on

ker(Φ)⊥ = Im(Φ∗). Denoting xML(y) = Φ∗(ΦΦ∗)+y the maximum likelihood

estimator, GSUREΦ∗(ΦΦ∗)+ provides an unbiased estimate of the projection risk:

GSUREΠ(y)= ||xML(y)−Πx?(y)||2−σ2 tr
(
(ΦΦ∗)+

)
+2σ2 tr

(
(ΦΦ∗)+ ∂µ

?(y)

∂y

)
.

• When Φ has full rank, y 7→ x?(y) is uniquely defined and weakly differ-
entiable. Denoting xML(y) = (Φ∗Φ)−1Φ∗y the maximum likelihood estimator,

GSURE(Φ∗Φ)−1Φ∗ provides an unbiased estimate of the estimation risk given by:

GSUREId(y) =||xML(y)− x?(y)||2 − σ2 tr
(
(Φ∗Φ)−1

)
+ 2σ2 tr

(
Φ(Φ∗Φ)−1 ∂x

?(y)

∂y

)
.

Note that if Φ is a Parseval tight frame operator, i.e. ΦΦ∗ = Id, the prediction
risk matches with the projection risk as well as the proposed GSURE estimates

||Πx0 −Πx?(y)||2 = ||µ0 − µ?(y)||2 and GSUREΠ(y) = GSUREΦ(y) .

2.3. Analysis Sparsity Risk Estimation

Definition 4. Let λ ∈ R∗+. We define the λ-restricted transition space as

H·,λ =
{
y ∈ RQ \ (y, λ) ∈ H

}
.

We first notice that even if Pλ(y) admits several solutions, all of them share
the same image under Φ, see Section 5.3 for proof of this point. Hence, we denote
without ambiguity Φx?(y), where x?(y) is a solution of Pλ(y). The following
theorem is our third contribution.

Theorem 3. Let λ ∈ R∗+. The λ-restricted transition space has a Lebesgue
measure zero. Moreover, the mapping y 7→ µ?(y) is of class C∞ on RQ \ H·,λ.
For y 6∈ H·,λ, there exists x? a solution of Pλ(y) such that (HJ) holds with J
the D-cosupport of x?, and

∂µ?(y)

∂y
= ΦΓ[J]Φ∗. (7)

For y 6∈ H·,λ, we define d(y) = dim(GJ) where J is the D-cosupport of any
solution x? such that (HJ) holds. We then obtain the following corollary as a
consequence of Theorems 2 and 3.
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Corollary 1. With the notations of Section 2.2,

GSUREΦ(y) =||y − µ?(y)||2 −Qσ2 + 2σ2d(y),

GSUREΠ(y) =||xML(y)−Πx?(y)||2 − σ2 tr((ΦΦ∗)+) + 2σ2 tr(ΠΓ[J]),

GSUREId(y) =||xML(y)− x?(y)||2 − σ2 tr((Φ∗Φ)−1) + 2σ2 tr(Γ[J]) .

Moreover, d(y) is an unbiased estimator of the degrees of freedom of Pλ(y), i.e.

df(x?) = Ew (d(y)) .

2.4. Numerical Computation of the GSURE for sparse analysis estimators

The following proposition gives a way to compute efficiently the divergence
term of sparse analysis estimators which boils down to solving a linear system.

Proposition 1. One has

devA(y) = EZ(〈ν(Z), Φ∗A∗AZ〉) (8)

where Z ∼ N (0, IdP ), and where for any z ∈ RP , ν = ν(z) solves the following
linear system (

Φ∗Φ DJ

D∗J 0

)(
ν
ν̃

)
=

(
Φ∗z

0

)
. (9)

In practice, the empirical mean estimator is replaced for the expectation in
(8), hence giving

1

k

k∑
i=1

〈ν(zi), Φ∗A∗Azi〉
WLLN−→ tr

(
AΦΓ[J]Φ∗A∗

)
, (10)

for k realizations zi of Z. The numerical computation of ν(zi) is achieved by
solving the symmetric linear system (9) with a conjugate gradient solver.

3. Related Works

3.1. Local variations

The variations of the solution xλ(y) as a function of λ (Theorem 1, that
also considers variations with respect to y) is already known in the synthesis
case, see for instance [35, 15]. Our result also generalizes the work of [17] which
studies the case of Φ overdetermined and develops an homotopy algorithm.

