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In this paper, a new version of approximate Newton method for solving

nonsmooth equations with infinite max function is presented. This method
uses a difference approximation of the generalized Jacobian based on a weak
consistently approximated Jacobian. Numerical example is reported for the
generalized Newton method using two versions of approximation.

Keywords: Nonsmooth equation; Semismooth function; Weak consistently
approximated Jacobian; Difference approximation; Superlinear convergence.

2000 Mathematics Subject classification codes: 65H10, 90C33
CCS: G.1.5, G.1.2, F.2.1

1 Introduction

Many important practical problems of mathematical programming require the
solving of nonlinear system of equations

F (x) = 0, (1)

where F : Rn → Rn is locally Lipschitz.
The generalized Jacobian method for solving such systems was proposed by

Qi and Sun in [13] in the form

x(k+1) = x(k) − V −1k F (x(k)), Vk ∈ ∂F (x
(k)), (2)

where ∂F (x(k)) is the generalized Jacobian of the function F at x(k), defined by
Clarke in [5], and a matrix Vk is taken arbitrarily from ∂F (x(k)). The iteration
generated by (2) is locally superlinearly convergent under the assumption of
semismoothness of the function F .

Xu and Chang in [16] expanded method (2), replacing an iteration matrix
with an adequately defined consistently approximated Jacobian, to avoid the
complicated evaluations of Vk. Xu and Chang proved the superlinear conver-
gence of the method under the assumption of semismoothness. Other versions
of the difference approximation were proposed also by Śmietański in [14].

In this paper we present the generalized Newton method for solving some
new class of nonlinear equations. We construct the difference approximation
method for solving problems with functions defined by the operator infinite
maximum, i.e. the considered function F has the following form

F (x) = max {f1(x), f2(x), ...} ,

where fp : Rn → Rn, p = 1, 2, ... and ’max’ denotes the componentwise maxi-
mum operator. We obtain again that the method is locally superlinearly con-
vergent under the assumption of semismoothness of F . The iterations are based
on some approximation of a weak consistently approximated Jacobian, which
was introduced by Śmietański in [15]. Earlier, Kummer in [8] presented suffi-
cient and necessary conditions for the convergence of Newton method based on
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the generalized derivative (in particular the generalized Jacobian). But our ap-
proach permits to determine an approximation of generalized Jacobian in some
special cases and involves the proof of superlinear convergence.

In Section 2 we give some needed good-known notions. In Section 3 we
present an approximate Newton method for solving nonsmooth equations and
describe a consistently approximated Jacobian, a weak consistently approxi-
mated Jacobian and their properties. In Section 4 we remind the finite differ-
ence approximation for the generalized Jacobian and propose a superlinearly
convergent approximate method for solving nonsmooth equations with infinite
max functions.

Notation: Throughout the paper, we use the following notation. Rn denotes
the vector space of n-tuples with the Euclidean norm ‖·‖ and L(Rn) the matrix
space of n × n real matrices with the induced norm ‖·‖. S(x, δ) denotes an
open ball in Rn with center x and radius δ, N(x, δ) is a closed ball in Rl with
center x and radius δ. If aj , j = 1, ..., n are vectors of Rn, [a1, ..., an] will be a
matrix whose j-th column is aj , and if Aj , j = 1, ..., n are subsets of Rn, then
[A1, ..., An] will be a set of matrices in the form [a1, ..., an], where aj ∈ A for all
j = 1, ..., n.

2 Preliminaries

Throughout this work, we assume that the functions f : Rn → R and F : Rn →
Rn are locally Lipschitz.

Let S be some set with Lebesgue’s measure 0 in Rn. The generalized gradient
of f at x is

∂f(x) = co{lim∇f(x(k)) : x(k) → x, x(k) /∈ S, x(k) ∈ Df},

where Df denotes the set of points at which f is differentiable. Clarke in [4]
and [5] showed that if f is C1 or differentiable at x and regular, then

∂f(x) = {∇f(x)}. (3)

Moreover, Clarke in [5] proved among the others that ∂f(x) is a compact subset
of Rn and upper semicontinuous.

