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Beams that are stable during the propagation in a homogeneous and isotropic medium are widely used in
optical particle manipulation, communication, metrology, etc. In real life scattering, absorption and diffraction
by obstacles produce changes of the beam structure. The propagation of these broken beams is analysed. It is
shown that, similary to the Bessel beams, they are able to reconstruct their original shape after being disturbed
by obstacles of relatively small size.
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1. Introduction

Paraxial stable beams, i. e., beams whose complex field amplitude remains unchanged during free
space propagation apart from a scaling and an additional quadratic phase, are widely used in sci-
ence and technology [1–6]. The well-known Hermite-Gaussian (HG), Laguerre-Gaussian (LG) [7],
Hermite-Laguerre-Gaussian [8], and Ince-Gaussian beams [9] belong to this family. In general,
any stable beam can be expressed as a linear combination of HG modes with constant sum
of their indices. Apart from the Gaussian beam, the helical LG modes play a leading role in
the applications mentioned above due to the axial symmetry and the carried orbital angular
moment (OAM). In particular, they are used for micro-particle manipulation [1, 2], free space
optics communications [3, 4], interferometric metrology [5], and atmosphere characterization [6].
It is worth mentioning that in the micro-particle manipulation the helical LG modes are able to
induce a rotation of the trapped particles [2].
The propagation of stable beams through an inhomogeneous medium, as well as their inter-

action with particles in optical manipulation setups, lead to partial beam distortion. This fact
may have negative consequences for trapping in multiple locations along the axial direction or for
optical information transfer. Therefore, the self-reconstruction capacity becomes an important
beam property for these applications. Furthermore, the study of the beam distortion provides
information about the particle or medium characteristics and, therefore, the localization of the
region with significant beam changes is also relevant. It has been shown in Refs. [10, 11] that non-
diffracting Bessel beams as well as Bessel-Gaussian (BG) ones posses the self-recovering property.
Here we study the regeneration capacity of stable scalar coherent beams after being distorted by
obstacles simulated by simple models. We call these distorted beams broken beams.
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2. Theory

The propagation of paraxial beams in isotropic systems, including as a particular case the free
space, is described by the symmetric fractional Fourier transform (FT) [12], apart from a scaling
and an additional quadratic phase factor. The two-dimensional symmetric fractional FT of a
complex field amplitude f(r) for angle α is defined as

Fα (r) =
1

s2 |sinα|

¨
dr′ f

(
r′
)
exp

{
iπ

s2
[(
r2 + r′2

)
cotα− 2rr′ cscα

]}
, (1)

where r = (x, y) is the position vector, r = |r|, and s is a normalizing parameter of units
of length. The angle α associated with a free space propagation for a distance z is given by
α = arctan

(
zλ/s2

)
, where λ is the wavelength of the light source. We regard that the fractional

FT for angle α = 0 represents the original function, f(r), while for α = π/2 corresponds to the
scaled FT which describes the far field diffraction.
The proper normalized stable beam is an eigenfunction for the fractional FT. Then, for the

analysis of the broken beam evolution we consider its fractional FT for the angular parameter
α ranging in the interval [0, π/2]. This way, the effective size of the beam remains unchanged
providing a better visual comparison of the beam shape during the propagation.
In the projection approximation, three dimensional objects can be presented as plane obstacles

characterized by a transmittance function T (r). Thus, the broken beam B(r, 0) is given as a
product between the stable beam S(r) and T (r): B(r, 0) = S(r)T (r), where

T (r) =

{
1, r /∈ O(r)

A(r) exp [iϕ(r)] , r ∈ O(r)
, (2)

with O(r) being the area of the obstacle. The fractional FT of B(r, 0) is written as

B(r, α) =
1

s2 |sinα|

¨
dr′ S(r′)T (r′) exp

{
iπ

s2
[(
r2 + r′2

)
cotα− 2rr′ cscα

]}
=

1

s2 |sinα|
exp

(
iπr2

s2
cotα

)¨
dr′ S(r′)T (r′) exp

[
iπ

s2
(
r′2 cotα− 2rr′ cscα

)]
. (3)

We assume that S(r) is an eigenfunction of the fractional FT defined by Eq. (1) for any angle
α with eigenvalue Cα, and therefore, if there is no disturbance, i. e. T (r) = 1, then B(r, α) =
CαS(r). Note that in this case the waist w of the enveloping Gaussian of the stable beam satisfies
w = s.
Let us first discuss the beam reconstruction in the far zone, corresponding to α = π/2. Using

the fact that the FT of the product of two functions is the convolution between its FTs we obtain
that the broken beam is transformed into