Theorem 3 is known to hold in the special case of synthesis regularization
(D = Id). It is proved in the overdetermined case in [36] and is extended to the
general case in [37].

While this paper was ready for submission, it came to our attention that
Tibshirani and Taylor [38, Theorem 3] recently and independently proved ex-
actly the same result as our Theorem 3. Their proof uses a different approach,
and in particular, they do not study directly the variations of xλ(y) as a function
of y or λ (Theorem 1).
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3.2. Generalized Stein Unbiased Risk Estimator

In the Gaussian context, our definitions of GSUREΠ and GSUREId are
equivalent, up to a constant which does not depends on λ, to the ones in-
troduced in [34]. We have furthermore shown that both arises from a more
general result given in Theorem 2. While the author of [34] imposes x∗(y) to be
a weakly differentiable function of Φ∗y/σ2, our definition does not rely on such
an hypothesis, and it just requires that y 7→ µ?(y) is weakly differentiable.

Indeed, let u = Φ∗y/σ2, and assume y 7→ x∗(y) is a weakly differentiable
function of u, let say, x∗(y) = z∗(u).
•When Φ is rank deficient, Eldar [34] defines an estimator of the projection

risk given by

GSURE
(Eldar)
Π (u) = ||Πx0||2 + ||Πz∗(u)||2 − 2 〈z∗(u), xML(y)〉+ 2 tr

(
Π
∂z∗(u)

∂u

)
.

Note that, since u 7→ z∗(u) is assumed to be weakly differentiable (and a fortiori
defined without ambiguity), we have

∂Φz∗(u)

∂u
= Φ

∂z∗(u)

∂u
.

With the change of variable y to u, the following relation holds true

σ2 tr

(
(ΦΦ∗)+ ∂µ

∗(y)

∂y

)
= σ2 tr

(
(ΦΦ∗)+ ∂Φz∗(u)

∂u

∂u

∂y

)
= tr

(
Π
∂z∗(u)

∂u

)
and hence

GSUREΠ(y)−GSURE
(Eldar)
Π (y) = ||xML(y)||2 − ||Πx0||2 − σ2 tr

(
(ΦΦ∗)+

)
.

• When Φ has full rank, Eldar [34] defines an estimator of the estimation
risk given by

GSURE
(Eldar)
Id (u) = ||x0||2 + ||z∗(u)||2 − 2 〈z∗(u), xML(y)〉+ 2 tr

(
∂z∗(u)

∂u

)
With the change of variable y to u, we have

σ2 tr

(
Φ(Φ∗Φ)−1 ∂x

∗(y)

∂y

)
= σ2 tr

(
Φ(Φ∗Φ)−1 ∂z

∗(u)

∂u

∂u

∂y

)
= tr

(
∂z∗(u)

∂u

)
and hence

GSUREId(y)−GSURE
(Eldar)
Id (y) = ||xML(y)||2 − ||x0||2 − σ2 tr

(
(Φ∗Φ)−1

)
.

In both situations, the two estimators are asymptotically the same (their
difference has an expectation of zero), and in particular, they are both unbiased.
We can show that they have in general a different variance. However, since their
difference does not depend on x∗(.) and in particular on λ, both estimators lead
to the same result when the purpose is to choose the optimal parameter λ.

In the context of deconvolution, GSUREΠ boils down to the unbiased esti-
mator of the projection risk obtained in [39].
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3.3. Numerical computation of the GSURE

In least square regression regularized by a smoothed penalization term, the
DOF can be computed in closed-form [40]. For non-smooth sparse regulariza-
tion, when closed-form expressions was not available, first attempts developed
asymptotically unbiased estimators of the DOF [24]. Ye [41] and Shen and
Ye [42] proposed a data perturbation technique to approximate the SURE when
its closed-form expression is not available or numerically too expensive to com-
pute. For denoising, a similar Monte Carlo approach has been used by Ramani
et al. in [43] and applied to total-variation denoising, wavelet soft-thresholding,
and Wiener filtering/smoothing splines.

Alternatively, an estimate can be obtained by formally differentiating an
algorithm that computes or converges to the solution. Initially, it has been
proposed by [27], and then refined in [44], to compute the GSURE of sparse
synthesis regularization by differentiating the sequence of iterates of the forward-
backward algorithm. Concurrently, a similar GSURE version has been proposed
to non-iterative wavelet-vaguelet deconvolution [39]. We have recently proposed
an extension of this methodology for proximal splitting algorithms solving a
sparse analysis regularization that we applied to isotropic total-variation and
`1 − `2 block sparsity [45].

