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SINGULAR SOLUTIONS OF FULLY NONLINEAR ELLIPTIC

EQUATIONS AND APPLICATIONS

SCOTT N. ARMSTRONG, BOYAN SIRAKOV, AND CHARLES K. SMART

Abstract. We study the properties of solutions of fully nonlinear, positively

homogeneous elliptic equations near boundary points of Lipschitz domains
at which the solution may be singular. We show that these equations have

two positive solutions in each cone of Rn, and the solutions are unique in an

appropriate sense. We introduce a new method for analyzing the behavior of
solutions near certain Lipschitz boundary points, which permits us to classify

isolated boundary singularities of solutions which are bounded from either

above or below. We also obtain a sharp Phragmén-Lindelöf result as well as a
principle of positive singularities in certain Lipschitz domains.

1. Introduction and main results

We study singular solutions of fully nonlinear, homogeneous, uniformly elliptic
equations, such as

(1.1) F (D2u) = 0,

where F is a Bellman-Issacs operator, that is, an inf-sup of linear uniformly elliptic
operators. This paper is the second in a series which began in [4]. In the latter
work, we classified singular solutions of (1.1) in Rn\{0} (that are bounded on one
side both at the origin and at infinity), and characterized the behavior of solutions
of (1.1) at isolated singular points as well as their asymptotic behavior at infinity.

Here we are interested in understanding how solutions of (1.1), subject to Dirich-
let boundary conditions, behave at isolated singularities on the boundary, as well
as in the behavior “at infinity” in unbounded domains which are not exterior do-
mains (such as a half-space). We prove a principle of positive singularities for (1.1)
in certain bounded Lipschitz domains, the first of its kind for fully nonlinear el-
liptic equations. Along the way, we discover new, sharp maximum principles of
Phragmèn-Lindelöf type, some of which are new even for linear equations, and we
(sharply) generalize Hopf’s lemma to domains with corners.

We proceed by first studying (1.1) in a cone of Rn and classifying its solutions
which do not change sign and are bounded either at the origin or at infinity. It turns
out that for each conical domain, there are four such solutions (up to normaliza-
tion). These solutions are homogeneous: two have a positive order of homogeneity
and the other two are of negative order. As we show, the orders of homogeneity of
these four solutions provide a great deal of information about the general behavior
of solutions of (1.1) near isolated singular boundary points and at infinity.
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Prior to this paper, the literature on singular solutions and domains for fully non-
linear equations is limited to the work of Miller [24], who long ago studied Pucci’s
extremal equations in symmetric cones via ODE methods. On the other hand,
there is a vast literature of analogous results for linear and quasilinear equations (a
good starting point to this theory is the recent book by Borsuk and Kondratiev [7],
and the references there). Our methods are completely different from the energy
methods typically employed in these works, since fully nonlinear equations may be
studied only by maximum principle arguments.

We will consider a more general equation than (1.1), namely

(1.2) F (D2u,Du, x) = 0.

We consider operators with gradient dependence not only for maximal generality,
but also since doing so allows us to shorten many of our arguments by exploiting the
fact that the class of these operators is invariant under the inversion x 7→ |x|−2x.

The precise assumptions. We take ω to be a proper C2-smooth subdomain of
the unit sphere Sn−1 of Rn in dimension n ≥ 2, and we define the conical domain

Cω := {x ∈ Rn : |x|−1x ∈ ω}.
Throughout this paper, F is a uniformly elliptic, positively homogeneous operator
such that (1.2) is invariant under dilations. Precisely, we assume that

(1.3) F satisfies (2.3), (2.4), (2.5) and (2.6),

which are stated in Section 2.
We emphasize that Theorems 3 through 8 below are valid (and will be proved)

for more general operators than (1.3), such as operators which, after a rescaling
and blow up at the origin, converge to an operator F as in (1.3). For example,
Theorems 1 and 2 below hold for the operator

F (D2u,Du, x) = P(D2u) + µ|x|−1|Du|,
while Theorems 3 through 8 are valid for solutions of

P(D2u) + µ|x|−1|Du|+ ν|x|−1+δ|Du| = (resp. ≥,≤) 0.

Here µ, ν ∈ R, δ > 0 and P is one of the Pucci extremal operators. Since we strive
for clarity and readability in the introduction, we postpone the statements of the
more general results to Sections 7 and 8.

Throughout the paper, all differential equalities and inequalities are to be un-
derstood in the viscosity sense.

1.1. Existence and uniqueness of singular solutions in cones. The first the-
orem gives the existence of positive singular solutions of (1.2) in Cω.

