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ABSTRACT

Although multi-core processors are now available every-

where, few applications are able to truly exploit their multi-

processing capabilities. Dataflow programming attempts to

solve this problem by expressing explicit parallelism within

an application. In this paper, we describe two scheduling

strategies for executing a dataflow program on a single-core

processor. We also describe an extension of these strate-

gies on multi-core architectures using distributed schedulers

and lock-free communications. We show the efficiency of

these scheduling strategies on MPEG-4 Simple Profile and

MPEG-4 Advanced Video Coding decoders.

Index Terms— Dataflow computing, Multicore process-

ing, Scheduling algorithm, Distributed algorithm, Lock-free

multithreading

1. INTRODUCTION

Since processor frequency is bounded due to physics con-

straints like power dissipation, multi-core architectures have

become the solution to allow performance to keep growing

as described by Moore’s law. These architectures present an

interesting challenge: produce applications which fully ex-

ploit the parallelism provided by these processors. Several

programming languages, extensions and models allow paral-

lelism to be expressed in applications like Occam [1], Mes-

sage Passing Interface [2] or Algorithmic Skeletons [3]. Most

of them assume a specific underlying hardware architecture

and are generally inefficient on other platforms.

Dataflow programming is an attractive candidate to de-

sign parallel applications in an architecture-agnostic way. A

dataflow program is composed of atomic processing blocks

that communicate with each other with communication chan-

nels. Such a representation explicitly describes task-level par-

allelism within the application. The behavior of this kind

of program is governed by a Model of Computation (MoC)

which specifies a set of rules regarding the execution of the

program. Several dataflow MoCs exist with different pur-

poses and expressivenesses such as Synchronous Dataflow

(SDF), Kahn Process Network (KPN) [9] and Dataflow Pro-

cess Network (DPN) [8].

Dynamic dataflow models like KPN and DPN are very

useful to describe the behavior of streaming applications.

Contrary to SDF and similar models that consume and pro-

duce data in a static way, KPN and DPN models may have a

data-dependent behavior i.e. the quantity of data consumed

and produced by the processes may depend on the value of

these data.

This paper proposes several scheduling techniques to ef-

ficiently execute dynamic dataflow programs on single-core

and multi-core processors. Indeed, determining a schedule of

a dynamic dataflow program is not possible at compile-time

(equivalent to the halting problem, see [4]). This paper makes

the following contributions:

• We give a formal definition of a round-robin policy for

scheduling dataflow process networks on single-core

architectures that has been successfully used in prac-

tice, see [5] and [6] (Section 3.1).

• We present an efficient strategy to dynamically sched-

ule actors of dataflow process networks on single-core

architectures (Section 3.2). A clever scheduling strat-

egy is key to ensure that a complex application with

many processing blocks can be executed efficiently.

• We propose a distributed and lock-free extension of

these two dynamic scheduling strategies on multi-core

architecture (Section 4) based on Lamport’s work [7]

concerning lock-free communication channels of dis-

tributed processes.

This paper presents results obtained with our scheduling

strategies for the execution of two video decoders (MPEG-4

Simple Profile and MPEG-4 Advanced Video Coding) on a

multi-core processor.

2. BACKGROUND

This section presents the dynamic dataflow model called

dataflow process network and how applications described by



this model are scheduled.

2.1. Dataflow Process Networks

A Dataflow Process Network (DPN) is a model of computa-

tion [8] which can be described as follow: a set of processes

called actors that communicate with unidirectional and un-

bounded FIFO channels called data-fifos and connected to

ports of actors. A data-fifo has only one source port but may

have several target ports. In the dataflow approach, the com-

munication between actors corresponds to a stream of data

composed of a list of tokens. Figure 1 presents a network of

five actors linked by data-fifos.
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Fig. 1: An example of Dataflow Process Network

DPNs can be considered as a generalization of the well-

known Kahn Process Networks (KPNs) [9]. The execution of

an actor corresponds to the mapping of input tokens to output

tokens applied repeatedly and sequentially on one or more

data streams. This mapping is composed of three ordered

steps: data reading, then computational procedure, and finally

data writing. These repeated mappings are called actor firings

and are guarded by a set of firing rules which specifies when

an actor can be fired. These firing rules specifies precisely

the number and the values of tokens that must be available on

the input ports to fire the actor. This is why DPNs can de-

scribe nondeterministic algorithms which is not possible with

the KPN model.