The introduction of a closed-form expression of an unbiased estimate of
the DOF for synthesis `1 regularization has open a new way to obtain unbiased
estimates of the prediction risk [36, 37]. Our numerical computation of GSUREA

provides an estimate of various risk definitions of the solutions of analysis `1

regularization.

4. Examples

In this section, we exemplify the usefulness of our GSURE estimator which
can serve as a basis for automatically tuning the value of λ. This is achieved
by computing, from a single realization of the noise w, the parameter that
minimizes the value of GSURE(y) for y = Φx0 + w.

4.1. Computing Minimizers

Denoising. Although it is convex, solving Pλ(y) is rather challenging given its
non-smoothness. In the case where Φ = Id, the functional of Pλ(y) is strictly
convex, and one can compute its unique solution x? by solving an equivalent
dual problem [46]

x? = y +Dα? where α? ∈ argmin
||α||∞6λ

||y +Dα||22.

General Case. The proximity operator of x 7→ ||D∗x||1 is not computable in
closed-form for an arbitrary dictionary D. This precludes the use of popular
iterative soft-thresholding (actually the forward-backward proximal splitting)
without sub-iterating. We therefore appeal to more elaborate primal-dual split-
ting algorithm. We use in the numerical example the relaxed Arrow-Hurwicz

11



(a) y (b) x∗ at the optimal λ (c) x0

2 4 6 8 10
4

5

6

7

8

9
x 10

6

Regularization parameter λ

Q
u
a
d
ra

ti
c
 l
o
s
s

 

 
Proposed GSURE

Π

Projection Risk

Optimal λ

(d)

Figure 1: Illustration of the optimal selection of λ in a super-resolution problem (Q/N = 0.5)
with anisotropic total variation regularization (D∗ = ∇). (a) The observed image y. (b) The
solution x∗ at the optimal λ. (c) The underlying true image x0. (d) Projection risk and its
GSURE estimate obtained using k = 1 random realization.

algorithm as revitalized in [47]. This algorithm achieves full splitting where all
operators are applied separately: proximity operators of 1

2 || · ||
2 and λ|| · ||1, Φ, D

and their adjoints.

min
x∈RN

F (K(x)) where

{
F (g, u) = 1

2 ||y − g||
2
2 + λ||u||1

K(x) = (Φx,D∗x).

Several others [48, 49] algorithms exist.

4.2. Computing GSURE Estimates

Total Variation Regularization. In this example, Φ is a vertical sub-sampling
operator suppressing one line over two (hence Q/N = 0.5). The noise level has
been set such that the input image y has a PSNR of 27.78 dB. The regularization
is an anisotropic total variation regularization (D∗ = ∇) where ∇ is the gradient
operator. Fig. 1.d depicts the projected risk and its GSUREΠ estimate with
k = 1 as a function of λ. The curves are indeed unimodal and coincide even
with k = 1 and a single noise realization. Consequently, GSUREΠ provides a

12
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Figure 2: Illustration of optimal selection of λ in a compressed sensing problem (Q/N = 0.5)
by reducing the correlations with the detailed atoms of a multi-scale shift-invariant Haar
dictionnary. (a) The least square estimate xML. (b) The solution x∗ at the optimal λ. (c)
The underlying true image x0. (d) Projection risk and its GSURE estimate obtained using
k = 1 random realization.

high-quality estimate of λ minimizing the risk. A close in on the central area of
the degraded, over-sampled (using the optimal λ), and true images is shown in
Fig. 1(a)-(c) for visual inspection of the restoration quality.

Sparse Analysis Regularization. We consider in this example a compressed sens-
ing setting where Φ is a random partial DCT measurement matrix with an
under-sampling ratio Q/N = 0.5. The input image y has a PSNR set to 27.50
dB. The regularization is D = Ψ where Ψ∗ is a 6N ×N matrix whose columns
compute the detailed coefficients of a multi-scale shift-invariant Haar decomposi-
tion (with 3 scales in horizontal and vertical directions). We estimate GSUREΠ

with k = 1. The results observed on the super-resolution example are confirmed
in this compressed sensing experiment both visually and qualitatively, see Fig. 2.
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5. Proofs

This section details the proofs of Theorems 1–3. The objective function Ly,λ
minimized in Pλ(y) is

Ly,λ(x) =
1

2
||y − Φx||22 + λ||D∗x||1.

