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New advances in the computational exploration of
semifields

Elias F. Combarro* I.F. Rual J. Ranilla*

Abstract

Finite semifields (finite non necessarily associative division rings) have traditionally
been considered in the context of finite geometries (they coordinatize projective semifield
planes). New applications to coding theory, combinatorics and graph theory have broaden
the potential interest in these rings.

We show recent progress in the study of these objects with the help of computational
tools. In particular, we state results on the classification and primitivity of semifields
obtained with the help of advanced and efficient implementations (both sequential and
parallel) of different algorithms specially designed to manipulate these objects.

1 Introduction

A finite semifield (or finite division ring) D is a finite nonassociative ring with identity such
that the set D* = D\ {0} is closed under the product, i.e., it is a loop [12, 4]. Finite semifields
have been traditionally considered in the context of finite geometries since they coordinatize
projective semifield planes [12]. Recent applications to coding theory [7, 9], combinatorics and
graph theory [15], have broadened the potential interest in these rings.

Because of their diversity, the obtaining of general theoretical algebraic results seems to
be a rather difficult (and challenging) task ([2, 16, 17]). On the other hand, because of their
finiteness, computational methods can be naturally considered in the study of these objects.
So, the classification of finite semifields of a given order is a rather natural problem to use
computations. For instance, computers were used in the classification of semifields or orders 16
[11] and 32 [21, 12]. These results date back 40 years, when computers were being incorporated
to scientific research. In [11], a complete account of the study of finite semifields in the first
decades of the 20th century can be found.

In the last few years there is a renovated interest on the study of semifields with the help
of computational methods. So, in [10] a quest for the study of semifields of order at most 256
is launched: These computer-assisted results used very weak computers by modern standards;
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it is surprising that there has not yet been an enumeration of all semifields of order at most
256 since the resulting data might be useful for finding new general constructions. This lead U.
Dempwolff to describe in [5] all finite semifields of order 81 (independently this classification
was also achieved by the first two authors [3]), and to the classification of semifields of order 64
which has been recently obtained by the three authors [19]. On the other hand, motivated by
complete different reasons, in [18, 8|, the primitivity of semifields of orders 32, 64 and 81 was
considered.

In this paper we present the computational methods that we have implemented to deal with
different problems in semifields, and the recent results we have obtained with these implemen-
tations. In particular, we will show the state of the art on the classification and primitivity
problems.

The structure of the paper is as follows. In §2, basic properties of finite semifields are
reviewed. Section §3 describes the algorithms specially designed to explore finite semifields. Fi-
nally, in §4, we present new advances on the classification and primitivity of semifields obtained
with implementations of the previous algorithms.

2 Preliminaries

In this section we collect definitions and facts on finite semifields. Proofs can be found, for
instance, in [12, 4].

A finite nonassociative ring D is called presemifield, if the set of nonzero elements D* is
closed under the product. If D has an identity element, then it is called (finite) semifield. If
D is a finite semifield, then D* is a multiplicative loop. That is, there exists an element e € D*
(the identity of D) such that ex = ze = z, for all x € D and, for all a,b € D*, the equation
ax = b (resp. za = b) has a unique solution.

Apart from finite fields (which are obviously finite semifields), proper finite semifields were
first considered by L.E. Dickson [6] and were deeply studied by A.A. Albert [1]. The term finite
semifield was introduced in 1965 by D.E. Knuth [12]. These rings play an important role in
the study of certain projective planes, called semifield planes [12].

The characteristic of a finite presemifield D is a prime number p, and D is a finite-
dimensional algebra over GF(q) (¢ = p°) of dimension d, for some ¢, d € N, so that |D| = ¢¢. If
D is a finite semifield, then GF'(g) can be chosen to be its associative-commutative center Z(D).
Other relevant subsets of a finite semifield are the left, right, and middle nuclei (N;, N,., N,,),
and the nucleus N [4].