The following theorem describes the generalized gradient of a function de-
fined by means of the infinite max operator:

Theorem 1 (Clarke [4], Theorem 2.1) Let U be a sequentially compact space,
and let g : Rn × U → R has the following properties:
(a) g(x, u) is upper semicontinuous in (x, u);
(b) g is locally Lipschitz in x, uniformly for u ∈ U ;
(c) g◦x(x, u;h) = g

′
x(x, u;h) for each h ∈ Rn;

(d) ∂xg(x, u) is upper semicontinuous in (x, u).
Then, if we let f(x) = max {g(x, u) : u ∈ U},
(i) f is locally Lipschitz;
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(ii) f ′(x;h) exists;
(iii) f ′(x;h) = f◦(x;h) = max {〈ξ, h〉 : ξ ∈ ∂xg(x, u), u ∈M(x)}, whereM(x) =
{u ∈ U : g(x, u) = f(x)};
(iv) ∂f(x) = co {∂xg(x, u) : u ∈M(x)} .

Remark: (Clarke [4], Remark after Theorem 2.1) Hypotheses (b), (c), (d)
from the above theorem will follow if g is convex in x. Moreover, the conditions
on g also hold when ∇xg(x, u) exists and is continuous in (x, u). Thereby, the
above theorem is a generalization of a theorem originally due to Danskin [6].

According to Rademacher’s Theorem, the local Lipschitz continuity of F
implies that F is differentiable almost everywhere. Let DF be the set of points
at which F is differentiable. The generalized Jacobian of F : Rn → Rn at x is

∂F (x) = co{limJF (x(k)) : x(k) → x, x(k) ∈ DF},

where JF
(
x(k)

)
denotes the usual Jacobian of F at x(k). Clarke in [5] proved

that
∂F (x) ⊂ [∂F 1(x), ..., ∂Fn(x)]T , (4)

where the Cartesian product on the right side of the above inclusion denotes the
set of all matrices, whose i-th row belongs to ∂F i(x) for every i. If n = 1, then
∂F (x) = ∂F 1(x) (i.e. the generalized gradient and the generalized Jacobian
coincide).

Following Chen [2], we will denote the set of matrices, whose rows are the
generalized gradients of components F i of the function F at x as ∂CF (x), i.e.

∂CF (x) =
[
∂F1(x), ..., ∂Fn(x)

]T
. Hiriart-Urruty in [7] stated, that the equality

in (4) holds at least in two particular cases. First, when all functions F i except
possibly one, e.g. F 1, are C1 at x, then ∂F (x) = [∂F1(x),∇F 2(x), ...,∇Fn(x)]T .
The second case holds when the component functions are nondifferentiable with
respect to nonrelated variables, e.g. F i is nondifferentiable only with respect to
variable xi for every i = 1, ..., n.

The generalized Jacobian of F with respect to the j -th variable (the partial
generalized Jacobian) at x is

∂xjF (x) = co{lim∇xjF (x
(k)) : x(k) → x, x(k) ∈ DF},

where ∇xjF
(
x(k)

)
denotes the vector of the usual partial derivatives with re-

spect to the j-th variable at x(k). From the definitions of the generalized Ja-
cobian and the partial generalized Jacobian we may easily obtain the following
inclusion: ∂F (x) ⊂ [∂x1F (x), ..., ∂xnF (x)], where the Cartesian product on the
right side denotes the set of all matrices, whose i-th column belongs to ∂xiF (x)
for every i (see Hiriart-Urruty [7] - comment to the definition of the generalized
partial Jacobian after Theorem 2.1).

We will say that ∂F (x) (or ∂CF (x)) is nonsingular if all V ∈ ∂F (x) (V ∈
∂CF (x), respectively) are nonsingular.

