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A.

Introduction

Paraxial stable beams, i. e., beams whose complex field amplitude remains unchanged during free space propagation apart from a scaling and an additional quadratic phase, are widely used in science and technology [1][2][START_REF] D'amico | Microwave and Wireless Components Letters[END_REF][4][5][6]. The well-known Hermite-Gaussian (HG), Laguerre-Gaussian (LG) [START_REF] Siegman | Lasers[END_REF], Hermite-Laguerre-Gaussian [START_REF] Abramochkin | [END_REF], and Ince-Gaussian beams [9] belong to this family. In general, any stable beam can be expressed as a linear combination of HG modes with constant sum of their indices. Apart from the Gaussian beam, the helical LG modes play a leading role in the applications mentioned above due to the axial symmetry and the carried orbital angular moment (OAM). In particular, they are used for micro-particle manipulation [1,2], free space optics communications [START_REF] D'amico | Microwave and Wireless Components Letters[END_REF]4], interferometric metrology [5], and atmosphere characterization [6]. It is worth mentioning that in the micro-particle manipulation the helical LG modes are able to induce a rotation of the trapped particles [2].

The propagation of stable beams through an inhomogeneous medium, as well as their interaction with particles in optical manipulation setups, lead to partial beam distortion. This fact may have negative consequences for trapping in multiple locations along the axial direction or for optical information transfer. Therefore, the self-reconstruction capacity becomes an important beam property for these applications. Furthermore, the study of the beam distortion provides information about the particle or medium characteristics and, therefore, the localization of the region with significant beam changes is also relevant. It has been shown in Refs. [10,11] that nondiffracting Bessel beams as well as Bessel-Gaussian (BG) ones posses the self-recovering property.

Here we study the regeneration capacity of stable scalar coherent beams after being distorted by obstacles simulated by simple models. We call these distorted beams broken beams.

Theory

The propagation of paraxial beams in isotropic systems, including as a particular case the free space, is described by the symmetric fractional Fourier transform (FT) [START_REF] Ozaktas | The Fractional Fourier transform with applications in optics and signal processing[END_REF], apart from a scaling and an additional quadratic phase factor. The two-dimensional symmetric fractional FT of a complex field amplitude f (r) for angle α is defined as

F α (r) = 1 s 2 |sin α| ¨dr f r exp iπ s 2 r 2 + r 2 cot α -2rr csc α , (1) 
where r = (x, y) is the position vector, r = |r|, and s is a normalizing parameter of units of length. The angle α associated with a free space propagation for a distance z is given by α = arctan zλ/s 2 , where λ is the wavelength of the light source. We regard that the fractional FT for angle α = 0 represents the original function, f (r), while for α = π/2 corresponds to the scaled FT which describes the far field diffraction. The proper normalized stable beam is an eigenfunction for the fractional FT. Then, for the analysis of the broken beam evolution we consider its fractional FT for the angular parameter α ranging in the interval [0, π/2]. This way, the effective size of the beam remains unchanged providing a better visual comparison of the beam shape during the propagation.

In the projection approximation, three dimensional objects can be presented as plane obstacles characterized by a transmittance function T (r). Thus, the broken beam B(r, 0) is given as a product between the stable beam S(r) and T (r): B(r, 0) = S(r)T (r), where

T (r) = 1, r / ∈ O(r) A(r) exp [iϕ(r)] , r ∈ O(r) , (2) 
with O(r) being the area of the obstacle. The fractional FT of B(r, 0) is written as

B(r, α) = 1 s 2 |sin α| ¨dr S(r )T (r ) exp iπ s 2 r 2 + r 2 cot α -2rr csc α = 1 s 2 |sin α| exp iπr 2 s 2 cot α ¨dr S(r )T (r ) exp iπ s 2 r 2 cot α -2rr csc α . (3) 
We assume that S(r) is an eigenfunction of the fractional FT defined by Eq. (1) for any angle α with eigenvalue C α , and therefore, if there is no disturbance, i. e. T (r) = 1, then B(r, α) = C α S(r). Note that in this case the waist w of the enveloping Gaussian of the stable beam satisfies w = s. Let us first discuss the beam reconstruction in the far zone, corresponding to α = π/2. Using the fact that the FT of the product of two functions is the convolution between its FTs we obtain that the broken beam is transformed into