Isomorphism of presemifields is defined as usual for algebras, and the classification of finite
semifields up to isomorphism can be naturally considered. Because of the connections to finite
geometries, we must also consider the following notion. If Dy, Dy are two presemifields over the
same prime field GF(p), then an isotopy between D; and Ds is a triple (F, G, H) of bijective
linear maps Dy — D, over GF(p) such that

H(ab) = F(a)G(b) , Ya,b € D.

Clearly, any isomorphism between two presemifields is an isotopy, but the converse is not
necessarily true. Any presemifield is isotopic to a finite semifield [12, Theorem 4.5.4]. From a
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presemifield D, a projective plane P(D) can be constructed. We refer to [12] for the details.
Theorem 6 in [1] shows that isotopy of finite semifields is the algebraic translation of the
isomorphism between the corresponding projective planes. Two finite semifields Dy, Dy are
isotopic if, and only if, the projective planes P(D;), P(Ds) are isomorphic.

If B=[x,...,24] is a GF(q)-basis of a presemifield D, then there exists a unique set of
constants Ap g = {A; i, ¢ 5, .21 © GF(q) such that

d
Li1 Liyg = Z Aili2i3Ii3 Vil, ig c {1, ey d}

i3=1

This set of constants is known as cubical array or 3-cube corresponding to D with respect
to the basis B, and it completely determines the multiplication in D.

A remarkable fact is that permutation of the indexes of a 3-cube preserves the absence of
nonzero divisors. Namely, if D is a presemifield, and o € S3 (the symmetric group on the set
{1,2,3}), then the set

A%,B ~N {Aia(l)io(Z)io-(S)}fiil,ig,i?,:l - GF(q)

is the 3-cube of a GF(q)-algebra Dg without zero divisors [12, Theorem 4.3.1]. Notice that, in
general, different choices of bases B, B’ lead to nonisomorphic presemifields Dg, Dg,. However,
these presemifields are always isotopic [12, Theorems 4.4.2 and 4.2.3].

By [12][Theorem 5.2.1], up to six projective planes can be constructed from a given finite
semifield D using the transformations of the group Ss. Actually, S3 acts on the set of semi-
field planes of a given order. So, the classification of finite semifields can be reduced to the
classification of the corresponding projective planes up to the action of the group Sjs.

With the help of 3-cubes the construction of finite semifields of a given order can be
rephrased as a matrix problem [5][8, Proposition 3].

Proposition 1. There exists a finite semifield D of dimension d over its center Z(D) 2 GF(q)
if, and only if, there exists a set of d matrices {A1,...,Aq} C GL(d,q) (the set of invertible
matrices of size d over the Galois field GF(q)) such that:

1. Ap is the identity matriz I;
2. S0 NA; € GL(d, q), for all (A1, ..., \a) € GF(q)\ {0}.

3. The first column of the matriz A; is the column vector e} with a 1 in the i-th position,
and 0 everywhere else.

In such a case, the set {Bijk}?,j,kzl’ where Biji, = (Aj)ik, is the 3-cube corresponding to D
with respect to the standard basis of GF(q)?. In [5], By, = (A1, As, ..., Ag), and the linear span
Y =< Ay, As, ..., Ay > are called standard basis and semifield spread set (SSS), respectively.

If we identify the elements of GF(¢q) with the natural numbers 0 to ¢ — 1 (in a certain
way), then we can use the following convention to represent a semifield D of dimension d
over GF(q) (this will be useful to shorten the tables containing our results in Section 4). Let
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By, = (Aq, ..., Aq) be one of its standard bases . Recall that the first column of A; has a one
in the i-th position and zeroes elsewhere. If the remaining columns of A; are

A(d-1)d—1 --- A2d—1 Qd—1
Ad(d—2) e Qq (4N)
then we will encode A; as the natural number Zgi}”dil ajq¢’ (notice that ¢ is the size of the

center of D and so we can compute its powers ¢7).