Lemma 2 If ∂CF (x) is nonsingular, then there are constants δ > 0 and C1 > 0
such that for any y ∈ S(x, δ), ∂CF (y) is nonsingular and

∥∥V −1
∥∥ ≤ C1 for any

V ∈ ∂CF (y), y ∈ S(x, δ).
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Proof. Since ∂CF (x) is nonsingular, then there exists ε > 0 sufficiently

small such that ∂CF (x) + εB is nonsingular, where B is unit ball in matrix
space Rn×n. By the upper semicontinuity of ∂CF , for every ε > 0, there exists
δ > 0 such that

∂CF (y) ⊂ ∂CF (x) + εB for all y ∈ S(x, δ).

The semismoothness was introduced for functionals by Mifflin in [9]. The
following definition is presented after Qi and Sun [13]. F is semismooth at x if
F is locally Lipschitz at x and

lim
V∈∂F (x+th′),h′→h,t↓0

V h′. (5)

exists for any h ∈ Rn. Clearly, convex functions and smooth functions are
semismooth. Scalar products and sums of semismooth functions are semismooth
functions (see Mifflin [9]). The assumption (5) implies that the Hadamard
directional derivative exists (see Qi and Sun [13]):

lim
h′→h,t↓0

F (x+ th′)− F (x)

t
= lim
V ∈∂F (x+th′),h′→h,t↓0

V h′.

Lemma 3 (Qi, Sun [13], Theorem 2.3) The following statements are equiva-
lent:
(i) F is semismooth at x;
(ii) V h− F ′(x;h) = o (‖h‖) for V ∈ ∂F (x+ h), h→ 0;

(iii) limh→0
F ′(x+h;h)−F ′(x;h)

‖h‖ = 0.

Remark: Chen in [2] suggested that the statement (ii) of Lemma 3 holds
also for any V ∈ ∂CF (x+ h), which is obvious because the semismoothness of
F at x is equivalent to the semismoothness of each of its components F i at x,
what follows by Corollary 2.4 from [13] and Lemma 3(iii)).

Additionally, Qi and Sun [13] remarked that if F is semismooth at x, then
for any h→ 0

F (x+ h)− F (x)− F ′(x;h) = o (‖h‖) . (6)

From (6) it follows that a semismooth function is B-differentiable.

3 Approximate Newton method

First, we introduce an approximate Newton iteration. Let us consider the ver-
sion of Newton method in which the next point is computed by

x(k+1) = x(k) − J(x(k), s(k))−1F (x(k)), (7)

where J(x(k), s(k)) ∈ L(Rn) is some approximation of the generalized Jacobian
of F and s(k) is an l-dimensional vector of parameters.
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The iteration (7) is a generalization of the smooth approximate Newton

method, which was established by Ortega and Rheinboldt in [11]. The con-
struction of the matrix J(x, s) is here a principal difficulty. Two versions of
possible constructions of J(x, s) were presented in [14].

Now, we present main results discussed in [16] and [14], which are necessary
to prove the superlinear convergence. First, we have to remind a notion of CAJ
introduced by Xu and Chang in [16]:

Definition 4 Let J : D×Dl ⊂ R
n×Rl → L(Rn). If 0 ∈ Rl is a limiting point

of Dl, and if
lim
s→0

dist [J(x, s); ∂F (x)] = 0,

uniformly with respect to x ∈ D, then J(x, s) is called a consistently approxi-
mated Jacobian of F in D (CAJ).
Here,

dist [J(x, s); ∂F (x)] = min
V∈∂F (x)

‖J(x, s)− V ‖ .

A simple approximate method for solving nonsmooth equations is based
on a consistently approximated Jacobian.. However, to allow the solving a
nonsmooth equations with function defined by the operator maximum, the weak
consistently approximated Jacobian has been introduced in [15].

Definition 5 Let J : D×Dl ⊂ R
n×Rl → L(Rn). If 0 ∈ Rl is a limiting point

of Dl, and if
lim
s→0

dist [J(x, s);∂CF (x)] = 0, (8)

uniformly with respect to x ∈ D, then J(x, s) is called a weak consistently
approximated Jacobian of F in D (WCAJ).
Here, again

dist[J(x, s); ∂CF (x)] = min
V∈∂CF (x)

‖J(x, s)− V ‖ .