We recall that we suppose that condition (H0) holds in every statements. The
following lemma, which is at the heart of the proofs of our contributions, details
the first order optimality conditions for the analysis variational problem Pλ(y).

Lemma 1. A vector x? is a solution of Pλ(y) if, and only if, there exists
σ ∈ R|J|, where J is the D-cosupport of x?, such that

σ ∈ Σy,λ(x?) (11)

where I = Jc the D-support,

Σy,λ(x?) =
{
σ ∈ R|J| \ Φ∗(Φx? − y) + λDIsI + λDJσ = 0 and ||σ||∞ 6 1

}
.

(12)
and s = sign(D∗x?).

Proof. The subdifferential ∂F of a real valued convex lower semicontinuous
function F : RN → R is the multifunction defined by

∂F (x0) =
{
g ∈ RN \ ∀x ∈ RN , f(x) > f(x0) + 〈g, x− x0〉

}
.

Note that x0 is a minimum of F if, and only if, 0 ∈ ∂F (x0). Indeed, if 0 ∈
∂F (x0), then for every x ∈ RN , F (x) > F (x0), meaning that x0 is a minimum
of F over RN . The subdifferential of Ly,λ(x) is

∂Ly,λ(x) =
{

Φ∗(Φx− y) + λDu \ u ∈ RN : uI = sign(D∗x)I and ||uJ ||∞ 6 1
}
.

Hence 0 ∈ ∂Ly,λ(x) is equivalent to the existence of u ∈ RN such that uI =
sign(D∗x)I and ||uJ ||∞ 6 1 satisfiyng

Φ∗(Φx− y) + λDu = 0.

Defining σ = uJ , it is equivalent to the existence of σ ∈ Σy,λ(x) with ||σ||∞ 6
1.

5.1. Proof of Theorem 1

The proof of Theorem 1 is done in three steps. First, we prove Lemma 2
which gives an implicit equation satisfied by a solution of Pλ(y). Then, we prove
Lemma 3. Finally, we proves Theorem 1.

The following lemma gives an implicit equation satisfied by a solution x? of
the problem Pλ(y). Note that Pλ(y) may have other solutions.

14



Lemma 2. Let x? a solution of Pλ(y). Let I be the D-support and J the D-
cosupport of x? and s = sign(D∗x?). We suppose that (HJ) holds. Then, x?

satisfies
x? = Γ[J]Φ∗y − λΓ[J]DIsI . (13)

Proof. Using the first order condition (Lemma 1) there exists σ ∈ Σy,λ(x?)
satisfying

Φ∗(Φx? − y) + λDIsI + λDJσ = 0. (14)

By definition, one has x? ∈ GJ so x? ∈ (ImDJ)⊥. Hence, we can write x? = Uα.
Since U∗DJ = 0, multiplying equation (14) on the left by U∗, we get

U∗Φ∗(ΦUα− y) + λU∗DIsI = 0.

Since U∗Φ∗ΦU is invertible, we conclude.

Lemma 3. Let y ∈ RP and let J a D-cosupport such that (HJ) holds, and
I = Jc. Suppose x̂? satisfies

x̂? = Γ[J]Φ∗y − λΓ[J]DIsI .

where s = sign(D∗x̂?). Then, x̂? is a solution of Pλ(y) if, and only if, there
exists σ satisfying one of the following conditions

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ and ||σ||∞ 6 1, (15)

or equivalently,

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ||σ||∞ 6 1, (16)

where Ω̃[J] = (Φ∗ΦΓ[J] − Id)DI , Π̃[J] = Φ∗(ΦΓ[J]Φ∗ − Id), Ω[J] = D+
J Ω̃[J] and

Π[J] = D+
J Π̃[J].

Proof. Remark that x̂? is an element of GJ . According to Lemma 1, x̂? is a
solution of Pλ(y) if, and only if, there exists σ ∈ Σy,λ(x̂?) such that

Φ∗(Φx̂? − y) + λDIsI + λDJσ = 0 and ||σ||∞ 6 1.

Since (HJ) holds, one can define Γ[J]. We use the implicit equation (13),

Φ∗(ΦΓ[J]Φ∗y − λΦΓ[J]DIsI − y) + λDIsI + λDJσ = 0.

