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Finite semifields (finite non necessarily associative division rings) have traditionally been considered in the context of finite geometries (they coordinatize projective semifield planes). New applications to coding theory, combinatorics and graph theory have broaden the potential interest in these rings.

We show recent progress in the study of these objects with the help of computational tools. In particular, we state results on the classification and primitivity of semifields obtained with the help of advanced and efficient implementations (both sequential and parallel) of different algorithms specially designed to manipulate these objects.

Introduction

A finite semifield (or finite division ring) D is a finite nonassociative ring with identity such that the set D * = D \ {0} is closed under the product, i.e., it is a loop [START_REF] Knuth | Finite semifields and projective planes[END_REF][START_REF] Cordero | A survey of finite semifields[END_REF]. Finite semifields have been traditionally considered in the context of finite geometries since they coordinatize projective semifield planes [START_REF] Knuth | Finite semifields and projective planes[END_REF]. Recent applications to coding theory [START_REF] González | Symplectic Spread based Generalized Kerdock Codes[END_REF][START_REF] Kantor | Symplectic semifield planes and Z 4 -linear codes[END_REF], combinatorics and graph theory [START_REF] May | Efficient Matrix Rank Computation with Applications to the Study of Strongly Regular Graphs[END_REF], have broadened the potential interest in these rings.

Because of their diversity, the obtaining of general theoretical algebraic results seems to be a rather difficult (and challenging) task ([2, 16, 17]). On the other hand, because of their finiteness, computational methods can be naturally considered in the study of these objects. So, the classification of finite semifields of a given order is a rather natural problem to use computations. For instance, computers were used in the classification of semifields or orders 16 [START_REF] Kleinfeld | A history of finite semifields[END_REF] and 32 [START_REF] Walker | Determination of division algebras with 32 elements[END_REF][START_REF] Knuth | Finite semifields and projective planes[END_REF]. These results date back 40 years, when computers were being incorporated to scientific research. In [START_REF] Kleinfeld | A history of finite semifields[END_REF], a complete account of the study of finite semifields in the first decades of the 20th century can be found.

In the last few years there is a renovated interest on the study of semifields with the help of computational methods. So, in [START_REF] Kantor | Finite semifields, Finite Geometries, Groups, and Computation (Proc. of Conf. at[END_REF] a quest for the study of semifields of order at most 256 is launched: These computer-assisted results used very weak computers by modern standards; it is surprising that there has not yet been an enumeration of all semifields of order at most 256 since the resulting data might be useful for finding new general constructions. This lead U. Dempwolff to describe in [START_REF] Dempwolff | Semifield Planes of Order 81[END_REF] all finite semifields of order 81 (independently this classification was also achieved by the first two authors [3]), and to the classification of semifields of order 64 which has been recently obtained by the three authors [START_REF] Rúa | Classification of Semifields of Order 64[END_REF]. On the other hand, motivated by complete different reasons, in [START_REF] Rúa | Primitive and non primitive finite semifields[END_REF][START_REF] Hentzel | Primitivity of Finite Semifields with 64 and 81 elements[END_REF], the primitivity of semifields of orders 32, 64 and 81 was considered.

In this paper we present the computational methods that we have implemented to deal with different problems in semifields, and the recent results we have obtained with these implementations. In particular, we will show the state of the art on the classification and primitivity problems.

The structure of the paper is as follows. In §2, basic properties of finite semifields are reviewed. Section §3 describes the algorithms specially designed to explore finite semifields. Finally, in §4, we present new advances on the classification and primitivity of semifields obtained with implementations of the previous algorithms.

Preliminaries

In this section we collect definitions and facts on finite semifields. Proofs can be found, for instance, in [START_REF] Knuth | Finite semifields and projective planes[END_REF][START_REF] Cordero | A survey of finite semifields[END_REF].

A Apart from finite fields (which are obviously finite semifields), proper finite semifields were first considered by L.E. Dickson [START_REF] Dickson | Linear algebras in which division is always uniquely possible[END_REF] and were deeply studied by A.A. Albert [START_REF] Albert | Finite division algebras and finite planes[END_REF]. The term finite semifield was introduced in 1965 by D.E. Knuth [START_REF] Knuth | Finite semifields and projective planes[END_REF]. These rings play an important role in the study of certain projective planes, called semifield planes [START_REF] Knuth | Finite semifields and projective planes[END_REF].