Remark: (i) Let us notice that equality (8) in the above definition is similar
to the Jacobian consistence property given by Chen, Qi and Sun in [3] in the
form

lim
ε↓0

dist[(∇xf(x, ε))
T ; ∂CF (x)] = 0 for any x ∈ Rn,

where the B-subdifferential is approximated by the Jacobian of some C1 function
f defined on Rn × (0,+∞), called a smooth approximation of F .
(ii) If J(x, s) is a CAJ of F in D, then J(x, s) is a WCAJ of F in D (it follows
obviously by Definitions 4, 5 and inclusion (4)).

The following lemma, theorem and corollary were presented in [15] to prove
a convergence an approximate Newton method for nonsmooth equations with
finite max function.
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Lemma 6 Let x∗ ∈ Rn. Suppose that F is semismooth at x∗ and that J(x, s)
is a WCAJ of F (x) in a neighborhood of x∗. Then

‖F ′(x∗ + h, h)− J(x∗ + h, s)h‖ ≤ w(h, s) ‖h‖ ,

where limh→0,s→0w(h, s) = 0.

Theorem 7 Let x∗ ∈ D be a solution of (1). Suppose that F is semismooth at
x∗ and that ∂WF (x∗) is nonsingular. Let J : D ×Dl ⊂ Rn × Rl → L(Rn) be
a WCAJ of F in D and assume that 0 is a limiting point of Dl. Then, there
exist δ > 0 and γ > 0 such that J(x, s) is nonsingular for x ∈ S (x∗, δ) , s ∈
Dl ∩N(0, γ). Furthermore, the function

G(x, s) := x− J(x, s)−1F (x) (9)

is contractive in the sense that ‖x∗ −G(x, s)‖ ≤ u(x, s) ‖x− x∗‖ for all x ∈
D ∩ S(x∗, δ), s ∈ Dl ∩N(0, γ), where limx→x∗,s→0 u(x, s) = 0.

Corollary 8 Suppose that the assumptions of Theorem 7 are satisfied. Let
G(x, s) be defined by (9) and let g : Rn → Rl be a continuous function with
g(x∗) = 0. If s = g(x), then there exists δ > 0 such that G(x, g(x)) is contractive
in S(x∗, δ). Thereby, the sequence produced by (7) converges to x∗ superlinearly
for a sufficiently good starting point.

4 Practical method for equations with max func-

tion

Now we will present some version of the difference approximation which offers

a practical construction of a weak consistently approximated Jacobians for non-
smooth equations with maximum function. Clearly, the existence of a WCAJ,
which ensure convergence of the method, depends on the local properties of F
(e.g. semismoothness of F and nonsingularity of the generalized Jacobian of
F ). First, we remind a notation for the problem.

Assume that F in (1) has the following form:

F (x) = max {F1(x), ..., Fm(x)} , (10)

where Fp : Rn → Rn, p = 1, ...,m, and ”max” denotes the componentwise
maximum operator.

Let I(x) denotes the active index set at x, i.e. the set {i : F (x) = fi(x)},
and Aip - the effective region of an active smooth piece of function Fi, i.e. the
set {x : Fi(x) = fp,i(x)}.

Remark: If all components Fp are continuously differentiable, then F is
a PC1 function. Some important useful property of such functions has been
studied by Pang and Ralph in [12]: for PC1 function F , the convex hull of the
set {∇f(x) : i ∈ Ĩ(x)} is equal to the generalized Jacobian of F at x, where
Ĩ(x) = {i : x ∈ cl int{x ∈ V : i ∈ I(z)}} and V is a neighborhood of x.

7
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Example: An absolute value function is a simplest example of finite max

function, which arises in practice. Really

|x| = max {x,−x} .

