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Abstract: Is it possible to derive accurately Total Suspenhlliedter concentration or its
proxy, turbidity, from remote sensing data in tagbicoastal lagoon waters? To investigate
this question, hyperspectral remote sensing reifiteet, turbidity and chlorophyll pigment
concentration were measured in three coral reefolagy The three sites enabled us to get
data over very diverse environments: oligotropmd aediment-poor waters in the south-
west lagoon of New Caledonia, eutrophic watershea Cienfuegos Bay (Cuba), and
sediment-rich waters in the Laucala Bay (Fiji)this paper, optical algorithms for turbidity
are presented per site based on 113 stations inQd@@donia, 24 stations in Cuba and 56
stations in Fiji. Empirical algorithms are testedsatellite wavebands useful to coastal
applications. Global algorithms are also derivedtfi@ merged data set (193 stations). The
performances of global and local regression algorét are compared. The best one-band
algorithms on all the measurements are obtain€@htnm using either a polynomial or a
power modelThe best two-band algorithms are obtained with R&&20, R443/R670 and
R510/R681. Two three-band algorithms based on RB88681/Rrs412 and
Rrs620.Rrs681/Rrs510 also give fair regressionssite. Finally, we propose a global
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algorithm based on one or three bands: turbidifirss calculated from Rrs681 and then, if
<1 FTU, itis recalculated using an algorithm libse Rrs620.Rrs681/Rrs412. On our data
set, this algorithm is suitable for the 0.2-25 Filuwbidity range and for the three sites
sampled (mean bias: 3.6 %, rms: 35%, mean quadratic: 1.4 FTU). This shows that
defining global empirical turbidity algorithms iropical coastal waters is at reach.

Keywords: Ocean color; remote sensing; sediment transpaspesuded matter; turbidity;
New Caledonia; Cuba; Fiji.

1. Introduction

Every year, 20 billion tons of sediments are braughthe oceans by the rivers (Milliman and
Syvitski 1992). Among these patrticles, the finese® enrich or inhibit the coastal ecosystems, and
distribute the fixed or adsorbed pollutants of methemical or organic origin. The coarser parscle
mainly sand, constitute the principal source ofemnat fattening the beaches. Coastal morphodynamics
results from the balance between land inputs amshafe sediment transport. Studying sediment
composition, transport and fate in coastal zondabus necessary both from the biological point of
view (ecosystems' health) and for civil engineeramgl coastal management. Remote sensing brings
efficient tools to monitor sediment transport amalgze the fate and distribution of suspended matte
in riverine and coastal waters since it offers aog§ic and instantaneous vision field of thetal
Suspended Matter (TSM) concentration (e.g. Hol@#8] Sydor 1980; Novo et al. 1989; Forget and
Ouillon 1998; Ahn et al. 2001, 2006; Doxaran et2802, 2003; Zhang et al. 2003; Ouillon 2003;
Wozniak and Stramski 2004; Binding et al. 2005; Bomwand Binding 2006; Teodoro and Veloso-
Gomes 2007; Wang et al. 2007). TSM is also refetoeds Suspended Particulate Matter (SPM) or
Total Suspended Solids (TSS) in the literatureedrdted studies couple numerical simulations of
sediment transport and spatial imaging, the imaggang it possible to gauge and validate the models
(Puls et al. 1994; Estournel et al. 1997; Siegal.€1999; Ouillon et al. 2004).

However, the fact that no generic algorithm for mjifsing TSM in coastal zones has yet been
proposed constitutes the principal handicap/batoethe development of TSM mapping by remote
sensing (Acker et al. 2005). The multiplicity oktparameters used to represent directly or indyrect
TSM such as its mass concentration (in i, turbidity (in various units, such as Formazirridity
Unit or FTU, Nephelometric Turbidity Unit or NTUljght transmission and attenuation, also limits the
algorithmic development. Whereas the concentratiochlorophyll-a (chl-a) has been chosen as the
main inversion parameter and proxy for phytoplankpogments, there is not yet a consensus among
the specialists in particulate transport to choaseommon parameter. In this context, this paper
compares several TSM algorithms, in term of tutigjdior three tropical coastal areas. The threessit
were selected for the diversity of their respectweounts of suspended matter and chl-a. Then the
feasibility to propose a valid single algorithm thfferent tropical coastal sites is studied.
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2. Sites and Methods
2.1. Sudy areas and field campaigns

To derive optical TSM algorithms and analyze thairiability in tropical coastal waters, physical
and optical measurements were performed duringalesiises at three sites:

1. the southwest lagoon of New Caledonia, locateivéen (22°10’S, 166°05'E) and (22°40'S,
166°40’E). New Caledonia is an approximately 450Ikmg x 50 km wide island, surrounded by the
second largest coral reef lagoon in the world (22,&nT). The waters in the New Caledonian lagoon
are generally oligotrophic, except in the viciniiy Noumea, the main city of New Caledonia, due to
anthropogenic disturbances (Torréton et al. 200d¢hRlle-Newall et al. 2008). River inputs are
generally extremely low (i.e. < 5%s™), except during strong but short rainfall evefftse lagoon is
semi-enclosed and connected to the Coral Sea thrauarrier reef segmented by narrow passes
(Jouon et al. 2006). The measurements presentbdsipaper were performed between June 2002 and
February 2006.