The characteristic of a finite presemifield D is a prime number p, and D is a finitedimensional algebra over GF (q) (q = p c ) of dimension d, for some c, d ∈ N, so that |D| = q d . If D is a finite semifield, then GF (q) can be chosen to be its associative-commutative center Z(D). Other relevant subsets of a finite semifield are the left, right, and middle nuclei (N l , N r , N m ), and the nucleus N [START_REF] Cordero | A survey of finite semifields[END_REF].

Isomorphism of presemifields is defined as usual for algebras, and the classification of finite semifields up to isomorphism can be naturally considered. Because of the connections to finite geometries, we must also consider the following notion. If D 1 , D 2 are two presemifields over the same prime field GF (p), then an isotopy between D 1 and D 2 is a triple (F, G, H) of bijective linear maps D 1 → D 2 over GF (p) such that

H(ab) = F (a)G(b) , ∀a, b ∈ D 1 .
Clearly, any isomorphism between two presemifields is an isotopy, but the converse is not necessarily true. Any presemifield is isotopic to a finite semifield [START_REF] Knuth | Finite semifields and projective planes[END_REF]Theorem 4.5.4]. From a presemifield D, a projective plane P(D) can be constructed. We refer to [START_REF] Knuth | Finite semifields and projective planes[END_REF] for the details. Theorem 6 in [START_REF] Albert | Finite division algebras and finite planes[END_REF] shows that isotopy of finite semifields is the algebraic translation of the isomorphism between the corresponding projective planes. Two finite semifields D 1 , D 2 are isotopic if, and only if, the projective planes P(D 1 ), P(D 2 ) are isomorphic.

If B = [x 1 , . . . , x d ] is a GF (q)-basis of a presemifield D, then there exists a unique set of constants

A D,B = {A i 1 i 2 i 3 } d i 1 ,i 2 ,i 3 =1 ⊆ GF (q) such that x i 1 x i 2 = d i 3 =1 A i 1 i 2 i 3 x i 3 ∀i 1 , i 2 ∈ {1, . . . , d}
This set of constants is known as cubical array or 3-cube corresponding to D with respect to the basis B, and it completely determines the multiplication in D.

A remarkable fact is that permutation of the indexes of a 3-cube preserves the absence of nonzero divisors. Namely, if D is a presemifield, and σ ∈ S 3 (the symmetric group on the set {1, 2, 3}), then the set By [START_REF] Knuth | Finite semifields and projective planes[END_REF][Theorem 5.2.1], up to six projective planes can be constructed from a given finite semifield D using the transformations of the group S 3 . Actually, S 3 acts on the set of semifield planes of a given order. So, the classification of finite semifields can be reduced to the classification of the corresponding projective planes up to the action of the group S 3 .

A σ D,B = {A i σ(1) i σ(2) i σ(3) } d i 1 ,i 2 ,i 3 =1 ⊆ GF (q) is the 3-cube of a GF (q)-algebra D σ B without
With the help of 3-cubes the construction of finite semifields of a given order can be rephrased as a matrix problem [START_REF] Dempwolff | Semifield Planes of Order 81[END_REF]

[8, Proposition 3].

Proposition 1. There exists a finite semifield D of dimension d over its center Z(D) ⊇ GF (q) if, and only if, there exists a set of d matrices {A 1 , . . . , A d } ⊆ GL(d, q) (the set of invertible matrices of size d over the Galois field GF (q)) such that:

1. A 1 is the identity matrix I;

2. d i=1 λ i A i ∈ GL(d, q), for all (λ 1 , . . . , λ d ) ∈ GF (q) d \ {0}.

The first column of the matrix A i is the column vector e ↓

i with a 1 in the i-th position, and 0 everywhere else.

In such a case, the set {B ijk } d i,j,k=1 , where B ijk = (A j ) ik , is the 3-cube corresponding to D with respect to the standard basis of GF (q) d . In [START_REF] Dempwolff | Semifield Planes of Order 81[END_REF], B Σ = (A 1 , A 2 , ..., A d ), and the linear span Σ =< A 1 , A 2 , ..., A d > are called standard basis and semifield spread set (SSS), respectively.

If we identify the elements of GF (q) with the natural numbers 0 to q -1 (in a certain way), then we can use the following convention to represent a semifield D of dimension d over GF (q) (this will be useful to shorten the tables containing our results in Section 4). Let a j q j (notice that q is the size of the center of D and so we can compute its powers q j ).

For a concrete representation of the semifield one can identify the semifield with GF (q) d , and the multiplication with x * y = d i=1 x i A i y, i.e., A i is the matrix of left multiplication by the element e i , where {e 1 , . . . , e d } is the canonical basis of GF (q) d . So, the elements of the standard basis are coordinate matrices of the linear maps L e i : D → D, L e i (y) = e i * y.