B(r, π/2) = 1 s 2 ˜dr S(r )T (r ) exp -i2π rr s 2 = 1 s 2 C π/2 ¨dr S(r ) T r -r , ( 4 
)
where T is the scaled FT of T and it has been taken into account that the stable beam is an eigenfunction for the FT with eigenvalue C π/2 . Therefore, the self-recovery of the broken beam strongly depends on the form, position, and size of the obstacle. For very small obstacle size, T (r) can be approximated by the Dirac delta function, which leads to a successful beam selfreconstruction. Increasing the area O(r) results in a significant modification of the FT of the B(r, π/2) and, thus, produces worse beam recovery. The position of the obstacle controls the range of the filtered spatial frequencies. As it is well known, the low-frequency filtering (obstacle in the beam center) results in beam sharping, while the high-frequency elimination leads to beam smoothing. The form of the obstacle, which defines the range of the filtered spatial frequencies, is also important for the analysis of self-recovery.

For other fractional angles, the obstacle transmittance together with the chirp function exp iπr 2 cot α/s 2 , related to the Fresnel diffraction, are responsible for the beam filtering. The influence of the chirp function becomes neglectable for angles α > α c , where α c is defined from the condition that O(r) belongs to the first Fresnel zone of radius r = λz/2 = s tan α c /2. In this angular range the form of the beam coincides with the one in the far zone and, therefore, α c indicates the distance of beam recovery. As we have already mentioned, the quality of the beam reconstruction depends on the obstacle parameters. 

Numerical simulations

Our analysis is verified by the numerical simulations made for the Gaussian beams, disturbed by circular absorbing obstacles of different radii a and placed in different positions along the x axis, c = (c, 0). Thus, the obstacle function is

T (r) = 1, r / ∈ O(r; a, c) 0, r ∈ O(r; a, c) , (5) 
and

O (r; a, c) = circ [(r -c) /a],
where

circ (r) = 1, r < 1 0, r ≥ 1 . ( 6 
)
First we study the self-recovery of the Laguerre-Gaussian beam defined as

LG l p (r; w) = N LG L l p 2π r 2 w 2 exp -π r 2 w 2 exp (ilθ) , (7) 
where N LG is a normalization constant, L l p ( ) is the Laguerre polynomial of radial index p and azimuthal index l, (r, θ) are the polar coordinates, and w is the beam waist. We remind that when w = s the LG beam is an eigenfunction of the fractional FT [see Eq. ( 1)].

The self-reconstruction of the Gaussian beam (LG 0 0 ) of waist w = s distorted by circular masks of radius a = w/20, w/10, w/5 is displayed in Fig. 1(a), while the beam evolution for masks separated from the center distances c = 0, w/8, w/4 is shown in Fig. 1(b). Note that in the last case the energy absorbed by every obstacle is kept constant (8% from the total). It means that the mask radius varies depending on its position. We observe a successful beam recovery. This is also verified in Fig. 2, where we present the energy-normalized profiles along the x coordinate for y = 0 of the beam disturbed by centered masks of different sizes for two angles α corresponding to near (α = π/6) and far (α = π/2) field diffraction.

Let us now consider the evolution of a broken vortex beam. The propagation of the LG 1 0 mode of waist w = s is displayed in Fig. 3. As in the previous case, we consider the variation of the beam intensity distribution depending on the obstacle size a = w/10, w/5, 2w/5 [see Fig. 3(a)] and its position c = 0, w/4, w/2 [see Fig. 3(b)]. We observe that the LG beam is recovered faster for the smaller radius mask, while the bigger obstacle notably distorts the beam stability. Moreover, as it follows from Fig. 3(b), breaking the beam symmetry leads to worse beam reconstruction. The evolution of the intensity and phase distributions of the beam disturbed by a circular obstacle of radius a = w/5 placed at a maximum of its intensity distribution is displayed in Fig. 4. It is easy to check that the beam intensity and phase distributions qualitatively recover its forms for α > π/4.