For a concrete representation of the semifield one can identify the semifield with GF(q)¢,
and the multiplication with x * y = Z?zlxiAiy, i.e., A; is the matrix of left multiplication by
the element e;, where {e;,...,e4} is the canonical basis of GF(q)?. So, the elements of the
standard basis are coordinate matrices of the linear maps L., : D — D, L.,(y) = e; x y.

Finally, the following result relates the SSS of isotopic finite semifields (cf. [5, Section 2]).

Proposition 2. If ¥ is the SSS of a semifield D of dimension d over its center GF(q), and ¥’
is the SSS of an isotope of D, then there exists a matrix QQ € GL(d,q), and S € ¥, such that
Y =Q NS5 1Q.

3 Algorithms for the computational exploration of semi-
fields

The result stated in Proposition 1 is fundamental for the representation of finite semifields in
a computer, since we can represent any finite semifield by one of its standard basis, i.e., by a
set of ordered matrices of fixed size over a finite field. This was also the way semifields were
represented in [21] or, more recently, in [8, 5, 19].

It is clear that a finite semifield can be represented by a big amount of different standard
bases. Namely, any choice of basis of the corresponding vector space (such that the first
element is the identity) induces one of those standard bases. So, in order to reduce the amount
of different representations we deal only with cyclic representations.

Definition 1. A finite semifield D, of dimension d over its center Z (D), is called

e Left cyclic, if there exists a € D (a left cyclic element) such that:
{e,a,a?, ... a1}
is a Z(D)-basis of D.
e Left primitive, if there exists a € D (a left primitive element) such that:
D* ={e,a,a?a®, . .}

where a? = aa,a® = aa®, .. ..

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com
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Any left primitive semifield is always left cyclic [8, Corollary 1]. First examples of left
primitive semifields are associative finite semifields, i.e., finite fields, since the multiplicative
group of a finite field is a cyclic group. It was conjectured in [22] that any finite semifield
is always left (or right) primitive, but the two examples of 32 and 64 elements mentioned in
[18, 8] show that this conjecture is not true. However, even these few nonprimitive semifields
are cyclic. The use of cyclic representations has the advantage that computations are reduced
significantly. So, if the representation is cyclic (i.e., €;41 = L. (e1), where e; is the identity
of the semifield, and e is a left cyclic element), then the matrix A, corresponding to this
basis is a companion matrix. We shall show next that we can restrict our exploration to cyclic
representations. Namely, we shall prove that all finite semifields of dimension 4 over its center
(the cases of interest in this paper) are isotopic to a left cyclic semifield.

Remark 1. If ¥ is the SSS of a semifield D with center GF'(g), then because of [1][Lemma 5],
the characteristic polynomial of any matrix in X\ {\ | A € GF(q)} has no linear factors. We
will say that a monic polynomial is admissible if it has no linear factors. On the other hand, if
a D is left primitive, then it has a standard basis such that A, is a companion matrix whose
characteristic polynomial is primitive (i.e. its multiplicative order is #D*) [8, Proposition 2,
Corollary 1].

Proposition 3. If D is a finite semifield, of dimension 4 over its center Z(D) = GF(q), then
there exists a left cyclic isotope D' of D.

Proof. First of all, we shall show that there exists an element b € D\ GF(q) (i.e., non-
scalar) such that the characteristic polynomial of Ly is either irreducible, or the product of two
irreducible polynomials of degree two.