2. the Cienfuegos Bay in Cuba, located betweenl@RF, 80°33'W) and (22°04’N, 80°22'W).
This bay is almost enclosed, strongly influenceditiyan and industrial activities, and connecteth&o
Caribbean Sea by a narrow channel (Alonso-Hernartled. 2006, Perez-Santana et al. 2007). The
measurements presented in this paper were performédiay 2006. TSM concentrations are, on
average, bigger than at the New Caledonia sitesaradler than at the Fiji site.

3. the Suva Harbour and Laucala Bay south of \éi, the biggest (10388 Kjnof the 844 Fiji
islands and islets, located between (18°00’S, 1Z&)2and (18°15’S, 178°35’E). The Rewa River,
with mean monthly discharges in the range 45-23@provides the Laucala Bay with a continuous
high amount of suspended particles. Bay muds apeita®6-40 m thick at Suva Harbour (Shorten
1993) and the area is also influenced by anthramogactivities. This lagoon is connected to the
Pacific Ocean through a coral barrier reef openital wide passes (Singh 2007).

While the New Caledonian and Cuban sites are |dcatéropical latitudes, the Fijian site is located
in the intertropical zone. The climate in Fiji isirhid and rainfalls are very erosive. Islands from
Oceania are known to be a major source of parttoléise global ocean (Milliman and Syvitski, 1992).
Optical measurements and remote sensing can thusdfel tools to quantify TSM and to study its
variability in the context of climate change. Theasurements were performed in the Suva Harbour, in
the Laucala Bay and in the downstream part of teedRestuary (up to ~10 km from the Rewa River
mouth), since the estuary is wide enough (>100mm)ap turbidity or TSM from remotely-sensed data.
The measurements presented in this paper werenpedan April 2003.

Turbidity and chl-a ranges at each site are presdeint Table 1. Unfortunately, technical problems
did not allow us to measure chl-a properly in thenfliegos Bay. However, chl-a was likely higher in
the Cienfuegos Bay than in Fiji and New Caledonia.

2.2. Instruments and Methods

The measurements consist of remote sensing rafleet@Rrs) spectra deduced from radiance and
irradiance measurements that were performed usingeean Optics USB2000 radiometer, and
turbidity profiles measured with a Seapoint turlvidier connected to a SBE19 CTD probe. Chl-a
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concentrations were measured at some stationswn@&edonia and Fiji either by fluorometry or by
spectrofluorometry (Neveux and Lantoine 1993) (Eaiele 1).

The remote sensing reflectance just above the wéace, Rrswas measured using the protocol
proposed by Mobley (1999), using an optic cablenected to the radiometer. A Gershun tube at the
end of the fiber was used to reduce the Field-@wiFOV) to an angle of 8°. At each station,
measurements were performed for downwelling irmackaEq4(0O+) using a Spectralon plate, for
upwelling radiancé.,(0+) with an azimuth viewing direction of 135° from teen and a zenith angle
of 45°, and for sky radiandey,(0+). At least 10 measurements of each radiance atiamae were
averaged at every station. Rrs was calculated dicgpto Mobley (1999) by:

_L,0+) _L,(0+) - oLy, (04)
TE0D E09 @)

R

where L,(0+) is the water-leaving radiance, apdis the proportionality factor that relates the
radiance measured when the detector views thecskyet reflected sky radiance measured when the
detector views the sea surface. The valug depends on solar zenith angle, on wind speed and o
cloud coverage. Under non-cloud conditions and veipeled less than 10 rit, is not wavelength-
dependent, and for wind speed < 5T g= 0.028 (Mobley 1999). The protocol is the same #re
spectroradiometer of the same kind as the ones tmedhe measurements performed in the
Mediterranean Sea (Ouillon and Petrenko 2005) amtkeiw Caledonia (Ouillon et al. 2004).

Although the Rrs spectra derived from Ocean Opti&B2000 are continuous (2048 channels
between 350 and 1000 nm), we only considered, igngaper, the values obtained at a few selected
wavelengths which correspond to the wavebands efrhjor sensors used in coastal oceanography
such as MODIS, MERIS, TM, ETM+, SeaWiFS, OCTS. Bwesvebands (or, to be more precise, the
centers of the detected wavebands) are located2at4413, 490, 510, 520, 530, 550, 560, 565, 620,
665, 670, 681, 705, 750 and 870 nm.