Theorem 1. Assume (1.3). There exist unique constants

α− < 0 < α+,

depending on F and ω, for which the boundary value problem

(1.4)

{
F (D2Ψ, DΨ, x) = 0 in Cω,
Ψ = 0 on ∂Cω \ {0},

has two positive solutions Ψ+ ∈ C(Cω\{0}) and Ψ− ∈ C(Cω) such that

Ψ±(x) = tα
±

Ψ±(tx) for all t > 0, x ∈ Rn.
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The numbers α± are characterized by (3.1) and (3.2) below.

This theorem was proved in [24] in the special case that F is a Pucci extremal
operator and ω is symmetric with respect to some diameter of the unit sphere of
Rn. This situation is much simpler, one may exploit the rotational invariance to
reduce the problem to an ODE and then use a shooting argument to obtain smooth
solutions.

The next theorem states that Ψ+ and Ψ− are unique in an appropriate sense.
This result is new even for the Pucci extremal equations P±λ,Λ(D2u) = 0.

Theorem 2. Assume (1.3). Let u ∈ C(Cω\{0}) be nonnegative and satisfy

F (D2u,Du, x) = 0 in Cω,

and u = 0 on ∂Cω \ {0}. Then

(i) lim|x|→∞ |x|α
−
u(x) = 0 implies that u ≡ tΨ+ for some t ≥ 0; and

(ii) lim|x|→0 |x|α
+

u(x) = 0 implies that u ≡ tΨ− for some t ≥ 0.

In particular, if u is bounded in {|x| > 1}, then u is a nonnegative multiple of Ψ+,
while if u is bounded near the origin, then u is a nonnegative multiple of Ψ−.

Applying Theorem 1 to the operator

(1.5) F̃ (M,p, x) := −F (−M,−p, x),

we see that (1.4) has two unique negative homogeneous solutions in Cω as well.

The proof of Theorem 1 is inspired by the arguments in [4] which have roots in
the maximum principle approach to the principal eigenvalue theory. The idea is to
write down an “optimization” formula for α+ and α−, and then to use topological
methods to find solutions.

To prove Theorem 2, we use the global Harnack inequality, certain monotonicity
properties implied by the comparison principle, and a blow-up argument.

1.2. Behavior of solutions near “singular” boundary points. In this sub-
section we state our results characterizing the boundary singularities of solutions
of the Dirichlet problem which are bounded on one side. Roughly speaking, we
prove that if Ω resembles Cω near 0 ∈ ∂Ω, then a nonnegative solution which has a
non-removable isolated boundary singularity at 0 must resemble a multiple of Ψ+

near the origin. As a consequence of this result, we deduce a Picard-Bouligand
principle of positive singularities.

In what follows, Ω ⊂ Rn is a domain such that 0 ∈ ∂Ω and ∂Ω has a conical-type
corner at 0. Specifically, we assume that

(1.6)

{
there exists a C2-diffeomorphism ζ : B1 → B1 such that

ζ (Ω ∩B1) = Cω ∩B1, ζ(0) = 0 and Dζ(0) = I.

Here I is the identity matrix, we write ζ = (ζ1, . . . , ζn) and Dζ(x) denotes the
matrix with entries (ζixj (x)). Observe that if ∂Ω is C2 near 0, then necessarily

(1.6) holds and the cone Cω is a half space. We emphasize that the general conical
domain Cω is not the novelty here: both Theorems 3 and 5, below, are new for
smooth domains.
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Theorem 3. Assume (1.3) and that Ω satisfies (1.6). Let u ∈ C
(
Ω̄\{0}

)
be

bounded below and

(1.7)

{
F (D2u,Du, x) = 0 in Ω,

u = 0 on ∂Ω ∩B1 \ {0}.

Then precisely one of the following two alternatives holds:

(i) u can be continuously extended to Ω̄ by setting u(0) = 0.
(ii) There exists t > 0 such that

lim
Ω3x→0

u(x)

Ψ+(ζ(x))
= t.

Remark 1.1. In the case u is positive near 0 and (i) occurs, we will show using
the same methods that there exists t > 0 such that [u(y)]/[Ψ−(ζ(y))]→ t as y → 0.

An extension of the previous remark is the following generalized Hopf lemma.