Factorizing the term in front of y and sI , one has

Φ∗(ΦΓ[J]Φ∗ − Id)y − λ(Φ∗ΦΓ[J] − Id)DIsI + λDJσ = 0.

which proves that

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ||σ||∞ 6 1,

15



One has U∗Ω̃ = 0 and thus one remarks that Ω[J] = D+
J Ω̃[J]. Similarly, we

define Π̃[J] such that Π[J] = D+
J Π̃[J]. Hence, the existence of σ ∈ Σy,λ(x̂?) such

that ||σ||∞ 6 1 is equivalent to

DJσ = DJΩ[J]sI −
1

λ
DJΠ[J]y where ||σ||∞ 6 1,

which in turn is equivalent to

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ where ||σ||∞ 6 1.

We now prove Theorem 1.

Proof of Theorem 1. Let (y, λ) 6∈ H. By construction of the vector x̂λ̄(ȳ) one
has D∗J x̂λ̄(ȳ) = 0. So for (ȳ, λ̄) close enough from (y, λ), one has

sign(D∗x̂λ̄(ȳ)) = sign(D∗x?(y)).

Since x? is a solution of Pλ(y), using Lemmas 2 and 3, there exists σ such that

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ||σ||∞ 6 1. (17)

We split J = K ∪ L, K ∩ L = ∅ such that ||σK ||∞ = 1 and ||σL||∞ < 1. We
first suppose that Im Π̃[J] ⊆ ImDL. To prove that x̂λ̄(ȳ) is solution to Pλ̄(ȳ)
we show that there exists σ̄ such that ||σ̄||∞ 6 1 and

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DK σ̄K + λ̄DLσ̄L = 0.

We impose that σ̄K = σK and we introduce σ̄L as

σ̄L = σL −
1

λ
D+
L Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
.

Hence,

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DJ σ̄

= Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DKσK + λ̄DLσL

−DLD
+
L

λ̄

λ
Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
= Π̃[J]y − λΩ̃[J]sI + λDKσK + λDLσL︸ ︷︷ ︸

=0

−Π̃[J](y − ȳ) + (λ− λ̄)Ω̃[J]sI − (λ− λ̄)DKσK − (λ− λ̄)DLσL

−DLD
+
L

λ̄

λ
Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
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Since Im Π̃[J] ⊆ ImDL, there exists u such that

Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
= DLu.

By property of Moore-Penrose pseudo-inverse,

DLD
+
LDLu = DLu = Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
.

Hence,

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DJ σ̄

=
λ̄− λ
λ

[
Π̃[J]y − λΩ̃[J]sI + λDKσK + λDLσL

]
= 0.

If (ȳ, λ̄) is close enough from (y, λ), one has

||σ̄L||∞ = ||σL −
1

λ
D+
L Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
||∞ 6 1,

i.e x̂λ̄(ȳ) is solution of Pλ̄(ȳ). Suppose now that Im Π̃ 6⊆ ImDL. Then remark
that projecting (17) on GL shows that

PGLΠ̃[J]y = λ(Ω̃[J]sJc +DKsK),

which is a contradiction of (y, λ) 6∈ H.

5.2. Proof of Theorem 2

First we recall Stein’s lemma and then we prove Theorem 2.

Lemma 4 (Stein’s lemma). Let y = Φx0 + w with w ∼ N (0, σ2IdQ). Assume
g : y 7→ g(y) is weakly differentiable, then

Ew 〈w, g(y)〉 = 2σ2Ew tr

(
∂g(y)

∂y

)
A proof of the lemma can be found in [22].

Proof of Theorem 2. Let A ∈ RM×Q and y = Φx0 + w with w ∼ N (0, σ2IdQ)
Using the decomposition Ay = AΦx0 +Aw, one has

Ew||Ay −AΦx?(y)||2 = Ew||AΦx0 +Aw||2 − 2Ew 〈AΦx0 +Aw,AΦx?(y)〉
+ Ew||AΦx?(y)||2

= Ew||AΦx0||2 + σ2 tr(A∗A)− 2Ew 〈AΦx0, AΦx?(y)〉
− 2Ew 〈w,A∗AΦx?(y)〉+ Ew||AΦx?(y)||2 .
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Assuming y 7→ Φx?(y) is weakly differentiable, we have

∂A∗AΦx?(y)

∂y
= A∗A

∂Φx?(y)

∂y
.

and Lemma 4 gives

Ew||Ay −AΦx?(y)||2 = Ew||AΦx0 −AΦx?(y)||2

+ σ2 tr(A∗A)− 2σ2Ew tr

(
A∗A

∂Φx?(y)

∂y

)
.