If ¢ = 2° i.e., if the characteristic of D is 2, then from a similar argument to [1, Lemma
6] (there on the right, here on the left), there exists a non-scalar b € D\ GF'(q) such that the
characteristic polynomial of L; has the form:

zt + clx3 +c3x + ¢y

where ¢y, ¢3,¢4 € GF(q). From the previous remark, this polynomial does not have linear
factors so we need only to show that it is not the square of an irreducible quadratic polynomial
to prove our claim. If there exist a, f € GF(q) such that

2t F e +esr oy = (22 + ax + B)? =2t + P2 4 52

then ¢; = c3 = 0,a? = 0 and 3% = ¢4. Since g = 2¢, all elements in GF(q) are squares [14], so
there exists v € GF(q) such that

et =at oyt =z )"

a contradiction, since this polynomial can not have linear factors.
If the characteristic of D is not 2, then we fix {1, 3, 3, z4} a GF(q)-basis of D, and consider
the characteristic polynomial of L; for a generic element b = A\jz1 + Asxo + Azws + My € D:

1‘4 + p1 (X)IB + ,OQ(X)IQ + pg(X).’L’ + p4(X)

5

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com



©CoO~NOUTA,WNPE

International Journal of Computer Mathematics

where p;(A) is a homogeneous polynomial in GF(q)[A1, A2, A3, \4], of degree i. Consider the
system of equations p;(\) = pa(A) = 0. From the Chevalley-Warning theorem [14, Theorem 6.6]
it has a nonzero solution, i.e., there exists a nonzero element b € D such that the characteristic
polynomial of Ly is

ot + C3T + ¢4

where ¢3, ¢4 € GF(q). If this polynomial is a square
vt esr ey = (22 + ax + B) = 2t + 202 + (26 + a?)2® + 2apz + 2

then 2a = 0, i.e. a =0, and 28 +a? =0, i.e. 3= 0, so that the polynoimial is 2% and it has
linear factors, which is not possible. Moreover, b can not be a scalar (b € GF(q)), because in
such a case the polynomial is (x — b)4, and so it also has linear factors.

Let us finally show that this element guarantees the existence of an isotope in the conditions
of the proposition. Since the characteristic polynomial p(x) of Ly is either irreducible, or the
product of two irreducible polynomials of degree two, we have that the minimal polynomial of
Ly is exactly p(x) [13, Chapter III, Theorem 13]. Moreover, there exists an element f € D such
that the minimal polynomial of Ly|< s~ is p(x) [13, Chapter III, Theorem 1] (Ls|< s~ denotes the
restriction of the linear map L; to the vector subspace generated by the element f). Consider
the following multiplication in D:

TxY = R;l(x)y

where Ry : D — D, Ry(z) = «f. Then, (D,+,%) = D’ is an isotope of D with unit f and the
multiplication by the element bf has the following property:

Li;(y) = (bf) xy = Ry (bf )y = by = Ly(y)
Hence, bf is a left cyclic element in D’. O

Next, we describe the algorithms that we have implemented to explore finite semifields. In
particular, we present those who have been used to generate all finite semifields of dimension 4
over GF(5) and GF(4). As we have previously proved, any semifield of this type is isotopic to
another one that can be described by a standard basis (a tuple of 4 matrices satisfying certain
conditions, in particular A; = I and A, a companion matrix). So, the output of the algorithm
will be tuples of matrices which correspond to finite semifields. Not all possible tuples satisfying
the conditions of Proposition 1 will be listed. It is only necessary to obtain representatives of
all Ss-equivalence classes.

The first algorithm, a backtracking method (cf. [21]) for searching standard bases, is writ-
ten below with the help of two auxiliary functions. The first one (Complete) enumerates all
valid semifields with given initial partial standard basis, i.e., a tuples (Ay,..., A;) that can be
potentially extended to a standard basis. The second one (Complete2) enumerates all valid
semifield with given partial standard basis and some columns of the next matrix in the stan-
dard basis. The function Complete uses the already known partial standard basis to create the
initial columns of the next matrix and then calls Complete2. This second function, in turn,
recursively adds columns to the incomplete matrix (backtracking if necessary) and then calls
Complete with a new partial standard basis.