The Seapoint turbidimeter detects light scattergdpérticles and uses a 0.88n light source
wavelength. The sensor was factory adjusted fosistent response to Formazin Turbidity Standard
measured in Formazin Turbidity Units (FTU). Thesasors, also called nephelometers or Optical
Backscatter Sensors (OBS), are known to provideidily measurements proportional to sediment
concentrations at values less than 10'g(Bunt et al. 1999), the proportionality coefficierarying
from a site to another (e.g. Jin et al. 2001). it values considered in this study were obtained
from averaging turbidity profiles from the surfadewn to 3 m depth. Tests with turbidity averaged
over 5 m or 10 m depth (not presented here) gdnatadwed lower correlations with Rrs.

The evaluation of the algorithms is based on ¢atased among others by Toole et al. (2000) and
Darecki and Stramski (2004). Mean and stdev anaeiby:

meanx) = X = %Zn: X; 2)

stdev(x) = L\il_Z(xi - 2)2} 3)
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From these equations, the mean normalized bias (MiXB the normalized root mean square (rms)
error, in percent, are calculated following:

ya Ig - yobs

MNB = mearE
yobs

j.lOO (4)

rms = stde\{—ya'g _ yObSJ.lOO 5)
Yobs

whereyayq is a variable obtained from an algorithm a4 is its value measured situ. MNB is an
indicator of systematic error and rms an indicatbrandom error. Slope, intercept and the squared
correlation coefficient (coefficient of determirati ) were also calculated for the linear regression of
turbidity estimations (from various algorithms) ses turbidity measurements.

To be validated, algorithms must be tested oveepeddent data set. Their application to the
training data set does not allow their validatibot provides statistics such as regression slope an
intercept, ¥ and rms error. These statistics constitute a nicaléndex of model performance which
can be compared to those of other models (se€&Reilly et al. 1998); they are given in this paper
for every regression relationship.

Table 1. Turbidity range, averaged over 3m depth below dhdace (in FTU) and
standard deviation of averaged values (in %), dridrophyll-a concentration at 1.5 m
depth, per site during the field campaigns considler

Turbidity (FTU) Chlorophyll a (mg i)
N Average SD Min  Max N Average SD Min Max
(0-3m) (%) (1.5m) (%)
New Caledonia 113 1.23 1477 020 1650 84 0.75091 0.0.08 5.78
Cuba 24 1.57 384 091 288 0
Fiji 56 7.08 106.0 0.81 2490 49 2.25 147 055 49.1
ALL 193 2.96 168.8 0.20 24.90

3. Local algorithms for turbidity

3.1.New Caledonia

Reflectance spectra recorded in New Caledonia éxthid shapes shown in Fig. 1 (for clarity, only
55 spectra out of the 113 used in the present stcedlghown).

So as to propose one-band algorithms, we calculagetficient of determination between RYjs(
and turbidity averaged over 3 m depth below the sseface, at every wavelength and for different
kinds of regression relationships (linear, polynaimipower, exponential, logarithmic). Rrs and
turbidity are highly correlated %¢0.9) with polynoms of degree 3 between 565 and it@i5and with
polynoms or linear relationships between 620 artel M. The best power relationship is obtained at
565 nm; it is well adapted for low turbidity valugs3 FTU) but is less suitable at higher turbidityn A
exponential regression relationship is suitabMatelengths between 550 and 565 nm.
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Figure 1. Examples of Rrs spectra recorded in New Caled&fa(it of 113), 2002-2006.
0.020

0.015 2LV
S

400 600 800
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Amongst the one-band algorithms for turbidity, thest-fits were established with an exponential
relationship at 565 nm (Fig. 2a) and with a cubatypomial relationship at 620 nm (Fig. 2b). The
mean bias and rms error are lower for the regrassi®65 nm than for the one at 620 (see Table 2),
and the signal amplitude is higher with Rrs565 {sinotation hereafter used for Rrs at 565nm]. The
Rrs620-based algorithm induces a lower mean queadnabr; it is thus more suitable at high turbydit
values than the Rrs565-based algorithm. Conseqdatl New Caledonia, the 565 nm exponential
relationship seems more suitable to low turbid vga{en dry season or fair weather condition, ire. i
general conditions when satellite data are avalabth few clouds and no foam), and the 620 nm
cubic polynomial algorithm can be preferred for thghest turbid waters (i.e. just after high disgea
episodes or high resuspension events). This nssmltagreement with a previous study performe@on
sub-data set which enabled to draw a map of tuybicom ETM+ band 2 (centered at 565 nm) data in
support of calibration of a numerical model forefisuspended sediment transport during the dry
season (Ouillon et al. 2004). The highest sensitiof reflectance for low TSM concentration was
already reported to be at shorter wavelengths @tdl978).