2.2. Scheduling of Dataflow Process Networks

DPNs are more suitable than KPNs to be scheduled on pro-

cessors when there are more processes than processor cores

because no context has to be saved between each actor exe-

cution. Indeed, the execution of an actor is described by a

sequence of actor firings and actor switching can only happen

between two firings, so only state variables need to be saved;

in particular, it is not necessary to save the execution stack

and other contextual information like registers, etc.

Consequently, it is possible to reduce the overhead of

scheduling a dynamic dataflow program by using a user-level

scheduler rather than relying on threads scheduled by the

operating system kernel. Von Platen shows an impressive ac-

celeration of 3.4 to 105 frame per second (FPS) with a video

decoder after using a user-level scheduler that uses a single

thread to schedule actors in [6]. Scheduling an actor with

this method is a lot more efficient than using threads because

there is no need for the kernel to perform a context switch

each time an actor is scheduled but only a function call.

The data-fifos used throughout this paper are statically

bounded to be implemented on finite memory and avoiding

additional overhead due to dynamic memory allocation.

3. SINGLE-CORE SCHEDULING STRATEGIES

A dynamic dataflow program cannot be fully scheduled by

static methods so some dedicated strategies need to be devel-

oped in order to schedule actors during the execution. The

following strategies are designed to execute a DPN-based ap-

plication on a single-core architecture which handles the exe-

cution of only one actor at a given time.

3.1. Round-robin scheduling strategy

Round-robin is a simple scheduling strategy that continuously

goes over the list of actors: The scheduler evaluates the firing

rules of each actor, executes the actor if a rule is met and

continues to execute the same actor until no firing rules are

met. This scheduling policy guarantees to each actor an equal

chance of being executed, and avoids deadlock and starva-

tion. Contrary to classical round-robin scheduling, there is no

notion of time slice: an actor is executed until it cannot fire

anymore in order to minimize the number of actor switching

and consequently the scheduling overhead. The reason of this

unfireability is that data-fifos will be finally full or empty be-

cause of their bounded sizes.
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Fig. 2: Example of round-robin scheduling with five actors

Figure 2 shows an application of this round-robin schedul-

ing on the example presented in Fig. 1. The scheduler exe-

cutes the actors in a circular order i.e. the five actors A1, A2,

A3, A4 and A5 are successively executed then the scheduler

starts again from A1 and so on.



3.2. Data-driven / demand-driven scheduling strategy

Data-driven / demand-driven strategy is a more advanced

scheduling strategy of dynamic dataflow programs. Indeed,

the round-robin strategy schedules actors unconditionally i.e.

the firing rules of an actor could be checked even if they are

all invalid. The firing rules of the actor will be checked, but

no computation will be performed. As a result, the round-

robin strategy becomes inefficient with complex applications

containing many actors and a lot of control communications.

Data-driven / demand-driven scheduling strategy is based

on the well-known data driven and demand driven principles

[10]. On the one hand, data-driven policy executes an actor

when its input data have to be consumed to unblock the execu-

tion of the precedent actor. On the other hand, demand-driven

executes an actor when its output is needed by another actor.

Two types of events can cause the blocking of an actor ex-

ecution, each one is implying a different scheduling decision:

• When an actor is blocked because an input data-fifo is

empty, demand-driven policy is applied and the sched-

uler executes the predecessor of this data-fifo.