Theorem 4. Assume (1.3) and that Ω satisfies (1.6). If

F (D2u,Du, x) ≥ 0 in Ω, u ≥ 0 in Ω, and u(0) = 0,

then either u ≡ 0 in Ω or u > 0 in Ω and lim infx→0,x∈Ω
u(x)

Ψ−(ζ(x)) > 0. In particular,

for any ω′ ⊂⊂ ω and e ∈ ω′ we have

(1.8) u(te) ≥ ct−α
−

as t→ 0,

where c > 0 depends on λ,Λ, µ, ω′, dist(ω′, ∂ω).

The lower bound (1.8) is sharp, as the existence of Ψ− shows. If F = F (D2u)
and Ω is smooth at the origin, it is obvious that after a rotation we have Ψ−(x) = xn
and −α− = 1, so in this case (1.8) is the conclusion of the usual Hopf lemma.

Theorem 3 easily implies the following Picard-Bouligand principle (or a principle
of positive singularities) which is a solvability and uniqueness theorem for fully
nonlinear PDE in bounded domains. For linear equations such results, as well as
discussion and references, can be found in Kemper [20], Ancona [2], Pinchover [25].

Theorem 5. Assume (1.3) and that Ω is a bounded domain which satisfies (1.6).
Then the set of nonnegative solutions of the Dirichlet problem

(1.9)

{
F (D2u,Du, x) = 0 in Ω,

u = 0 on ∂Ω \ {0}.

is the half-line {tu0 : t ≥ 0} for some positive solution u0 > 0 of (1.9).

By adopting the established terminology of the theory of harmonic functions,
and its extensions to more general equations, we could restate Theorem 5 by saying
that the F -Martin boundary of Ω coincides with ∂Ω provided any point x0 ∈ ∂Ω is
such that a neighborhood of x0 in ∂Ω is C2-diffeomorphic to a cone in Rn.

While some of the ideas for the proof of Theorem 3 are already present in [4] as
well as in the earlier work of Labutin [23], the analysis here is much more challeng-
ing. The main difficulty comes when one smooths the boundary using the isomor-
phism ζ and discovers that the resulting equation is perturbed in its dependence
on the second derivatives. Since C2 estimates for solutions of general fully nonlin-
ear equations are unavailable, to get a continuous dependence result we must first
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revisit the uniqueness machinery for viscosity solutions of second-order equations
[12, 17]. We then combine these techniques with the global Harnack inequality for
quotients and the global gradient Hölder estimates, to deduce a continuous depen-
dence estimate in a somewhat unusual form. This estimate is then used to prove
some almost-monotonicity properties of minima and maxima of ratios of solutions
over annuli. A more detailed overview of the strategy for proving Theorem 3 is
given in Section 7.3.

1.3. Maximum principles of Phragmèn-Lindelöf type. To provide context
for our next results, let us recall two very classical theorems of Phragmèn and
Lindelöf. They proved, for any holomorphic function f : C→ C which is bounded
in the angle between two straight lines,

(a) if |f | ≤ 1 on these lines, then |f | ≤ 1 in the whole angle; and
(b) if f(z) → a as |z| → ∞ along these lines then f(z) → a as |z| → ∞,

uniformly in the whole angle.

These theorems may be formulated in terms of harmonic functions by applying the
Cauchy-Riemann theorem to log f(z).

Extensions and refinements of the statement (a) for subsolutions of linear elliptic
equations in unbounded domains is the subject of the classical papers of Gilbarg
[15], Hopf [16], and Serrin [29]. We prove sharp extensions of the latter results to
fully nonlinear equations in Theorems 7 and Proposition 8.2, below.

Moreover, we prove a stronger result which, to our knowledge, is new even for
general linear equations. Theorem 6 below, which we prove by a blow-up argu-
ment, is more general than both (a) and (b) above, and unites these into a single
statement. Roughly, it asserts that a subsolution having algebraic growth at a
boundary point (resp. infinity) with a rate less than α+ (resp. α−) must have its
fastest growth along the boundary of the domain.

In what follows we denote Ω∗ := {|x|−2x : x ∈ Ω}, the inversion of Ω.

Theorem 6. Assume (1.3) and that Ω satisfies (1.6). Suppose u satisfies

(1.10) F (D2u,Du, x) ≤ 0 in Ω (resp. Ω∗)

as well as the growth conditions

(1.11) lim sup
x→0,x∈Ω

|x|α
+

u(x) ≤ 0 (resp. lim sup
x→∞,x∈Ω∗

|x|α
−
u(x) ≤ 0).

Then

lim sup
x→0,x∈Ω

u(x) ≤ lim sup
x→0,x∈∂Ω

u+(x) (resp. lim sup
x→∞,x∈Ω∗

u(x) ≤ lim sup
x→∞,x∈∂Ω∗

u+(x)).