Finally, the following result relates the SSS of isotopic finite semifields (cf. [5, Section 2]).

Proposition 2. If Σ is the SSS of a semifield D of dimension d over its center GF (q), and Σ is the SSS of an isotope of D, then there exists a matrix Q ∈ GL(d, q), and S ∈ Σ, such that

Σ = Q -1 ΣS -1 Q.
3 Algorithms for the computational exploration of semifields

The result stated in Proposition 1 is fundamental for the representation of finite semifields in a computer, since we can represent any finite semifield by one of its standard basis, i.e., by a set of ordered matrices of fixed size over a finite field. This was also the way semifields were represented in [START_REF] Walker | Determination of division algebras with 32 elements[END_REF] or, more recently, in [START_REF] Hentzel | Primitivity of Finite Semifields with 64 and 81 elements[END_REF][START_REF] Dempwolff | Semifield Planes of Order 81[END_REF][START_REF] Rúa | Classification of Semifields of Order 64[END_REF].

It is clear that a finite semifield can be represented by a big amount of different standard bases. Namely, any choice of basis of the corresponding vector space (such that the first element is the identity) induces one of those standard bases. So, in order to reduce the amount of different representations we deal only with cyclic representations. Definition 1. A finite semifield D, of dimension d over its center Z(D), is called

• Left cyclic, if there exists a ∈ D (a left cyclic element) such that: {e, a, a (2 , . . . , a (d-1 } is a Z(D)-basis of D.
• Left primitive, if there exists a ∈ D (a left primitive element) such that: Any left primitive semifield is always left cyclic [8, Corollary 1]. First examples of left primitive semifields are associative finite semifields, i.e., finite fields, since the multiplicative group of a finite field is a cyclic group. It was conjectured in [START_REF] Wene | On the multiplicative structure of finite division rings[END_REF] that any finite semifield is always left (or right) primitive, but the two examples of 32 and 64 elements mentioned in [START_REF] Rúa | Primitive and non primitive finite semifields[END_REF][START_REF] Hentzel | Primitivity of Finite Semifields with 64 and 81 elements[END_REF] show that this conjecture is not true. However, even these few nonprimitive semifields are cyclic. The use of cyclic representations has the advantage that computations are reduced significantly. So, if the representation is cyclic (i.e., e i+1 = L i e 2 (e 1 ), where e 1 is the identity of the semifield, and e 2 is a left cyclic element), then the matrix A 2 corresponding to this basis is a companion matrix. We shall show next that we can restrict our exploration to cyclic representations. Namely, we shall prove that all finite semifields of dimension 4 over its center (the cases of interest in this paper) are isotopic to a left cyclic semifield.

D * = {e, a, a
Remark 1. If Σ is the SSS of a semifield D with center GF (q), then because of [START_REF] Albert | Finite division algebras and finite planes[END_REF][Lemma 5], the characteristic polynomial of any matrix in Σ \ {λI | λ ∈ GF (q)} has no linear factors. We will say that a monic polynomial is admissible if it has no linear factors. On the other hand, if a D is left primitive, then it has a standard basis such that A 2 is a companion matrix whose characteristic polynomial is primitive (i.e. its multiplicative order is #D * ) [8, Proposition 2, Corollary 1]. Proposition 3. If D is a finite semifield, of dimension 4 over its center Z(D) = GF (q), then there exists a left cyclic isotope D of D.

Proof. First of all, we shall show that there exists an element b ∈ D \ GF (q) (i.e., nonscalar ) such that the characteristic polynomial of L b is either irreducible, or the product of two irreducible polynomials of degree two.

If q = 2 c , i.e., if the characteristic of D is 2, then from a similar argument to [1, Lemma 6] (there on the right, here on the left), there exists a non-scalar b ∈ D \ GF (q) such that the characteristic polynomial of L b has the form:

x 4 + c 1 x 3 + c 3 x + c 4
where c 1 , c 3 , c 4 ∈ GF (q). From the previous remark, this polynomial does not have linear factors so we need only to show that it is not the square of an irreducible quadratic polynomial to prove our claim. If there exist α, β ∈ GF (q) such that

x 4 + c 1 x 3 + c 3 x + c 4 = (x 2 + αx + β) 2 = x 4 + α 2 x 2 + β 2
then c 1 = c 3 = 0, α 2 = 0 and β 2 = c 4 . Since q = 2 c , all elements in GF (q) are squares [START_REF] Lidl | Finite Fields, Encyclopedia of mathematics and its applications 20[END_REF], so there exists γ ∈ GF (q) such that

x 4 + c 4 = x 4 + γ 4 = (x + γ) 4
a contradiction, since this polynomial can not have linear factors.