• When an actor is blocked because an output data-fifo

is full, data-driven policy is applied and the scheduler

executes the successors of this data-fifo. Indeed a data-

fifo can be connected to several target ports (see Section

2.1).

Contrary to the round-robin algorithm, a dynamic list

of next schedulable actors is needed. The behavior of this

schedulable list is illustrated with Fig. 3. When an actor is

blocked during its execution, the empty or full data-fifos are

identified and their associate predecessors or successors are

added to the schedulable list. The actor to be executed next

corresponds to the next entry in the schedulable list.
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Fig. 3: Example of data-driven / demand-driven scheduling

4. DISTRIBUTED AND LOCK-FREE MULTI-CORE

SCHEDULING

This section describes a distributed and lock-free multi-core

scheduling technique to execute dynamic dataflow programs

using round-robin and data-driven / demand-driven strategies.

4.1. Distributed scheduler

A distributed scheduler is designed to execute applications on

a multi-core architecture. Several local schedulers are exe-

cuted concurrently on each processor core. This specific de-

sign avoids the use of a specific thread to manage the schedul-

ing of the application.

A static partitioning of the actors on the processor cores

is needed to run our multi-core scheduler. On the one hand,

the round-robin strategy goes over a static list of actors so its

multi-core extension needs this static mapping of the actors

on the cores to be implemented. On the other hand, the data-

driven / demand-driven strategy could work with a mapping

computed dynamically, but (1) a static mapping allowed us

to develop the multi-core extension by tackling each problem

one at a time, and (2) is considered as future work. Figure

4 presents a possible mapping of five actors on a dual-core

processor.
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Fig. 4: Mapping example of a network on processor cores

To form the distributed scheduler, one thread for each

available processor core is created and forced to be run only

on its associated core. The round-robin algorithm executes a

subset of the actors that are mapped on the associated core

in each thread. Figure 5 shows an example of the distributed

scheduler with the round-robin strategy.

Scheduler on Core 2

A3 A4
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Scheduler on Core 1

A1 A2

Fig. 5: Distributed multi-core scheduler using round-robin

The multi-core version of the data-driven / demand-driven

strategy is realized in the same way as the round-robin strat-

egy. The difference is that with our static mapping, the



predecessors and successors of a given actor can possibly be

mapped to a different core than the one of this actor. This

requires communications between the different threads to

schedule all the actors. Figure 4 illustrates this: If A1 is

blocked during its execution because the data-fifo called f2 is

full then the scheduler has to add A3 to the list of schedulable

actors. However A3 is managed by another scheduler so an

inter-scheduler communication is needed.

In a multi-core context, we use a combined version of

the round-robin and data-driven / demand-driven strategies to

avoid starvation of our distributed algorithm. Indeed, con-

trary to the single-core version, data-driven / demand-driven

strategy cannot guarantee all the time that each local schedu-

lable list is not empty. The scheduler applies the data-driven

/ demand-driven policy until its schedulable list is empty and

then the round-robin policy is used until the schedulable list

contains at least one actor. The algorithm is presented in Fig.

6.

CombinedScheduling()

begin
while true do

if isEmpty(schedulable)
then actor = getNext(RoundRobin);
else actor = getNext(DataDemandDriven);

fi;
fire(actor);
if ¬RoundRobin ∨ ‖firing‖ > 0

then
if isEmpty(actor.inputs)

then addPredecessors(actor);
else addSuccessors(actor);

fi;
fi;

od;
end

Fig. 6: Combined scheduling algorithm

4.2. Lock-free inter-core communications

Lock-free communications between distributed schedulers

are used to avoid the synchronization of threads. Indeed, the

fine granularity of the actors makes actor scheduler a criti-

cal part of the execution so the smallest overhead can have

disastrous consequences on the performance. Moreover in-

forming a remote scheduler to add a schedulable actor to its

schedulable list is essential otherwise a deadlock could occur

during the execution. In fact, if this scheduling information

is not communicated, a self-contained cycle can appear and

cause a deadlock of the application. For example in Fig. 4,

if the data-fifos f4-7 are full, the actors A3, A4 and A5 form

a self-contained cycle that never stops until A2 consumes the

tokens contained in f4 but this could never happen if the other

scheduler loops on a self-contained cycle, too.