5.3. Proof of Theorem 3

The proof is done in four steps. First, we prove that µ(y) is well-defined.
Then, we prove that there exists a solution of Pλ(y) such that (HJ) holds.
Finally, we prove that div(µ)(y) = dimGJ .

We first proves that even if Pλ(y) admits several solutions, all of them share
the same image under Φ.

Lemma 5. If x1 and x2 are two solutions of Pλ(y), then Φx1 = Φx2.

Proof. Let x1, x2 be two solutions of Pλ(y) and Φx1 6= Φx2. We define x3 =
1
2 (x1 + x2). Since the function u 7→ ||y − u||2 is strictly convex, one has the
following inequality

1

2
||y − Φx3||2 <

1

2

(
1

2
||y − Φx1||2 +

1

2
||y − Φx2||2

)
.

Applying triangle inequality for the `1 norm gives

||D∗x3||1 6 ||D∗x1||1 + ||D∗x2||1.

Hence, Ly,λ(x3) < Ly,λ(x1) which is a contradiction with x1 being a solution of
the problem Pλ(y).

Lemma 6. There exists x? a solution of Pλ(y) such that (HJ) holds, where J
is the D-cosupport of x?.

Proof. Let x? be a solution of Pλ(y). Suppose (HJ) does not hold. Our strategy
is to prove that there exists a solution of D-support strictly included in I = Jc.

Since (HJ) does not hold, there exists z ∈ Ker Φ with z 6= 0 and D∗Jz = 0.
We define for every t ∈ R, the vector vt = x? + tz. Denote B the subset of R
defined by

B = {t ∈ R \ sign(D∗vt) = sign(D∗x?)} ,
The set B is a non empty set, 0 ∈ B and convex from its definition. Moreover
for all t ∈ B, ∂Ly,λ(vt) = ∂Ly,λ(x?), it follows that for all t ∈ B, vt is a solution
of Pλ(y). As a consequence,

∀t ∈ B, Φvt = Φx? and ||D∗vt||1 = ||D∗x?||1.
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Since lim
|t|→∞

||D∗vt||1 = +∞, the set B is bounded. Hence, B is an open interval

of R which contain 0, i.e there exist t1, t0 ∈ R such that

B =]t1, t0[ where −∞ < t1 < 0 and 0 < t0 < +∞.

Since t0 6∈ B, the D-support of vt0 is strictly included in I. Moreover by
continuity,

Φvt0 = Φx? and ||D∗vt0 ||1 = ||D∗x?||1.
Hence, vt0 is a solution of Pλ(y) of D-support strictly included in I.

Iterating this argument for x? = vt0 shows that there exists a solution such
that (HJ) holds.

We now prove the Theorem 3 starting with a lemma on the measure of H·,λ.

Lemma 7. Let J ⊂ {1, · · · , P} such that (HJ) holds, K a subset of J such
that Im Π̃[J] 6⊂ ImDKc , sJc ∈ {−1, 1}|Jc| and sK ∈ {−1, 1}|K|. If Im Π̃[J] is not
included in ImDKc then HJ,K,sJc ,σK

is an affine space of RQ×R and different
from RQ × R. Moreover, H has a Lebesgue measure zero and for every λ ∈ R∗+
H·,λ has a Lebesgue measure zero.

Proof. Consider J ⊂ {1, · · · , P} such that (HJ) holds, K a subset of J such
that Im Π̃[J] 6⊂ ImDKc , sJc ∈ {−1, 1}|Jc| and sK ∈ {−1, 1}|K|. The following
set

HJ,K,sJc ,sK =
{

(y, λ) ∈ RQ × R \ PGKc Π̃[J]y = λ(Ω̃[J]sJc +DKsK)
}
,

is a vector subspace of RQ × R. Indeed, let (y1, λ1), (y2, λ2) ∈ HJ,K,sJc ,sK and
µ ∈ R. Hence,

PGKc Π̃[J](y1 + µy2) = (λ1 + µλ2)(Ω̃[J]sJc +DKsK).

Moreover (0Q, 0) ∈ HJ,K,sJc ,sK . Each HJ,K,sJc ,sK is different from RQ × R.
Indeed, (y, λ) ∈ HJ,K,sJc ,sK is equivalent to(

PGKc Π̃[J] 0
0 −λId

)(
y

Ω̃[J]sJc +DKsK

)
= 0.