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com
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Algorithm 1: Search algorithm for standard bases of finite semifields of dimension 4

e Input: Size of the center p = 4,5, and a fixed companion matrix A,
e Output: List of standard bases with second matrix A, representing semifields with given
center
e Procedure:
Create an empty list of matrices L
Insert the identity [ in L
Insert A, in L
Call Complete(L,p)

Algorithm 2: Function Complete

e Input: A list of partial standard bases L, and the size of the center p = 4,5
e Output: List of matrices representing all the semifields with partial standard basis in
the list L, of the given center
e Procedure:
m «— size of L
if m is equal to 4 then
return {L}
end
else
Create a matrix M of 1 column
Set the first column of M equal to the (m + 1)-th column of the identity
Return Complete2(L, M, p)
end

Algorithm 3: Function Complete2

e Input: A list of partial standard bases L, a truncated matrix M, and the size of the
center p=4,5
e Output: List of standard bases representing all the semifields with partial standard bases
L (containing M), of the given center
e Procedure:
k < number of columns of M
if k is equal to 4 then
Insert M in L
Return Complete(L, p)
end
else
Create an empty list W
Compute C, the list of columns ¢ such that the join of M and c is
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linearly independent of the matrices of L (truncated at the k + 1 first
columns)
for each cin C do
Join c to M, as its k 4+ 1-th column
W := W U Complete2(L, M, p)
Remove ¢ from M
end
Return W
end

As we can see, a partial standard basis of size 2 is needed to initialize the former algo-
rithm. The next procedure generates the list of such partial standard bases. We generate
only nonequivalent partial standard basis, i.e., so that none of them can be obtain from any
other by means of a transformation of the form of Proposition 2. Also, since Ss-equivalence is
considered, we can consider the transpose of the matrices in the list (see [19]).

Algorithm 4: PartialStandardBasesO fSize2

e Input: None
e Output: A set of nonequivalent partial bases (of size 2) of semifields of dimension 4 over
the center GF(p),p = 4,5
e Procedure:
T :=1( // Set of nonequivalent partial standard bases
C := {Companion matrices with admissible characteristic polynomial}
for A, in C' do
T:=TU{(l,As)}
end
for Ain T do // Removal of partial standard bases equivalent to A
for ¥ in {< 1,4y > < I, A, >} do
for S'in ¥ do // Generation of partial standard bases equivalent to A
for £ € X, Q € GL(4,p) such that Q7' ES™'Qisin C do // New matrix A,
if (I,Q'ES™'Q) # A then
Remove (I,Q7'ES7!Q) from T
end
end
end
end
end
return T

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com
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4 New advances in the exploration of semifields

Next we show our recent advances in the exploration of finite semifields obtained with the
implementation of the algorithms presented in the previous section. In order to reduce com-
putation times we have used adequate implementations in language C using Streaming SIMD
Extensions. Moreover, shared and distributed parallel programming techniques have been used
when the computational intensity is very high. This approach proved to be specially suitable in
the manipulation of semifields in [8] and was later confirmed with the experiments which lead
to the classification of semifields or order 81. These rings were classified in [5] in a few days on
a PC, using implementations in GAP [20]. Independently, this classification was achieved in a
few minutes using our implementations in C language [3]. Of course, GAP provides powerful
routines to deal with known structures, such as finite fields. However, C provides astonishingly
fast procedures. Also, parallel processing has been considered just like in the case of explo-
ration of finite semifields of order 64 [19]. Our new results include the classification of finite
semifields of orders 5 and 4* (in this case with center Z O GF(4)), and the study of primitivity
of commutative semifields of order 128.

4.1 Semifields of order 5*

A total amount of 42 Ss-classes of semifields of order 5% exist. The concrete description of
representatives of these classes is contained in the Table 1. GF'(5) is identified with the natural
numbers 0 to 4. Notice that [ is the finite field GF(625).