For nonlinear equations with function F in the form (10) we may construct
a weak consistently approximated Jacobian in the following way:

[J(x, s)]i,j =






F i
1
(x+sjej)−F i

1
(x)

sj
for x ∈ Ai1,

...

F i
p(x+sjej)−F i

p(x)

sj
for x ∈ Aip and x /∈

p−1⋃

k=1

Aik,

...

F i
m(x+sjej)−F i

m(x)
sj

for x ∈ Aim and x /∈
m−1⋃

k=1

Aik,

(11)

where i, j ∈ {1, ..., n}, si > 0 for j = 1, ..., n. Additionally, assume that x +
sjej ∈ A

i
p for suitable p. Because F is a PC1 function, then the considered

points belong to the closure of the effective region of a considered active smooth
piece. Otherwise one can always construct a PC1 function which is active at x
but not active at any neighborhood of x (see Pang and Ralph [12]).

The following lemma permits to formulate the theorem about the superlinear
convergence of the sequence (7) with a WCAJ defined by (11).

Lemma 9 ([15], Lemma 17) Suppose that Fp, p = 1, ...,m are C1 or differ-
entiable and regular. Then, for J(x, s) defined by (11), the following inclusion
holds:

lim
s↓0
J(x, s) ∈ ∂CF (x) . (12)

Theorem 10 Let x∗ be a solution of (1) with F in the form (10). Assume
that F is semismooth in a neighborhood of x∗ and that ∂F (x∗) is nonsingular.
Suppose that, for J(x, s) defined by (11), the inclusion (12) holds uniformly with
respect to x in a neighborhood of x∗. Let g : Rn → Rl be a continuous function
for which g(x∗) = 0. Then, for s = g(x), there exists δ > 0 such that, if the
starting point x0 belongs to S(x∗, δ), then the sequence

{
x(k)

}
generated by (7)

is well defined and converges to x∗ superlinearly.

Proof. It follows from Lemma 9 that J(x, s) is a weak consistently approx-
imated Jacobian of funcion F in some neighborhood of x∗ under the assump-
tion that (12) holds uniformly with respect to x in a neighborhood of x∗ for
s ∈ Dl ∩N(0, γ), where γ is takie, as in Theorem 7. The rest of proof follows
directly from Corollary 8.

Remark: Theorem 10 states the convergence properties of a nonsmooth
version of the classical approximate Newton method (the generalized Jacobian
method). The standard difference approximations are only suitable for a re-
stricted class of problems. Therefore, in the sequel we will introduce other
techniques which allow to solve more complicated problems.
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Many of the convex function, which arises in practical problems, are maxi-

mum value functions of the form

F (x) = max {Φ(x, t) : t ∈ T } for x ∈ Rn,

where T is a closed subset of Rm and Φ(x, t) and its first- and second-order
partial derivatives with respect to components of x are continuous on Rn × T .
Such functions have been considered e.g. by Mifflin and Sagastizábal in [10].
Moreover, there is nonsmooth infinite max-operator in optimization programs
which arise in automatic control applications for H∞ controller synthesis (see
e.g. Bompart, Noll and Apkarian, [1]). So, assume that the function F in (1)
has the following form

F (x) = max
y∈Y

{Φ(x, y)} , (13)

where Φ : Rn×Y → Rn, Y is some compact set in Rm, and ”max”, as previously,
denotes the componentwise maximum operator.

For equation with infinite max it is possible to construct a difference approx-
imation in the form

[J1(x, s)]i,j =
Φi(x+ sjej , y)−Φi(x, y)

sj
, (14)

where i, j ∈ {1, ..., n}, sj > 0 for j = 1, ..., n, and y is an arbitrarily se-
lected element of M i(x) =

{
y ∈ Y : F i(x) = Φi(x, y)

}
. Now, Aiy denotes the

set
{
x : Fi(x) = Φi(x, y)

}
for some y ∈ Y . Assume that x + sjej ∈ Aiy for

suitable y ∈ Y.