Particularly, we fixed λ. If every y ∈ RQ is solution of this system, the matrix
PGKc Π̃[J] is invertible, which is impossible since PGKc is an orthogonal projection
on a strict subspace of RQ. Since H is a finite unition of HJ,K,sJc ,sK all different
from RQ ×R, H has a Lebesgue measure zero. Remark that H·,λ is included in

H̃λ =
⋃

J⊂{1,··· ,P}
(HJ ) holds

⋃
K⊂J

Im Π̃[J] 6⊂ImDKc

⋃
sJc∈{−1,1}|Jc|

⋃
sK∈{−1,1}|K|

H̃J,K,sJc ,sK ,

where

H̃λJ,K,sJc ,sK =
{
y ∈ RQ \ PGKc Π̃[J]y = λ(Ω̃[J]sJc +DKsK)

}
,

Similarly to HJ,K,sJc ,sK , we prove that each H̃λJ,K,sJc ,sK
is a strict affine sub-

space of RQ. Hence, H̃λ has a Lebesgue measure zero, and so does H·,λ.
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Next, we prove the theorem 3.

Proof of Theorem 3. Using Lemma 6, there exists a solution x?(y) of Pλ(y) such
that (HJ) holds. We consider this solution. Using Theorem 1 for ȳ close enough
from y one has

Φx̂λ̄(ȳ) = ΦΓ[J]Φ∗ȳ − λΦΓ[J]DIsI .

where J is the D-cosupport of x?(y). Remark that Φx̂λ̄(ȳ) can be written as
ΦΓ[J]Φ∗ȳ + r and r ∈ RP is a constant vector. Hence,

∂Φx̂λ̄(ȳ)

∂y
= ΦΓ[J]Φ∗.

Moreover, using Lemma 7, H·,λ has a Lebesgue measure zero.

We now prove the corrolary.

Proof of Corollary 1. Let λ ∈ R∗+. Using Lemma 7, H·,λ has a Lebesgue mea-
sure zero. Hence, y 7→ Φx?(y) is differentiable almost everywhere and we can
apply Theorem 2.

Remark that devΦ(y) = tr(ΦΓ[J]Φ∗) and V = ΦΓ[J]Φ∗ is the orthogonal
projector on Im(V ) = ker(V )⊥, so that tr(V ) = dim(Im(V )). Since Φ is injective
on GJ , one has dim(Im(V )) = dim(GJ).

Moreover, cov(y,Φx?(y)) = Ew 〈w,Φx?(y)〉. By definition of the degrees of
freedom, using Lemma 4:

df(Φx?) =

Q∑
i=1

cov(y,Φx?(y))

σ2
= Ew

(
tr(ΦΓ[J]Φ∗)

)
.

Proof of Proposition 1. We have

tr
(
AΦΓ[J]Φ∗A∗

)
= tr

(
ΦΓ[J]Φ∗A∗A

)
.

Hence denoting ν(z) = Γ[J]Φ∗z, and using the fact that for any matrix U ,
tr(U) = EZ(〈Z, UZ〉), we arrive at (8).

We then use the fact that Γ[J]Φ∗, the inverse of Φ on GJ , is the mapping
that solves the following linearly constrained least-squares problem

Γ[J]Φ∗z = argmin
h∈GJ

||Φh− z||2.

The closed-form solution to this problem is given by (9).
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6. Conclusion

This paper studies the local behavior of solutions to sparse analysis regu-
larized inverse problems of the form Pλ(y). We proved that the minimizers x?

of Pλ(y) are piecewise affine functions with respect to the observations y and
the regularization parameter λ. This local affine parametrization is completely
characterized by the D-support I of x?, i.e. the set of atoms in D with non-zero
correlations with x?. Consequently, for y outside a set of zero Lebesgue measure,
the first-order variations of x? with respect to y is obtained in closed-form.

We capitalized on these results to objectively and automatically choose the
regularization parameter λ. Toward this goal, a unified framework to unbi-
asedly estimate several risk measures is proposed through the GSURE. This
encompasses several special cases such as unbiased estimation of the prediction,
the projection and the estimation risk. An efficient algorithm is designed to
compute this general estimator (GSURE) in the context of sparse analysis re-
construction. Illustrations on different imaging inverse problems exemplify the
potential applicability of our theoretical findings.
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[10] S. Vaiter, G. Peyré, C. Dossal, M. Fadili, Robust Sparse Analysis Regular-
ization, Technical Report, Preprint Hal-00627452, 2011.