Amongst the 113 stations of New Caledonia, 7 amated in bays and are subject to strong
anthropogenic influences (Fig. 2). As these statierhibit high TSM and high amount of organic
matter, we calculated the statistics of the regoaselationships both for the whole data set (N3)11
and excluding the 7 peculiar stations (N=106) (Ealele 2). The results show that the 7 "high organic
matter" stations (due to urban and domestic wasaterg) do not strongly affect the statistical
performance of the global one-band TSM algorithamsl thus that these stations are not outliers.

Apart from one-band wavelength algorithms, we exemtiithe correlation between reflectance
ratios at the central wavelengths of generic baaus turbidity. The best correlation was obtained
using the ratio Rrs412/Rrs670 [also hereafter n&t12/R670 since the reflectance ratio is the same
as the ratio of remote sensing reflectances] (Bjg.close performances were obtained using ratios
R412/R620 and R443/R670.
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Figure 2. Best-fit single-band algorithms for turbidity in WeCaledonia (N=113). 7
stations out of the 113 stations are distinguishigl empty red marks; they correspond
to the head of bayga) regression relationship at 565 nfh) regression relationship at
620 nm. Note that’rvalues given in figures 2, and after, were catedabetween
turbidity and reflectance or reflectance ratio, htween measured and modeled
turbidity as in Table 2.

100 @ 100
Turb = 0.1863 exp (175.16 Rrs) Tub = 329580 Ris? + 11070 Ris? ()
+368.56 Rrs
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Figure 3. Best-fit two-band algorithm for turbidity in New @alonia (N=113). 7
stations at the head of bays are distinguished evithty red marks.
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What is the difference between the one- and twat@gorithms? In the R412/R670 ratio-turbidity
relationship, the 7 stations at the head of bagsstghtly out of the main trend (Fig 3), while yhe
totally fit in the Rrs565- or Rrs620-turbidity rétanships (Fig. 2). Also, comparing the resultshvatl
the data (casa) and the one without the 7 specific stations (dgse@ne notices that the rms error
increases from cageto casea using R412/R670, while it remains quite the saoreébbth cases using
Rrs565 (Table 2). Indeed, the ratio R412/R670 isensensitive to the content in organic matter than
single-wavelength reflectance at 565 or 620 nnthé&se bays, the residence time is the highestein th
southwest lagoon of New Caledonia (Jouon et al6@dd coastal waters are rich in organic matter
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(Torréton et al. 2007). The differences betweerfoperances of algorithm in casesandb being
higher when using the ratios R412/R620 and R443IR&/& only presented the two-band algorithm
based on R412/R670.

Table 2. Statistical performance of local turbidity algbris for New Caledoniaa( test
over 113 stationdy: test over 106 stations, all except anthropogbais), Cienfuegos
lagoon in Cuba (N=24), and Suva Harbour/Laucalaibdiji (N=56). The parameters
are obtained between modelled and measured twylfadieraged over 3m depth below
the surface).

2

Site Local algorithm MNB  rms Mean Slope Inter- r
(%) (%) quadr. cept
error
NC @ Turb=0.1863 exp(175.1 Rrs565) 3.11 2551 0.48196M@. 0.040 0.931
NC (b) 2.49 25,52 0460 0.943 0.030 0.937

NC (@ Turb=329589 Rrs628 11070 Rrs620 17.9 44,48 0.290 0.997 0.067 0.976
+ 368.56 Rrs620

NC (b) 19.6 4532 0.286 1.001 0.074 0.978
NC (@ Turb=5.0819 (R412/R670)"* 3.71 28.24 0.629 0.733 0.249 0.919
NC (b) 6.47 26.93 0588 0.752 0.265 0.930
Cuba  Turb=0.565 exp(297.5 Rrs620) 1.43 17.26  0.30R717 0.419 0.741
Cuba  Turb=0.552 exp(441.4 Rrs681) 1.83 19.83 0.336632 0.543 0.681
Fiji Turb=0.928 exp(191.3 Rrs620) 5.49 3439 3.199.923 0.431 0.824
Fiji Turb=1.068 exp(222.1 Rrs681) 590 3541 2.892.019 -0.113 0.871
Fiji Turb=14.896 (R510/R681)"* 5.44 3590 2.399 0.828 0.743 0.904
3.2 Cuba

The Rrs spectra collected in May 2006 are presemdeilg. 4. The best one-band algorithm is
obtained between Rrs620 and turbidity averaged 8vardepth (mean bias: 1.4%, rms error: 17.3%,
see Fig. 5 and Table 2). However, caution mustakert because these results are obtained with a
relatively small data set (24 stations).

Figure 4. Rrs spectra recorded in Cienfuegos Bay, Cuba, N0@g ZN=24).