B(r, π/2) = 1
s2

˜
dr′ S(r′)T (r′) exp

(
−i2π rr′

s2

)
= 1

s2Cπ/2

¨
dr′ S(r′)T̂

(
r− r′

)
, (4)

where T̂ is the scaled FT of T and it has been taken into account that the stable beam is an
eigenfunction for the FT with eigenvalue Cπ/2. Therefore, the self-recovery of the broken beam
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strongly depends on the form, position, and size of the obstacle. For very small obstacle size,
T̂ (r) can be approximated by the Dirac delta function, which leads to a successful beam self-
reconstruction. Increasing the area O(r) results in a significant modification of the FT of the
B(r, π/2) and, thus, produces worse beam recovery. The position of the obstacle controls the
range of the filtered spatial frequencies. As it is well known, the low-frequency filtering (obstacle
in the beam center) results in beam sharping, while the high-frequency elimination leads to beam
smoothing. The form of the obstacle, which defines the range of the filtered spatial frequencies,
is also important for the analysis of self-recovery.
For other fractional angles, the obstacle transmittance together with the chirp function

exp
(
iπr2 cotα/s2

)
, related to the Fresnel diffraction, are responsible for the beam filtering. The

influence of the chirp function becomes neglectable for angles α > αc, where αc is defined from
the condition that O(r) belongs to the first Fresnel zone of radius r =

√
λz/2 = s

√
tanαc/2. In

this angular range the form of the beam coincides with the one in the far zone and, therefore, αc
indicates the distance of beam recovery. As we have already mentioned, the quality of the beam
reconstruction depends on the obstacle parameters.
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Figure 1. (Color on-line) Evolution for α = 0, π/6, π/2 of the intensity distribution of the Gaussian beam disturbed by a
circular mask. (a) Obstacles of different radius a are placed at the beam center. (b) Obstacles absorbing the same energy
(8% from the total) are placed at different positions c.
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Figure 2. (Color on-line). Intensity profile along the x coordinate (y = 0) of the Gaussian beam disturbed by centered
circular masks of different sizes for (a) α = π/6 and (b) α = π/2. The radius of the mask is a = w/20, w/10, w/5 for the
dashed blue, dashed dotted green, and continuous red curves, respectively. The continuous black curve is the profile of the
original Gaussian beam.
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3. Numerical simulations

Our analysis is verified by the numerical simulations made for the Gaussian beams, disturbed by
circular absorbing obstacles of different radii a and placed in different positions along the x axis,
c = (c, 0). Thus, the obstacle function is

T (r) =

{
1, r /∈ O(r; a, c)

0, r ∈ O(r; a, c)
, (5)

and O (r; a, c) = circ [(r− c) /a], where

circ (r) =

{
1, r < 1

0, r ≥ 1
. (6)

First we study the self-recovery of the Laguerre-Gaussian beam defined as

LGl
p (r;w) = NLGL

l
p

(
2π

r2

w2

)
exp

(
−π r

2

w2

)
exp (ilθ) , (7)

where NLG is a normalization constant, Llp (�) is the Laguerre polynomial of radial index p and
azimuthal index l, (r, θ) are the polar coordinates, and w is the beam waist. We remind that
when w = s the LG beam is an eigenfunction of the fractional FT [see Eq. (1)].
The self-reconstruction of the Gaussian beam (LG0

0) of waist w = s distorted by circular
masks of radius a = w/20, w/10, w/5 is displayed in Fig. 1(a), while the beam evolution for
masks separated from the center distances c = 0, w/8, w/4 is shown in Fig. 1(b). Note that
in the last case the energy absorbed by every obstacle is kept constant (8% from the total).
It means that the mask radius varies depending on its position. We observe a successful beam
recovery. This is also verified in Fig. 2, where we present the energy-normalized profiles along the
x coordinate for y = 0 of the beam disturbed by centered masks of different sizes for two angles
α corresponding to near (α = π/6) and far (α = π/2) field diffraction.
Let us now consider the evolution of a broken vortex beam. The propagation of the LG1