[11] J. Bonnans, A. Shapiro, Perturbation analysis of optimization problems,
Springer Verlag, 2000.

[12] B. Mordukhovich, Sensitivity analysis in nonsmooth optimization, The-
oretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.),
SIAM Volumes in Applied Mathematics 58 (1992) 32–46.

[13] W. Schirotzek, L. MyiLibrary, Nonsmooth analysis, Springer Berlin, 2007.

[14] M. Osborne, B. Presnell, B. Turlach, On the lasso and its dual, Journal of
Computational and Graphical statistics (2000) 319–337.

[15] M. Osborne, B. Presnell, B. Turlach, A new approach to variable selection
in least squares problems, IMA journal of numerical analysis 20 (2000) 389.

[16] D. Malioutov, M. Cetin, A. Willsky, Homotopy continuation for sparse
signal representation, in: Acoustics, Speech, and Signal Processing, 2005.
Proceedings.(ICASSP’05). IEEE International Conference on, volume 5,
IEEE, pp. 733–736.

[17] R. Tibshirani, J. Taylor, The solution path of the generalized Lasso, The
Annals of Statistics 39 (2011) 1335–1371.

[18] B. Efron, How biased is the apparent error rate of a prediction rule?,
Journal of the American Statistical Association 81 (1986) 461–470.

[19] H. Akaike, Information theory and an extension of the maximum likelihood
principle, in: Second international symposium on information theory, vol-
ume 1, Springer Verlag, pp. 267–281.

[20] G. Schwarz, Estimating the dimension of a model, The annals of statistics
6 (1978) 461–464.

[21] G. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method
for choosing a good ridge parameter, Technometrics (1979) 215–223.

[22] C. Stein, Estimation of the mean of a multivariate normal distribution,
The Annals of Statistics 9 (1981) 1135–1151.

[23] K.-C. Li, From Stein’s unbiased risk estimates to the method of generalized
cross validation, Ann. Statist. 13 (1985) 1352–1377.

[24] B. Efron, The estimation of prediction error, Journal of the American
Statistical Association 99 (2004) 619–632.

[25] D. Donoho, I. Johnstone, Adapting to Unknown Smoothness Via Wavelet
Shrinkage., Journal of the American Statistical Association 90 (1995)
1200–1224.

22



[26] T. Blu, F. Luisier, The SURE-LET approach to image denoising, IEEE
Trans. Image Process. 16 (2007) 2778–2786.

[27] C. Vonesch, S. Ramani, M. Unser, Recursive risk estimation for non-linear
image deconvolution with a wavelet-domain sparsity constraint, in: ICIP,
IEEE, pp. 665–668.

[28] T. Cai, H. Zhou, A data-driven block thresholding approach to wavelet
estimation, The Annals of Statistics 37 (2009) 569–595.

[29] D. Van De Ville, M. Kocher, SURE-based Non-Local Means, IEEE Signal
Process. Lett. 16 (2009) 973–976.

[30] V. Duval, J.-F. Aujol, Y. Gousseau, A bias-variance approach for the non-
local means, SIAM Journal Imaging Sci. 4 (2011) 760–788.

[31] C.-A. Deledalle, V. Duval, J. Salmon, Non-local Methods with Shape-
Adaptive Patches (NLM-SAP), Journal of Mathematical Imaging and
Vision (2011) 1–18.

[32] J. Rice, Choice of smoothing parameter in deconvolution problems, Con-
temporary Mathematics 59 (1986) 137–151.

[33] L. Desbat, D. Girard, The ’minimum reconstruction error’ choice of regu-
larization parameters: Some more efficient methods and their application
to deconvolution problems, SIAM J. Sci. Comput 16 (1995) 1387–1403.

[34] Y. C. Eldar, Generalized SURE for exponential families: Applications to
regularization, IEEE Transactions on Signal Processing 57 (2009) 471–481.

[35] D. Donoho, Y. Tsaig, Fast solution of `1-norm minimization problems when
the solution may be sparse, IEEE Transactions on Information Theory 54
(2008) 4789–4812.

[36] H. Zou, T. Hastie, R. Tibshirani, On the “degrees of freedom” of the lasso,
The Annals of Statistics 35 (2007) 2173–2192.

[37] M. Kachour, C. Dossal, M. Fadili, G. Peyré, C. Chesneau, The degrees
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