4.2 Semifields of order 4! and center Z D GF(4)

A total amount of 28 Ss-classes of semifields of order 4% (with center Z O GF(4)) exist.
The concrete description of representatives of these classes is contained in the Table 2. Here
GF(4) ={0,1,a,a* = a + 1} is identified with the set {0,1,2,3}. Notice that I is the finite
field GF(256).

4.3 Primitivity of commutative semifields of order 128

A complete study of primitivity of commutative semifields of order 128 was carried out with
our implementations. The only modification in the algorithm presented in the previous section
consists in checking, while generating a partial standard basis, whether the conditions on the
characteristic polynomials of the SSS are satisfied or not (Remark 1). Unfortunatedly, no new
nonprimitive semifield was found. This is the last step in the quest of these semifields, which
we summarize in the Table 3.

5 Conclusions

We have considered a series of algorithms and methods to explore finite semifields. The imple-
mentation of these methods have been used to study the primitivity of commutative semifields
of order 128 and the classification of semifields of orders 5* and 4* (in this case with center
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4 A, A, A, (Z,N, N, Nyy,, N,)
I 1954030 | 565681 | 109410291 | (625, 625, 625, 625, 625)

i 1054030 | 469480 | 70893499 (5,5,5,5,5)
I 1054030 | 469430 | 81926092 (5,5,5,5,5)
IV 1054030 | 469480 | 109706214 (5,5,5,5,5)
v 1054030 | 469480 | 115187757 (5,5,5,5,5)
VI 1954030 | 469480 | 219662859 (5,5,5,5,5)
VII | 1954030 | 469480 | 224156783 (5,5,5,5,5)
VIII | 1954030 | 469831 | 49975531 (5,5,5,5,5)
IX 1054030 | 469831 | 51050463 (5,5,5,5,5)
X 1054030 | 469831 | 162916061 (5,5,5,5,5)
XI 1054030 | 469831 | 209752465 (5,5,5,5,5)
XII | 1954030 | 470801 | 56951034 (5,5,5,5,5)
XIII | 1954030 | 470801 | 97596661 (5,5,5,5,5)
XIV | 1954030 | 484619 | 231520988 (5,5,5,5,5)
XV | 1954030 | 488868 | 76607761 (5,5,5,5,5)
XVI | 1954030 | 489303 | 92517950 (5,5,5,5,5)
XVII | 1954030 | 489303 | 135078936 (5,5,5,5,5)
XVIII | 1954030 | 489303 | 178662102 (5,5,5,5,5)
XIX | 1954030 | 492721 | 78475264 (5,5,5,5,5)
XX | 1954030 | 492721 | 88167145 (5,5,5,5,5)
XXI | 1954030 | 493317 | 183329012 (5,5,5,5,5)
XXII | 1954030 | 500445 | 221902310 (5,5,5,5,5)
XXII | 1954030 | 500933 | 118596969 (5,5,5,5,5)
XXIV | 1954030 | 512497 | 97541900 (5,5,5,5,5)
XXV | 1054030 | 512497 | 204964393 (5,5,5,5,5)
XXVI | 1954030 | 513265 | 151861995 (5,5,5,5,5)
XXVII | 1954030 | 520378 | 81047410 (5,5,5,5,25)
XXVIII | 1954030 | 524367 | 81105195 (5,5,5,5,5)
XXIX | 1954030 | 864819 | 65692963 (5,5,5,25,5)
XXX | 1954030 | 866032 | 91203403 (5,5,5,5,5)
XXXI | 1954030 | 875046 | 223896265 (5,5,5,5,5)
XXXIT | 1954030 | 882554 | 128424368 (5,5,5,5,5)
XXXIII | 1954030 | 955963 | 86412305 (5,5,5,5,5)
XXXIV | 1954030 | 992164 | 91135073 (5,5,5,5,25)
XXXV | 1954030 | 995510 | 73227955 (5,5,5,5,25)
XXXVI | 1954030 | 1020155 | 120680821 (5,5,25,5,5)
XXXVII | 1954030 | 1020155 | 137293666 (5,5,25,5,5)
XXXVIII | 1954030 | 1167110 | 126378035 (5,5,5,5,25)
XXXIX | 1954030 | 1250745 | 165287727 (5,5,5,25,5)