If the characteristic of D is not 2, then we fix {x 1 , x 2 , x 3 , x 4 } a GF (q)-basis of D, and consider the characteristic polynomial of L b for a generic element b = λ 1 x 1 + λ 2 x 2 + λ 3 x 3 + λ 4 x 4 ∈ D: where ρ i (λ) is a homogeneous polynomial in GF (q)[λ 1 , λ 2 , λ 3 , λ 4 ], of degree i. Consider the system of equations ρ 1 (λ) = ρ 2 (λ) = 0. From the Chevalley-Warning theorem [START_REF] Lidl | Finite Fields, Encyclopedia of mathematics and its applications 20[END_REF]Theorem 6.6] it has a nonzero solution, i.e., there exists a nonzero element b ∈ D such that the characteristic polynomial of L b is

x 4 + ρ 1 (λ)x 3 + ρ 2 (λ)x 2 + ρ 3 (λ)x + ρ 4 (λ)
x 4 + c 3 x + c 4
where c 3 , c 4 ∈ GF (q). If this polynomial is a square

x 4 + c 3 x + c 4 = (x 2 + αx + β) 2 = x 4 + 2αx 3 + (2β + α 2 )x 2 + 2αβx + β 2
then 2α = 0, i.e. α = 0, and 2β + α 2 = 0, i.e. β = 0, so that the polynoimial is x 4 and it has linear factors, which is not possible. Moreover, b can not be a scalar (b ∈ GF (q)), because in such a case the polynomial is (xb) 4 , and so it also has linear factors.

Let us finally show that this element guarantees the existence of an isotope in the conditions of the proposition. Since the characteristic polynomial p(x) of L b is either irreducible, or the product of two irreducible polynomials of degree two, we have that the minimal polynomial of L b is exactly p(x) [13, Chapter III, Theorem 13]. Moreover, there exists an element f ∈ D such that the minimal polynomial of L b | <f > is p(x) [13, Chapter III, Theorem 1] (L b | <f > denotes the restriction of the linear map L b to the vector subspace generated by the element f ). Consider the following multiplication in D:

x

* y = R -1 f (x)y where R f : D → D, R f (x) = xf .
Then, (D, +, * ) = D is an isotope of D with unit f and the multiplication by the element bf has the following property:

L * bf (y) = (bf ) * y = R -1 f (bf )y = by = L b (y)
Hence, bf is a left cyclic element in D .

Next, we describe the algorithms that we have implemented to explore finite semifields. In particular, we present those who have been used to generate all finite semifields of dimension 4 over GF [START_REF] Dempwolff | Semifield Planes of Order 81[END_REF] and GF (4). As we have previously proved, any semifield of this type is isotopic to another one that can be described by a standard basis (a tuple of 4 matrices satisfying certain conditions, in particular A 1 = I and A 2 a companion matrix). So, the output of the algorithm will be tuples of matrices which correspond to finite semifields. Not all possible tuples satisfying the conditions of Proposition 1 will be listed. It is only necessary to obtain representatives of all S 3 -equivalence classes.

The first algorithm, a backtracking method (cf. [START_REF] Walker | Determination of division algebras with 32 elements[END_REF]) for searching standard bases, is written below with the help of two auxiliary functions. The first one (Complete) enumerates all valid semifields with given initial partial standard basis, i.e., a tuples (A 1 , . . . , A i ) that can be potentially extended to a standard basis. The second one (Complete2) enumerates all valid semifield with given partial standard basis and some columns of the next matrix in the standard basis. The function Complete uses the already known partial standard basis to create the initial columns of the next matrix and then calls Complete2. This second function, in turn, recursively adds columns to the incomplete matrix (backtracking if necessary) and then calls Complete with a new partial standard basis. As we can see, a partial standard basis of size 2 is needed to initialize the former algorithm. The next procedure generates the list of such partial standard bases. We generate only nonequivalent partial standard basis, i.e., so that none of them can be obtain from any other by means of a transformation of the form of Proposition 2. Also, since S 3 -equivalence is considered, we can consider the transpose of the matrices in the list (see [START_REF] Rúa | Classification of Semifields of Order 64[END_REF]). Next we show our recent advances in the exploration of finite semifields obtained with the implementation of the algorithms presented in the previous section. In order to reduce computation times we have used adequate implementations in language C using Streaming SIMD Extensions. Moreover, shared and distributed parallel programming techniques have been used when the computational intensity is very high. This approach proved to be specially suitable in the manipulation of semifields in [START_REF] Hentzel | Primitivity of Finite Semifields with 64 and 81 elements[END_REF] and was later confirmed with the experiments which lead to the classification of semifields or order 81. These rings were classified in [START_REF] Dempwolff | Semifield Planes of Order 81[END_REF] in a few days on a PC, using implementations in GAP [START_REF]GAP -Groups[END_REF]. Independently, this classification was achieved in a few minutes using our implementations in C language [3]. Of course, GAP provides powerful routines to deal with known structures, such as finite fields. However, C provides astonishingly fast procedures. Also, parallel processing has been considered just like in the case of exploration of finite semifields of order 64 [START_REF] Rúa | Classification of Semifields of Order 64[END_REF]. Our new results include the classification of finite semifields of orders 5 4 and 4 4 (in this case with center Z ⊇ GF (4)), and the study of primitivity of commutative semifields of order 128.