0.015

Wavelength (nm)
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Slightly lower statistical performances are obtdifeetween Rrs681 and turbidity using a power
model (see Table 2). And still lower statisticatfpemances are obtained with Rrs705. The two-band
algorithms show poor statistical performances irb&uwhere chl-a concentrations are likely the
highest of the three sites, on average.

Figure 5. Best-fit single-band algorithm for turbidity in @itiegos Bay, Cuba (N=24).
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3.3 Fiji

Rrs measurements performed in Fiji are presenté&dginGé. The best-fit single-band algorithms for
turbidity are found based on Rrs620 and Rrs681 ({Higwhile the best-fit two-band algorithm is base
on R510/R681 following a power model (Fig. 8) (s¢®0 Table 2). Turbidity calculated using these
relationships shows a mean normalized bias oftlems 6% and a rms error of ~35% compared to the
measured values (see Table 2). However, the twd-bégorithm provides a lower mean quadratic
error than the one-band algorithms.

Figure 6. Rrs spectra recorded in Laucala Bay and in the Restwaary, Fiji, April 2003.
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400 600 800
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Figure 7. Example of single-band algorithm for turbidity ialcala Bay, Suva Harbour
and Rewa estuary, Fiji, based on Rrs at 681 nm.
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Figure 8. Best-fit two-band algorithm for turbidity in Lau@aBay, Suva Harbour and
Rewa estuary, Fiji.
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4. Towards a global algorithm in tropical coastal vaters

There is a strong demand from potential users spadie of global TSM algorithms (Acker et al.
2005), but the first question remains: is it polestbTo examine this question and bring some reply
elements regarding tropical coastal waters, we etethje 3 data sets and examined the feasibility of
building a global Rrs-turbidity algorithm.
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4.1 Correlation between surface turbidity and Rrs(A), one-band algorithms

Between 400 and 500 nm, the relationship is novagal between Rrs and turbidity. In New
Caledonia and Fiji, the smallest and highest redleme values correspond to low turbidities whilghhi
turbidities are accompanied with intermediate RrSCuba, the higher turbidity, the larger Rrs ie th
range 400-550 nm.

Beyond 500 nm in Fiji and Cuba, 550 nm in NC, ref@ce increases with increasing turbidity.
Points are very dispersed at 510 and 520 nm ancethtonship only becomes significant at 550 nm
(r*> 0.5 for the most adapted law, generally polyradmisee e.g. Fig 2a). In New Caledonia, r
increases very quickly with increasing wavelen@ty8 at 550 nm, 0.90 at 560 nm, 0.923 at 565 nm),
and is very high between 620 nm (0.976) and 681h868). However differences between Rrs values
diminish with wavelengths beyond 565 nm. At 620 and above, two points corresponding to two
very turbid stations (at a river mouth) are clealilstinguished and explain the good performances of
the correlations (see Fig. 2b). The correlatiormgsgood at 705 nm as at 681 nm, then it quickly
degrades with increasing wavelength #r0.74 at 750 nm and 0.47 at 870 nm). In Cuba,bist
correlations are obtained between 620 and 681 hrarfging between 0.72 and 0.78)jsr worth 0.55
at 560 nm and 0.61 at 705 nm. However these reatdtsiot completely satisfactory because more
than half of the stations show close turbiditiestiieen 1 and 1.5 FTU) and very dispersed Rrs values
Beyond 750 nm, points are totally dispersed. Im, Eije turbidity-Rrs relationship presents a strong
dispersion up to 600 nm, in particular at high idittees (> 5 FTU), and beyond 705 nm. The best
correlations are obtained between 620 and 681 nm.

When considering all the stations without distirstpimg the sites, one checks that the correlation
between turbidity and reflectance is significanlydmeyond 550 nm, and is the best between 620 nm
and 705 nm. This result is consistent with seveagplers in which reflectance in the red band (60D-70
nm, either broadband or at the center wavelengthjigies the best one-band relationships with TSM
(e.g. Ahn et al. 2001, 2006; Hu et al 2004). Thdgsmances of the regression relationships between
620 nm and 705 nm are equivalent; however payirdetailed attention to the curves points to
differences which can guide the choice of a lalwaathan another. Rrs620 variations are very satall
the strongest turbidities (ranging between 20 ahd-2U, measured in Fiji), whereas Rrs705 is still
sensibly increasing with increasing turbidity instirange. Nonetheless, the disadvantage of high
wavelengths is that the range of Rrs values deeseadth wavelength in the red and infrared, as
already shown by Novo et al. (1991).