XL 1054030 | 7195668 | 86845792 (5,5, 25, 25, 25)

XLI | 1054030 | 12300642 | 137293666 (5,5, 25, 25, 25)

XLII | 1954030 | 23410082 | 74656357 (5,5, 25, 25, 25)

Table 1: Semifields of order1504 (A; is always the identity)
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1
2

3

4

> m 4, 4 y (7, N, Ny, N V)
7 I 262580 | 111661 | 11808191 | (256, 256, 256, 256, 256)
8 IT | 262580 | 83501 | 4780498 (4,4,4,4,4)
9 III | 262580 | 83697 | 5132708 (4,4,4,4,4)
ig IV | 262580 | 83697 | 8282791 (4,4,4,4,4)
> V| 262580 | 83697 | 9838330 (4,4,4,4,4)
13 VI | 262580 | 83697 | 13430083 (4,4,4,4,4)
14 VII | 262580 | 83697 | 15276284 (4,4,4,4,4)
15 VIII | 262580 | 83733 | 9367916 (4,4,4,4,4)
i? TX | 262580 | 83739 | 5449621 (4,4,4,4,4)
18 X [ 262580 | 83739 | 9544454 (4,4,4,4,4)
19 XI | 262580 | 84816 | 5026619 (4,4,4,4,4)
20 XII | 262580 | 84816 | 10383745 (4,4,4,4.4)
21 XIII | 262580 | 84986 | 5462727 (4,4,4,4,4)
5;2; XIV | 262580 | 84986 | 14115647 (4,4,4,4,4)
o XV | 262580 | 85585 | 7287796 (4,4,4,4,4)
o5 XVI | 262580 | 86757 | 4757187 (4,4,4,4,4)
26 XVII | 262580 | 89416 | 4751452 (4,4,4,4,4)
27 XVIIT | 262580 | 91787 | 14663856 (4,4,4,4,4)
gg XIX | 262580 | 93086 | 5121786 (4,4,4,4,4)
20 XX | 262580 | 94652 | 14400687 (4,4,4,4,4)
31 XX1I | 262580 | 148118 | 10055074 (4,4,4,4,4)
32 XXII | 262580 | 149049 | 11399190 (4,4,4,4,4)
33 XXIII | 262580 | 154590 | 13245222 (4,4,4,4,4)
gg XXIV | 262580 | 177536 | 4815767 (4,4,16,4,4)
20 XXV | 262580 | 177536 | 6834559 (4,4,16,4,4)
37 XXVI | 262580 | 177536 | 14130408 (4,4,16,4,4)
38 XXVII | 262580 | 637170 | 11675230 (4,4, 16, 16, 16)
Zg XXVIII | 262580 | 897096 | 5396188 (4,4,16,16, 16)
j; Table 2: Semifields of order 256 with center Z O GF(4) (A; is always the identity)
43

44

45

46

47

48 Order 816326481 128
gg Number of nonprimitive semifields [0 | 0 | 1 | 1 | 0 | 0 (commutative)
o1 Table 3: Number of nonprimitive semifields

52

53

54

55

56

57 11

58

59

60
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Z O GF(4)). Our approach has proved to be quite useful, since we have classified semifields
which were not previously reachable (because of the computation complexity, which increases
exponentially on the dimension of the semifield). We summarize the known results on the clas-
sification of semifields in Table 4. Results obtained by our methods are included in boldface.

Number of Ss-classes | d=3|d=4|d=5|d=6
q=2 1 3 3 80
q=3 2 12 ? ?
q=4 2 28 ?
q=>5 3 42 ?

Table 4: Finite semifields of dimension d over Z O GF(q)
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