Lemma 11 Suppose that ∇xΦ(x, y) exists and is continuous in (x, y). Then,
for J1(x, s) defined by (14), the following inclusion holds:

lim
s↓0
J1(x, s) ∈ ∂CF (x).

Proof. The approximation (14) is well defined, because we suppose that
x+ sjej ∈ A

i
y for suitable y ∈ Y . Since Φ is directionally differentiable for each

direction h ∈ Rn, we have, for y ∈M i(x),

lim
s↓0

[J1(x, s)]i,j = lim
s↓0

Φi(x+ sjej , y)−Φi(x, y)

sj
=
(
Φi
)′
x
(x, y; ej) =

〈
∇xΦ

i(x, y); ej
〉
.

Since Φi are differentiable, by remark after Theorem 1 and (3), we obtain

∂F i(x) = co
{
∇xΦ

i(x, y) : y ∈M i(x)
}
.

Then lims↓0 [[J1(x, s)]i,1, ..., [J1(x, s)]i,n] = [
〈
∇xΦi(x, y); e1

〉
, ...,

〈
∇xΦi(x, y); en

〉
] =

∇xΦ
i(x, y) for x ∈ Aiy, y ∈M

i(x). All these facts give us that

lim
s↓0

[[J1(x, s)]i,1, ..., [J1(x, s)]i,n] ∈ ∂F
i(x) for i = 1, ..., n,

9
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and we obtain the desired conclusion.

Clearly, similarly as in finite maximum, the above lemma allows to formulate
and to prove a suitable theorem about convergence of approximate Newton
method (7) based on difference approximation.

Approximation (14) of the weak consistently approximated Jacobian uses
the difference quotients based on two points (i.e. the one-sided approximation).
In a similar way, it is possible to construct the approximation of a WCAJ based
on three points (i.e. the central approximation), which gives better numerical
results in some cases:

[J2(x, s)]i,j =
Φi(x+ sjej , y)−Φi(x− sjej , y)

2sj
, (15)

where i, j ∈ {1, ..., n}, sj > 0 for j = 1, ..., n, and y is an arbitrarily selected
element of M i(x) =

{
y ∈ Y : F i(x) = Φi(x, y)

}
. For the above approximations

we have a lemma analogous to the previous one:

Lemma 12 Suppose that ∇xΦ(x, y) exists and is continuous in (x, y). Then,
for J2(x, s) defined by (15), the following inclusion holds:

lim
s↓0
J2(x, s) ∈ ∂CF (x).

Proof. For every j ∈ {1, ..., n} we have

Φi(x+ sjej , y)−Φi(x− sjej , y)

2sj
=

=
Φi(x+ sjej , y)−Φi(x, y) + Φi(x, y)−Φi(x− sjej , y)

2sj
=

=
1

2

[
Φi(x+ sjej , y)−Φi(x, y)

sj
+

Φi(x, y)−Φi(x− sjej , y)

sj

]
.

Since Φ is directionally differentiable for each direction h ∈ Rn, we have, for
y ∈M i(x)

lim
sj↓0

Φi(x+ sjej , y)−Φi(x, y)

sj
=
(
Φi
)′
x
(x, y; ej), j ∈ {1, ..., n} .

and

lim
sj↓0

Φi(x, y)−Φi(x− sjej , y)

sj
= −

(
Φi
)′
x
(x, y;−ej), j ∈ {1, ..., n} ,

Therefore, similarly as in the previous lemma, the differentiability of Φi, remark
after Theorem 1, (3) and a convexity of the generalized Jacobian (Proposition
2.6.2(i) in [5]) give the conclusion.