E ∈ Σ, Q ∈ GL(4, p) such that Q -1 ES -1 Q is in C do // New matrix A 2 if (I, Q -1 ES -1 Q) = A then Remove (I, Q -1 ES -1 Q) from T end end

Semifields of order 5 4

A total amount of 42 S 3 -classes of semifields of order 5 4 exist. The concrete description of representatives of these classes is contained in the Table 1. GF (5) is identified with the natural numbers 0 to 4. Notice that I is the finite field GF (625).

Semifields of order 4 4 and center Z ⊇ GF (4)

A total amount of 28 S 3 -classes of semifields of order 4 4 (with center Z ⊇ GF (4)) exist. The concrete description of representatives of these classes is contained in the Table 2. Here GF (4) = {0, 1, α, α 2 = α + 1} is identified with the set {0, 1, 2, 3}. Notice that I is the finite field GF (256).

Primitivity of commutative semifields of order 128

A complete study of primitivity of commutative semifields of order 128 was carried out with our implementations. The only modification in the algorithm presented in the previous section consists in checking, while generating a partial standard basis, whether the conditions on the characteristic polynomials of the SSS are satisfied or not (Remark 1). Unfortunatedly, no new nonprimitive semifield was found. This is the last step in the quest of these semifields, which we summarize in the Table 3.

Conclusions

We have considered a series of algorithms and methods to explore finite semifields. The implementation of these methods have been used to study the primitivity of commutative semifields of order 128 and the classification of semifields of orders 5 4 
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 147 Search algorithm for standard bases of finite semifields of dimension Input: Size of the center p = 4, 5, and a fixed companion matrix A 2 • Output: List of standard bases with second matrix A 2 representing semifields with given center • Procedure: Create an empty list of matrices L Insert the identity I in L Insert A 2 in L Call Complete(L, p) Algorithm 2: Function Complete • Input: A list of partial standard bases L, and the size of the center p = 4, 5 • Output: List of matrices representing all the semifields with partial standard basis in the list L, of the given center • Procedure: m ← size of L if m is equal to 4 then return {L} end else Create a matrix M of 1 column Set the first column of M equal to the (m + 1)-th column of the identity Return Complete2(L, M, p) end Algorithm 3: Function Complete2 • Input: A list of partial standard bases L, a truncated matrix M, and the size of the center p = 4, 5 • Output: List of standard bases representing all the semifields with partial standard bases L (containing M), of the given center • Procedure: k ← number of columns of M if k is equal to 4 then Insert M in L Return Complete(L, p) end else Create an empty list W Compute C, the list of columns c such that the join of M and c is the matrices of L (truncated at the k + 1 first columns) for each c in C do Join c to M, as its k + 1-th column W := W ∪ Complete2(L, M, p) Remove c from M end Return W end

Algorithm 4 :

 4 P artialStandardBasesOf Size2• Input: None • Output: A set of nonequivalent partial bases (of size 2) of semifields of dimension 4 over the center GF (p), p = 4, 5• Procedure:T := ∅ //Set of nonequivalent partial standard bases C := {Companion matrices with admissible characteristic polynomial} for A 2 in C do T := T ∪ {(I, A 2 )} end for A in T do // Removal of partial standard bases equivalent to A for Σ in {< I, A 2 >, < I, A t 2 >} do for S in Σ do // Generation of partial standard bases equivalent to A for
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Z ⊇ GF (4)). Our approach has proved to be quite useful, since we have classified semifields which were not previously reachable (because of the computation complexity, which increases exponentially on the dimension of the semifield). We summarize the known results on the classification of semifields in Table 4. Results obtained by our methods are included in boldface. Table 4: Finite semifields of dimension d over Z ⊇ GF (q)
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