At 620, 665, 670, 681 and 705 nm, linear relatigmsbetween Rrs and turbidity averaged over 3 m
depth provide correlation coefficients close to times for power functions (where TuebRrs). The
power coefficienb decreases with increasing wavelength (1.29 atn®201.25 at 685 nm, 1.19 at 705
nm). Han (1997) already showed that the lineantyhie TSM-reflectance relationship increases with
increasing wavelength between 400 and 900 nm. @yv#ra power coefficient is relatively close to 1,
thus explaining the similar performance of bothdsirof relationships: linear and power.

At 620 nm, the best statistical performances ataindd with a polynom of degree 3 which makes
it possible to take into account the damping of fwrsstrong turbidities. At 681 nm, the average
relative error is higher and the quadratic errdoiger with a polynomial than with a power law. The
power-law model is less powerful for strong turbes but more adapted to low turbidities.
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Finally, the best single-band algorithms are oladibetween turbidity averaged over 3 m depth and
Rrs at 620 or 681 nm. The relationships with Rrs@@# slightly better results than those with R&62
(Fig. 9). When the power relationship at 681 nnused to calculate turbidity from Rrs, the mean
normalized bias is 7.6% (see Table 3 and Fig.tBa)mean bias being +17.5%, -1.4% and -8.6% over
the New Caledonian, Cuban and Fijian data, resgeygfithe mean quadratic errors are lower than 1
FTU (0.75 FTU in New Caledonia, 0.36 in Cuba), g#da Fiji (3.3 FTU) (see Table 3 and Fig. 9b).
The polynomial relationship at 681 nm gives betibebidity estimates in Fiji (mean quadratic errér o
2.4 FTU instead of 3.3, and rms error of -3.3%)e power law at 681 nm will preferably be applied to

waters with a turbidity < 1 FTU, and will advantagsly be replaced by a polynomial law for more
turbid waters.

Figure 9. Single-band algorithms for turbidity in tropical tees (N=193: 113 stations in

New Caledonia, 24 in Cuba and 56 in Fi{g) power law at 620 nn{b) power law and
polynomial relationship at 681 nm.
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4.2 Two-band algorithms

Concerning global two-band algorithms, we examitieel correlations of all reflectance ratios
(hereafter N/D for numerator/denominator) with idity. The best reflectance ratios to derive
turbidity (Turb in following formula) were obtainedith N = Rrs412, Rrs443 and Rrs510, and D =
Rrs620, Rrs670 and Rrs681. Others do not fit, agchiR510/R550, because theexponent in the
Turb=a (R510/R550)relationship varies from a site to another (bg2.85 in New Caledoni&=-6.6

in Fiji), and because R510/R550 shows a betteretadion with turbidity averaged over 10 m depth
than over 3 m depth with our data set.



Table 3. Statistical performance of global turbidity algbris for New Caledonia, Cienfuegos lagoon in Cubéd,%uva Harbour/Laucala

bay in Fiji (N=193). The parameters are obtaingsvben modelled and measured turbidity (averaged &ivedepth below the surface).

Global statistics New Caledonia Cuba Fiji
Algorithm MNB rms Mean slope Inter- ° MNB rms Mean MNB rms Mean MNB rms Mean
(%) (%) quadr cept (%) (%) quadr (%) (%) quadr (%) (%) quadr
error error error error
(1) Turb=3183 (Rrs681)*** 76 452 1.832 0.716 0.478 0.913 1750 504 0.411.4 240 0350 -87 349 3.342
(2) Turb=-6204217(Rrs681}179652 (Rrs68f+ 18.5 49.7 1.424 0919 0.242 0919 349 539 0.7499 - 195 0.365 -3.3 347 2409
36.49 Rrs681 + 0.452
(3) Turb=3.407 (R412/R620H%* 71 39.0 2832 0499 0907 0.812 -35 237 0.738B.45 276 0758 8.4 51.7 5.128
(4) Turb=5.966 (R443/R670H** 70 394 2453 0565 0.763 0.887 -35 287 0.527.95 36.9 0.770 8.9 454  4.463
(5) Turb=11.817 (R510/R68T)** 9.6 49.1 1.995 0.684 0521 0.899 6.4 534 0.583.03039.7 0588 7.1 416 3.589
(6) Turb=90.647 (Rrs620.Rrs681/Rrs41%¥ 44 301 2030 0654 0619 0917 19 282 0.352.22520.7 0.406 04 338 3.725
(7) Turb=245.59 (Rrs620.Rrs681/Rrs516Y 6.5 40.7 1915 0701 0.522 0903 9.1 452 0.573.212246 0333 -14 358 3.454
(8) TURBS3: (2) and if Turb < 1FTU, (6) 36 350 164 0.923 0201 0.920 50 383 0.731 16 19.8 0.350.5 33.4 2.405