10
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5 Examples

The approximate Newton method presented in this paper has been imple-
mented in DevC++ to test the numerical behavior of algorithm. All computa-
tions have been performed in double precision, which has the absolute range[
5.0 · 10−324, 1.7 · 10308

]
and gives the accuracy 15 ÷ 16 significant digits. The

termination criterion was
∥∥∥x(k+1) − x(k)

∥∥∥ ≤ ε1 or
∥∥∥F
(
x(k)

)∥∥∥ ≤ ε2,

where ε1 = 1.0E − 08 and ε2 = 1.0E − 12. In the tables containing the results,
x(0) denotes the starting point, Nit - the number of iterations needed to reach
the desired precision, ∆x̃ - an absolute error of last approximation of solution
and x̃ is the exact solution, to which the iteration sequence was convergent.

Example 1.

Consider the equation (1) with the following infinite max function

F (x) = max
n∈N

{
−n · sin (x/n)

x

}
.

The equation F (x) = 0 has four solutions x = kπ, k ∈ {−2,−1, 1, 2}. The prob-
lem was solved by the generalized Jacobian method for infinite max functions
with a WCAJ approximated by (14) and (15). We have tested the method with
s = 1.0E − 5, 1.0E − 10 , |F (x)| (in the latter case s decreases to 0, similarly
as in the classical Steffensen method). The Tables 1 and 2 contain the results
of the computations. Depending on the starting point, we notice the conver-
gence to different solutions. For all initial points we have obtained the given
solution with the precision at least 1.0E− 09. Usage (15) allows us to start the
computations far from a solution. Unfortunately, parameter s can not be too
large.

If a similar equation with cosine has been solved then the results were very
similar despite the fact that equation has only one solution x = π.

Example 2.

Consider the system of equations with the infinite max functions

F (x) = max
n∈N

{Φ(x, n)}

where

Φ(x, n) =

[ √
n
1+nx

2
1 +

2
√
n

1+nx2

−n |x1|+ |x2|

]

.

This equation has only one solution x∗ = (0, 0). We have tested the method
with s = 1.0E − 10 , |F (x)|. The Tables 3 and 4 contain the results of the
computations. If we used the approximation (14), we obtained the convergence
to the solution almost for all tested starting points. However, a degenerate
behavior appeared for some cases, especially for too large s. Using (15) we
notice troubles with choice of a starting points to ensure the convergence to the
solution.
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6 Conclusions

Newton-like methods are important tools for solving nonsmooth equations.
They are useful also when the evaluation of the Jacobian matrix is difficult
or impossible (at least analytically) for smooth equations. As stated above, we
have developed some version of approximate Newton method for solving non-
smooth equations with infinite max function. We have proved that under mild
assumptions the sequence generated by the method is locally and superlinearly
convergent for semismooth equations.

The performance of the method is evaluated in the terms of the number of
iterations required. The analysis of the numerical results seems indicate that
the method is promising for solving semismooth systems because the tested
equations were solved satisfactorily. The experimental results also indicate that
the method has at least superlinear convergence. The detailed analysis of the
results for Example 2 lets state that the convergence of method was even almost
quadratic for some initial points. So, the important conclusion is that the
algorithm allows us to find various solution of equation, however if there are
many solutions of the problem then the relationship between the starting point
and the obtained solution is unpredictable. It is easy to observe in Tables 1 and
4 that choice of parameter s has not relevant effect on speed of convergence in
terms of the number of iterations. In Table 3 some degenerate behavior of the
method can be noticed for some initial points, if we use not sufficiently small
constant parameter s in an approximation of WCAJ. Moreover, the method
with the approximation based on central formula (14) is sensitive because to
the choice of the parameter and the starting point.
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Table 1. Results obtained for Example 1 using (14).

s = 10−5 s = 10−10 s = |F (x)|

x(0) Nit ∆x̃ Nit ∆x̃ x̃ Nit ∆x̃ x̃
−15.0 7 10−13 7 10−14 −2π 6 10−14 −π
−10.0 9 10−14 8 10−14 −π 7 10−10 π
−5.0 5 10−13 5 10−14 −2π 5 10−12 −2π
−2.0 4 10−12 4 10−13 −π 4 10−13 −π
−1.0 5 10−9 5 10−9 −π 5 10−16 −2π
−0.5 4 10−13 4 10−14 −2π − − −
−0.1 6 10−12 6 10−13 π 6 10−14 2π
0.1 6 10−13 6 10−14 −π 5 10−16 2π
0.5 7 10−11 4 10−14 2π 5 10−9 π
1.0 5 10−9 5 10−9 π 4 10−13 π
2.0 4 10−12 4 10−13 π 4 10−14 π
5.0 8 10−13 5 10−14 2π 5 10−16 2π