Another kind of FIFO channels called scheduling-fifos is

used to communicate between schedulers without synchro-

nization. Lamport proved that locks are not necessary in the

case of single producer, single consumer FIFOs [7]. However

it is important not to confuse the two types of FIFOs which

work with the same mechanism but have two distinct uses:

the data-fifo channels used to carry on the application stream

and the scheduling-fifo channels used to share scheduling in-

formations (in our case a set of next schedulable actors).
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Fig. 7: Example of data-driven / demand-driven scheduling

Figure 7 shows the inter-core communications mecha-

nism. When an actor execution is blocked, the scheduler adds

the predecessor or the successors of the blocking data-fifo to

its schedulable list. In some cases this actor is not executed

by the current scheduler so this actor is sent to its associated

scheduler by a scheduling-fifo channel.

We propose two kinds of communication network topol-

ogy (Fig. 8): mesh and ring. The mesh topology uses a

bidirectional communication channel between each couple of

actors. The distributed schedulers communicate directly but

the number of scheduling-fifos increases exponentially with

the number of cores. The ring topology offers the possibil-

ity to use the distributed scheduler with a limited number of

scheduling-fifos: on a N-core processors N scheduling-fifos

are needed. However the communication could cross N-2

schedulers in the worst case before the targeted scheduler re-

ceives it. For example (see Fig. 8(b)), if the scheduler on core

1 wants to communicate with the other one mapped on core

4, the schedulers on cores 2 and 3 are used as intermediaries.
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Fig. 8: Possible topologies of communications



5. RESULTS

In this section, we present several experimental results to

demonstrate the efficiency of our multi-core scheduler on

real-world video applications. We also compare our approach

with another runtime included in the OpenDF framework on

the same applications [6] [11].

5.1. Benchmarks

The Reconfigurable Video Coding (RVC) framework was cre-

ated by MPEG to increase the reusability and portability of

the code in video decoders [5]. The description language

of RVC, called RVC-CAL and based on the Dataflow Pro-

cess Networks model, was used to implement the applications

used in our experiments.

We have implemented the round-robin and combined

strategies in the C runtime library of the Open RVC-CAL

Compiler (Orcc)1. These two scheduling strategies have been

tested on dataflow descriptions of MPEG-4 Simple Profile

and MPEG-4 Advanced Video Coding with different sized

video sequences. We benchmarked these decoders on a Intel

Xeon with four cores at 2.33GHz. During all the experi-

ments, the data-fifos are bounded to 4096 elements and the

scheduling-fifos to 200 elements.

The testing video sequences are: For MPEG-4 SP, hit001

(CIF) from ISO/IEC 14496-4:2004 and old_town_cross

(720p) encoded at 6Mbps with the Xvid encoder from an

YUV file available on [12] and for MPEG-4 AVC LS_SVA_D

(QCIF) and HCBP2_HHI_A (CIF) available on [13].

The results for various configurations are presented in Ta-

ble 1 for the MPEG-4 SP decoder and in Table 2 for the

MPEG-4 AVC decoder. We benchmarked too the MPEG-4

SP decoder on the 720 sequence using the other runtime li-

brary included in OpenDF framework: We obtain 10.1 fps on

one core and 15.6 fps on two cores i.e. the speedup is about

1.54.