0 mode
of waist w = s is displayed in Fig. 3. As in the previous case, we consider the variation of the beam
intensity distribution depending on the obstacle size a = w/10, w/5, 2w/5 [see Fig. 3(a)] and its
position c = 0, w/4, w/2 [see Fig. 3(b)]. We observe that the LG beam is recovered faster for the
smaller radius mask, while the bigger obstacle notably distorts the beam stability. Moreover, as
it follows from Fig. 3(b), breaking the beam symmetry leads to worse beam reconstruction. The
evolution of the intensity and phase distributions of the beam disturbed by a circular obstacle
of radius a = w/5 placed at a maximum of its intensity distribution is displayed in Fig. 4. It is
easy to check that the beam intensity and phase distributions qualitatively recover its forms for
α > π/4.
Finally, we compare the behavior of the LG beams with the Bessel ones. The Bessel beams

are defined as NBBm (βr) exp (imθ) , where NB is a normalization constant, Bm (�) is the Bessel
function of orderm, and β is a parameter related to the modulus of the transversal components of
the plane wave vectors that compose the beam. As well as a plane wave, they are nondiffracting,
but posses infinite energy. By adding a Gaussian envelope of waist w, the experimentally realizable
Bessel-Gaussian (BG) beams are obtained [13]

BGm,β (r;w) = NBBm (βr) exp

(
−π r

2

w2

)
exp (imθ) . (8)
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Figure 3. (Color on-line) Evolution for α = 0, π/6, π/2 of the intensity distribution of the LG1
0 beam disturbed by a

circular mask. (a) Obstacles of different radius a are placed at the beam center. (b) Obstacles absorbing the same energy
(8% from the total) are placed at different positions c.

|B
(r

,α
)|

2

α = ̟/2

φ
[B

(r
,α

)]

α = 0 α = ̟/4α = ̟/12 α = ̟/6 α = ̟/3 α = 5̟/12

̟

−̟

0

Figure 4. (Color on-line) Evolution for α ∈ [0, π/2] of the intensity and phase distributions of the LG1
0 beam disturbed

by a circular mask of radius a = w/5 placed at a maximum of intensity of the mode.

These beams are nondiffracting during the free space propagation in the range z = [0, zmax],
where z = 0 coincides with the waist plane and zmax = 2

√
πw/(λβ) [10]. For convenience, we

define a αmax as the fractional FT parameter that corresponds to the propagation distance zmax,
i. e., αmax = arctan

(
zmaxλ/s

2
)
.

As well as for the case of LG beams, the free space propagation of the obstructed BG beams is
simulated using the symmetric fractional FT. In order to compare the behavior of the LG and BG
beams we have chosen the beams with the same effective size defined by second-order intensity
moments, mxx and myy, and the same number of rings. We have verified that the evolution of
the obstructed BG beam BG1,1/s is very similar to one of the LG mode LG1

0 (see Fig. 4) with
the same waist w = s, disturbed by the same obstacle. Changing the β and w parameters the
BG beam BG1,5/s with two visible rings has been obtained. For the comparison, the LG mode
LG2

1 (w = s) with the same number of rings and effective size has been chosen. The evolution
of the two distorted beams, BG1,5/s and LG2

1, is shown in Fig. 5(a) and (b), respectively. The
obstacles of the two beams are completely opaque circles, placed at the maximum of intensity in
the positive x coordinate, and with radius such that they absorb 5% of the total energy of the
beam. Since for the BG beam αmax / π/3, we present the propagation of both beams for the
interval α ∈ [0, π/3].
We observe that the behavior of the BG1,5/s beam is similar to the LG2

1. Both recover they
original intensity for a relative small distance, α = 2π/15. Nevertheless, we underline that the
BG beam starts diverging for α > 4π/15, while the LG maintains its shape invariant.
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(a)
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Figure 5. (Color on-line) Evolution of the intensity distribution of the obstructed BG1,5/s (a) and LG2
1 (b) modes for

α = [0, π/3] . The waist of LG2
1 is w = s and the waist of BG1,5/s is such that both beams have the same apparent size

(same second-order moments of intensity, mxx and myy). The obstacles are opaque circles placed in the intensity maximum
along the positive x coordinate that absorb 5% of the total energy.

4. Conclusions

We conclude that stable beams, as well as Bessel beams, posses the self-reconstructing property
due to the invariance of their form during the propagation. This effect is easily explained by
filtering theory. The simulation results indicate that the beam recuperation does not depend of
the value of the beam OAM. Indeed, we observe that both beams, with the topological charge 0
(LG0

0) and 1 (LG1
0), show similar self-regeneration capacities after the distortion of the same

percent of beam energy by an obstacle of the same form. The quality of the reconstruction is
highly dependent on the obstacle parameters. We also note that other beams such as spiral [14] or
auto reciprocal [15] ones are also able to recover their form after relatively small beam distortion
as follows from a similar beam evolution analysis.
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