The relationships derived using these nine ratiesewcarefully compared. The best statistical
performances were obtained with R412/R620, R4430R&nd R510/R681 (Fig. 10, Table 3). The
relationships with N=Rrs412 provide good estimatielw turbidity, but very dispersed estimates for
turbidity > 2 FTU; D=Rrs620 giving slightly bettestimates than D=Rrs670 or D=Rrs681 (Fig. 10a).
With N=Rrs510, the higher turbidity estimates agssl dispersed than the low turbidity (< 1 FTU)
ones; the best relationship being obtained with 38B1 (Fig. 10c). The ratio R443/R670 constitutes
a compromise between those two ratios since esdnatersus measured-turbidity globally shows a
smaller dispersion than R412/R620 at high turbjdityd than R510/R681 at low turbidity (Fig. 10b).
The statistical performances of R443/R670 and RRG20 are similar: acceptable in New Caledonia
(R443/R670 is better since the mean quadratic en@duced), but bad at Cuba and Fiji stationgh(hi
MNB and high quadratic errors, see Table 3). Thatimship based on R510/R681 is better in Cuba
and Fiji, but is not as precise as R443/R670 in NKkaledonia. Green/red band ratios were also found
to be best correlated with concentration of minstspended solids in coastal waters (Topliss et al.
1990; Wernand et al. 1998; Bowers and Binding 20@®)ue/red ratio was also proposed by Wernand
et al. (1998).

Figure 10. Best-fit band ratio algorithms for turbidity in piwal waters (N=193: 113
stations in New Caledonia, 24 in Cuba and 56 i k) using R412/R460(b) using
R443/R670(c) using R510/R681.
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4.3 Three-band algorithms

As the most performing turbidity algorithms prevsbupresented are based on Rrs620 and Rrs681
(one-band), or R412/R620, R443/R670 and R510/R68a-ljand), we tested algorithms involving
three bands in a combination of these channelsratims. Algorithms based on R670/R443 (either
multiplied by Rrs620 or Rrs681) show the lessemiith turbidity. The two best-fit algorithms are
based on Rrs620.Rrs681/Rrs412 (algorithm 6, see Hg, Table 3) and Rrs620.Rrs681/Rrs510
(algorithm 7, see Fig. 11b, Table 3). Algorithmi®ws better performances with the New Caledonia
stations, while algorithm 7 is more suitable fopkgation in Cuba and in Fiji. Amongst all the
algorithms previously tested, algorithm 6 showshibst performance for New Caledonia (lower MNB,

1.9%, lower mean quadratic error, 0.352, see Tahland algorithm 7 is one of the best algorithors f
Cuba, with the one-band Rrs681-based algorithms.

Figure 11. Best-fit three band algorithms for turbidity in pioal waters (N=193: 113
stations in New Caledonia, 24 in Cuba and 56 ii) &) using Rrs620.Rrs681/Rrs412.
(b) using Rrs620.Rrs681/Rrs510.
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4.4 Proposal for a global algorithm with threshold

The performances of the different global algorith@able 3) indicate that none is the best one
either globally or for each of the three sites saj@dy. The lower mean bias and rms values were
obtained with algorithm 6 because it was the besfepming algorithm for New Caledonia (113
stations out of 193). However, its average stafsfperformances in the more turbid waters of Cuba
and Fiji imply a relatively high mean quadraticaer(2 FTU). The one-band polynomial relationship
based on Rrs681 is shown as the best algorithmbdtin Cuba and Fiji (low MNBs, low mean
guadratic errors). Nonetheless, this algorithmethito properly estimate turbidity < 1 FTU (see its
performances in New Caledonia, Table 3, and Fiy. 9b

In an attempt to build a better global algorithng tlius propose to merge the two best-performing
relationships in one formulation, following:
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(a) turbidity is calculated using algorithm 2:
Turb = - 6204217 (Rrs681) 179652 (Rrs681}+ 36.49 Rrs681 + 0.452 (6)
(b) if the resulting turbidity < 1 FTU, its calctilan is replaced by algorithm 6:
Turb = 90.647 (Rrs620.Rrs681/Rrs41Zf 7)

As this algorithm is based on three wavelength®,(620 and 681 nm, available e.g. with MERIS),
we propose to call it hereafter TURBS. Its statatperformances show its ability to estimate titipi
with a mean bias of 3.6%, a rms error of 35% antean quadratic error of 1.4 FTU (Table 3, Fig. 12).
Algorithm 6 induces lower rms errors both globahd in New Caledonia, but fails to estimate higher
turbidity (as indicated by higher rms errors in @uwnd Fiji). TURB3 enables to significantly reduce
the mean quadratic error with the Fiji data (2.4JFRAgainst 3.7 with algorithm 6).

Figure 12. Comparison of measured turbidity (averaged overti&tow the sea surface)
and turbidity calculated from Rrs412, Rrs620 and68iL using TURB3 algorithm

(N=193).
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5. Discussion and Conclusion

Although the reflectance-TSM relationship is knotenvary with the change in particle properties
such as grain size, composition and refraction Xxn@&ozniak and Stramski 2004; Binding et al.
2005), results presented in this paper show itoissiple to quantify turbidity from remote sensing
reflectance in coastal tropical waters.