Strategy Core CIF 720p Speedup

1 144 15.6 1

Round-robin 2 265 26.6 1.78

4 494 51.4 3.36

Combined

strategy

1 154 16.1 1

2 288 27.3 1.75

Ring 4 443 49.8 2.98

Mesh 4 516 51.9 3.28

Table 1: Results of MPEG-4 SP for various configurations in

frames per second

1Orcc is available at http://orcc.sf.net

Strategy Core QCIF CIF Speedup

1 28.4 7.1 1

Round-robin 2 55.6 13.9 1.96

4 90.8 21.2 3.05

Combined

strategy

1 169 40.6 1

2 294 71.4 1.74

Ring 4 341 75.2 1.93

Mesh 4 473 97.1 2.59

Table 2: Results of MPEG-4 AVC for various configurations

in frames per second

5.2. Mapping validation using genetic algorithm

A genetic algorithm was developed to find efficient static

mapping of actors on the processor cores and used during

these experiments. Most of the time, dynamic dataflow pro-

grams can be easily partitioned on dual-core processor with

manual methods thanks to the explicit parallelism of dataflow

representations. However this is increasingly complex to do

when the number of cores and actors grows.

For example, the dataflow description of MPEG-4 SP is

composed of 42 actors and MPEG-4 AVC one is composed

of 131 actors. More than one thousand possible mappings

of a dataflow program into a multi-core processor is quickly

reached.

5.3. Discussion

The data-driven / demand-driven strategy shows its efficiency

with the MPEG-4 AVC decoder which contains many actors

and many control flows. Moreover the data-driven / demand-

driven strategy, and consequently the combined strategy, is

slightly more efficient than the round-robin strategy even on

small applications like MPEG-4 SP.

Our multi-core extension of these single-core scheduling

strategies is validated by the high speedups we obtained com-

pared to the maximal theoretical speedups.

Results show that the round-robin strategy is better on

MPEG-4 Simple Profile than the data-driven / demand-driven

strategy on four cores. Indeed, most of the time the round-

robin executes a fireable actor because this application is de-

scribed with few actors. When MPEG-4 SP is partitioned on

multiple cores, more scheduling operations are required us-

ing the data-driven / demand-driven strategy, which leads to a

slightly increased overhead.

Finally, the speedup obtained with the OpenDF frame-

work is lower than the ones obtained with our two scheduling

strategies with the same mapping of actors on the processor

cores.



6. RELATED WORK

In [10] and [14], Parks and Haid et al. deal with implementa-

tion and scheduling of Kahn Process Networks. Contrary to

Dataflow Process Networks, the context switches of process

suspension and resumption cannot be avoided and it leads to

an inevitable overhead. On the one hand, Haid et al. have

chosen to use lightweight and stackless threads implemen-

tation to minimize this overhead. On the other hand, Parks

presents a combined demand-driven and data-driven strategy.

Unfortunately he gives no result we can use for comparison.

Aldinucci et al. presents a low-level programming frame-

work based on lock-free queues dedicated to multiprocessors

streaming applications in [15]. Like us, they try to use lock-

free communication channels to avoid synchronization be-

tween threads. In their model, all channels with multiple

writers or/and readers are built by assembling a set of sin-

gle reader and single writer channels with an external thread

which manages the data copies between these channels. This

approach avoids cache invalidation but a lot of data transfers

is needed to hide the overhead of switching between threads.

In [16], Boutellier et al. present a methodology to map

and schedule actors on multiprocessors. They begin to trans-

form the RVC-CAL network in a set of homogeneous syn-

chronous dataflow graphs. Unfortunately these graphs cannot

be generated when an actor execution depends of the input to-

ken value. Moreover, the small MPEG-4 SP decoder was their

only test-case and the complexity of such static techniques in-

creases exponentially according to the application size.

7. CONCLUSION

This paper proposes a new approach to efficiently schedule

dynamic dataflow programs with a lock-free and distributed

algorithm on multi-core architectures based on two presented

single-core scheduling strategies. The results of the experi-

ments shows that our multi-core scheduler scales up well to

four cores.

In future work we will focus on stream communications

between cores to improve the application speedup and we will

extend our multi-core scheduling algorithm to dynamically

map the actors on processor cores.
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