Finally, we compare the behavior of the LG beams with the Bessel ones. The Bessel beams are defined as N B B m (βr) exp (imθ) , where N B is a normalization constant, B m ( ) is the Bessel function of order m, and β is a parameter related to the modulus of the transversal components of the plane wave vectors that compose the beam. As well as a plane wave, they are nondiffracting, but posses infinite energy. By adding a Gaussian envelope of waist w, the experimentally realizable Bessel-Gaussian (BG) beams are obtained [START_REF] Gori | [END_REF] These beams are nondiffracting during the free space propagation in the range z = [0, z max ],

BG m,β (r; w) = N B B m (βr) exp -π r 2 w 2 exp (imθ) . (8) 
where z = 0 coincides with the waist plane and z max = 2 √ πw/(λβ) [10]. For convenience, we define a α max as the fractional FT parameter that corresponds to the propagation distance z max , i. e., α max = arctan z max λ/s 2 .

As well as for the case of LG beams, the free space propagation of the obstructed BG beams is simulated using the symmetric fractional FT. In order to compare the behavior of the LG and BG beams we have chosen the beams with the same effective size defined by second-order intensity moments, m xx and m yy , and the same number of rings. We have verified that the evolution of the obstructed BG beam BG 1,1/s is very similar to one of the LG mode LG 1 0 (see Fig. 4) with the same waist w = s, disturbed by the same obstacle. Changing the β and w parameters the BG beam BG 1,5/s with two visible rings has been obtained. For the comparison, the LG mode LG 2 1 (w = s) with the same number of rings and effective size has been chosen. The evolution of the two distorted beams, BG 1,5/s and LG 2 1 , is shown in Fig. 5(a) and (b), respectively. The obstacles of the two beams are completely opaque circles, placed at the maximum of intensity in the positive x coordinate, and with radius such that they absorb 5% of the total energy of the beam. Since for the BG beam α max π/3, we present the propagation of both beams for the interval α ∈ [0, π/3].

We observe that the behavior of the BG 1,5/s beam is similar to the LG 2 1 . Both recover they original intensity for a relative small distance, α = 2π/15. Nevertheless, we underline that the BG beam starts diverging for α > 4π/15, while the LG maintains its shape invariant. 1 is w = s and the waist of BG 1,5/s is such that both beams have the same apparent size (same second-order moments of intensity, mxx and myy). The obstacles are opaque circles placed in the intensity maximum along the positive x coordinate that absorb 5% of the total energy.

Conclusions

We conclude that stable beams, as well as Bessel beams, posses the self-reconstructing property due to the invariance of their form during the propagation. This effect is easily explained by filtering theory. The simulation results indicate that the beam recuperation does not depend of the value of the beam OAM. Indeed, we observe that both beams, with the topological charge 0 (LG 0 0 ) and 1 (LG 1 0 ), show similar self-regeneration capacities after the distortion of the same percent of beam energy by an obstacle of the same form. The quality of the reconstruction is highly dependent on the obstacle parameters. We also note that other beams such as spiral [14] or auto reciprocal [15] ones are also able to recover their form after relatively small beam distortion as follows from a similar beam evolution analysis.
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 1102052 Figure 1. (Color on-line) Evolution for α = 0, π/6, π/2 of the intensity distribution of the Gaussian beam disturbed by a circular mask. (a) Obstacles of different radius a are placed at the beam center. (b) Obstacles absorbing the same energy (8% from the total) are placed at different positions c.
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 34 Figure 3. (Color on-line) Evolution for α = 0, π/6, π/2 of the intensity distribution of the LG 1 0 beam disturbed by a circular mask. (a) Obstacles of different radius a are placed at the beam center. (b) Obstacles absorbing the same energy (8% from the total) are placed at different positions c.
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 5 Figure 5. (Color on-line) Evolution of the intensity distribution of the obstructed BG 1,5/s (a) and LG 2 1 (b) modes for α = [0, π/3] . The waist of LG 21 is w = s and the waist of BG 1,5/s is such that both beams have the same apparent size (same second-order moments of intensity, mxx and myy). The obstacles are opaque circles placed in the intensity maximum along the positive x coordinate that absorb 5% of the total energy.
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