The debate is still open on defining the good protdor measuring TSM in-water in order to
produce a quantity that is comparable to a rematehsed data product (Acker 2006). Several proxies
can be used for TSM concentration. Amongst thembjdity is a simple parameter, both because it can
be easily measured and because it is already acabparameter closely related to the backscatter
properties of total suspended matter. Turbidity &a6#1 were proved to be closely related when TSM
is mainly composed of fine particles, i.e. silt aays (see a review in Ouillon et al. 2004, analysis
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in New Caledonia waters in Jouon et al. submittéds suggested that the comparison of statistical
performances of optical algorithms for other TSNated bulk parameters, like concentration (in
mg/L), turbidity expressed in NTU, light transm@siand attenuation, should also be analyzed and
presented in future papers.

When considering several sites or different rangfeturbidity within a site, one-band algorithms
can be proposed at a wavelength increasing withditly, and thus adapted for a given turbidity rang
In New Caledonia (average turbidity: 1.23 FTU), 385 is shown to be of preferable use over low
turbid waters and Rrs620 more adapted for the Bighecountered turbidities. The best-fit one-band
algorithms in Cuba and Fiji were based on Rrs62d Rrs681 (average turbidity: 1.57 and 7 FTU,
respectively). It was already shown in the literatthat, when turbidity or TSM grows, Rrs increases
firstly at green wavelengths between 500 and 600saecondly at higher wavelengths between 600 and
700 nm, and thirdly in the near-infrared around 860 (see e.g. reflectance spectra at the Rhone Rive
mouth in Forget and Ouillon 1998, and in the Gimmaad Loire estuaries in Doxaran et al. 2003}k It i
a bit surprising to find the best performing onedbaalgorithm at 681 nm since this wavelength
corresponds to the peak in chlorophyll-fluoresceand is consequently not usadoriori in TSM
algorithms.

In tropical coastal waters, blue/red (412/620, 848) and green/red (510/681) ratios are best
suitable for two-band turbidity algorithms, whilédub and red (412, 620, 681 nm) or green and red
wavelengths (510, 620, 681 nm) give the best pedoices with three-band algorithms.

Algorithms based on reflectance ratios are attracdince there exists several protocols for above-
water Rrs measurements (Mueller et al. 2003) amenvshifting from a couple instrument/protocol to
another, differences between measurements canebgegiamongst absolute Rrs values than amongst
reflectance ratios (see e.g. a comparison betw@dBAD and Ocean Optics Rrs measurements at
four wavelengths in Ouillon and Petrenko 2005). &gplication to satellite data, reflectance ratios
also less sensitive to uncertainty in atmospheoitection than absolute reflectance values (Bowers
and Binding 2006). However, using reflectance matnvolves a strong disadvantage: algorithms based
on reflectance ratios such as R412/R670 or R51@WRHE likely more sensitive to the content of
organic matter than single-band algorithms at redear-infrared wavelengths. Other ratios proposed
in the literature involve red and near-infrared defMoore et al. 1999; Doxaran et al. 2003), bayth
are expected to be particularly adapted to wateas dre more turbid (with TSM of several tens or
hundreds of mg t) than in coral reef lagoons.

Global algorithms were tentatively derived from thetire data set and were shown to estimate
turbidity with a rms error of 30-35%. When we ughd derived algorithms to model turbidity, rms
errors between modelled and measured turbidityedafrom a site to another: ~38% in New
Caledonia, 20% in Cuba and 33% in Fiji using TURB@orithm, and ~28% in New Caledonia, 21%
in Cuba and 34% in Fiji using algorithm 6.

Instead of proposing algorithms « per turbiditygam, like TURB3 which has two relationships
below and above 1 FTU as estimated by a first éguaa test could be done to determine the coastal
water type of each marine station and then apglyezific algorithm per water type (see e.g. a @ast
water classification and its application by Lahetak 2001a, 2001b). Better performances should
tentatively be looked for in this way. However, theerall performance of the algorithms presented
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here is encouraging to carry on and complete stuthes. Indeed, the algorithms should be improved
and investigations on the different parameters @segroxies for TSM should continue. In tropical
waters that are generally not very turbid, the grenince of TSM algorithms may also likely increase
when the inversion of the satellite data will takto account the stratification in TSM (or turbigit
rather than being based on surface values or vauesaged in a surface layer (Ouillon 2003). The
approach of this paper, testing optical TSM aldonis at selected wavelengths, must be enlarged and
adapted for each satellite sensor, consideringspieetral sensitivity of each bands, and algorithms
must be validated.
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