10.0 7 10−10 − − 2π 7 10−12 −π
15.0 20 10−13 7 10−15 2π 6 10−15 2π

Table 2. Results obtained for Example 1 using (15).

s = 10−5 s = 10−10 s = |F (x)|

x(0) Nit ∆x̃ Nit ∆x̃ x̃ Nit ∆x̃ x̃
−30.0 5 0.0 5 10−15 π 5 10−16 π
−20.0 − − − − − 6 10−13 2π
−15.0 looped − 7 10−14 −2π 7 10−12 −2π
−10.0 − − 11 10−12 2π 7 10−9 2π
−5.0 − − 5 10−13 −2π 5 10−14 −2π
−2.0 4 10−12 4 10−12 −π 4 10−13 −π
−1.0 5 10−9 5 10−9 −π 6 10−13 −π
−0.5 looped − 4 10−13 −2π 5 10−14 −2π
−0.1 6 10−13 6 10−13 π − − −
0.1 6 10−13 6 10−13 −π − − −
0.5 looped − 4 10−13 2π 5 10−14 2π
1.0 5 10−9 5 10−9 π 6 10−13 π
2.0 4 10−12 4 10−12 π 4 10−13 π
5.0 looped − 5 10−13 2π 5 10−14 2π

10.0 − − 11 10−12 −2π 7 10−9 −2π
15.0 looped − 7 10−14 2π 7 10−12 2π
20.0 − − − − − 6 10−13 −2π
30.0 5 0.0 5 10−15 −π 5 10−16 −π
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Table 3. Results obtained for Example 2 using (14).

s = 10−5 s = 10−10 s = |F (x)|

x(0) Nit ∆x̃ Nit ∆x̃ Nit ∆x̃

(−5.0,−5.0) 193 10−09 looped − 31 10−16

(−2.0,−2.0) 51 10−16 looped − 47 10−19

(−0.75,−0.75) 3459 10−09 looped − 15 10−21

(−0.5,−0.5) 807 10−10 looped − 47 10−17

(−0.25,−0.25) 5 10−10 5 10−17 5 10−18

(−0.1,−0.1) 4 10−14 4 10−17 5 10−16

(0.1, 0.1) 4 10−11 4 10−12 6 10−24

(0.25, 0.25) 2976 10−09 looped − 124 10−18

(0.5, 0.5) 6 10−14 6 10−17 7 10−20

(0.75, 0.75) 9 10−15 8 10−18 8 10−18

(1.0, 1.0) 4586 10−15 looped − 37 10−16

(2.0, 2.0) 2436 10−13 looped − − −
(5.0, 5.0) 3552 10−10 looped − 39 10−17

(−0.5, 0.5) 7 10−10 7 10−10 7 10−16

(−1.0, 1.0) 669 10−10 looped − 67 10−21

Table 4. Results obtained for Example 2 using (15).

s = 10−10 s = |F (x)|

x(0) Nit ∆x̃ Nit ∆x̃

(−0.75,−0.75) looped − looped −
(−0.5,−0.5) looped − looped −

(−0.25,−0.25) 5 10−17 5 10−16

(−0.1,−0.1) 4 10−17 5 10−17

(0.1, 0.1) 4 10−10 6 10−17

(0.25, 0.25) looped − looped −
(0.5, 0.5) 6 10−17 7 10−17

(0.75, 0.75) 8 10−10 8 10−17

(1.0, 1.0) looped − looped −
(2.0, 2.0) looped − looped −

(−0.5, 0.5) 7 10−10 7 10−17
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