Similarly to the theorems in the previous subsection, Theorem 6 is valid and will
be proved for subsolutions of more general equations, which “blow up” to (1.10) at
the origin (resp. at infinity), in the sense of Section 7.1.

Theorem 6 implies the following extended Phragmèn-Lindelöf maximum prin-

ciple. Here we set D = Ω ∪ Ω̃∗ where Ω and Ω̃ are bounded domains satisfying

0 ∈ ∂Ω∩ ∂Ω̃ and such that (1.6) holds for both Ω and Ω̃, with possibly different ω,

ω̃. We denote α+ := α+(F,Ω) and α− := α−(F, Ω̃).
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Theorem 7. Assume (1.3) and let D, Ω, Ω̃ and α± be as above. Suppose that
D′ ⊆ D is a domain and u is such that

F (D2u,Du, x) ≤ 0 in D′, u ≤ 0 on ∂D′ \ {0},

and

(1.12)

{
limx→0 |x|α

+

u(x) = 0 if 0 ∈ ∂D′,
lim|x|→∞ |x|α

−
u(x) = 0 if D′ is unbounded.

Then u ≤ 0 in D′.

In addition to its sharpness with respect of the growth of u, (1.12) permits u
to have singularities a priori at both the origin and infinity. This is a stronger
statement in comparison to Phragmèn-Lindelöf principles in the literature, and
requires a different proof. In fact, we do not actually know of a previous result that
is comparable, even for linear equations.

As we will see below (Proposition 8.2), even stronger results can be obtained
if we have a domain with only one singularity, together with information on the
solution on the whole boundary of the domain. This is the situation considered
in previous works on maximum principles of Phragmèn-Lindelöf type. We remark
that in the recent years there have been a number of papers on such maximum
principles for fully nonlinear equations. In particular, it was shown by Miller [24]
(for classical solutions and symmetric cones) and by Capuzzo-Dolcetta and Vitolo
[10] (for viscosity solutions and more general domains) that there exists a constant
α = α(n, µ,Ω) > 0 such that a maximum principle holds at infinity for solutions of
P−λ,Λ(D2u)− (µ/|x|)|Du| ≤ 0 in a conical-type domain Ω, provided u is O(|x|α) at

infinity (see also [32, 1, 26]).

Finally, we give another corollary of Theorem 6 which is an extension of the
second theorem of Phragmèn and Lindelöf we quoted above. The only previous
result of this type of which we are aware is the work by Friedman [14], who studied
a class of linear equations in some cones.

Theorem 8. Assume (1.3). Suppose that D′ ⊆ D is a domain and u satisfies

F (D2u,Du, x) ≤ 0 ≤ F̃ (D2u,Du, x) in D′,

where F̃ is the dual operator of F , defined in (1.5), and (1.12) holds. Then

lim
x→0,x∈∂Ω

u(x) = a implies lim
x→0,x∈Ω

u(x) = a (if 0 ∈ ∂D′),

and

lim
|x|→∞,x∈∂Ω∗

u(x) = a implies lim
x→∞,x∈Ω∗

u(x) = a (if D′ is unbounded).

1.4. Organization of the article. In the next section, we state the notation and
some preliminary results we need. In Section 3 we define α+ and α−, and we
construct Ψ+ and Ψ− in Section 4. Theorem 2 and a special case of Theorem 6
are proved in Section 5. A key ingredient in the proof of Theorem 3, a continu-
ous dependence estimate, is proved in Section 6, and Theorems 3-5 are proved in
Section 7. The Phragmèn-Lindelöf principles are proved in Section 8.
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2. Preliminaries

2.1. Notation and hypotheses. Throughout this article, the symbols C and c
always denote positive constants which may vary in each occurrence but depend
only on the appropriate quantities in the context in which they appear. If K ⊆ Rn,
we write Ω ⊂⊂ K if Ω is a domain and its closure Ω̄ is a subset of K. We denote
the Euclidean length of a vector x ∈ Rn by |x|, and the unit sphere is written
Sn−1 := {x ∈ Rn : |x| = 1}. The open ball centered at x with radius r > 0
is denoted by Br(x), and we set Br := Br(0). The sets USC(Ω), LSC(Ω) and
C(Ω) are, respectively, the set of upper semicontinuous, lower semicontinuous, and
continuous functions in Ω. The set of n-by-n symmetric matrices is written Sn, and
I ∈ Sn is the identity matrix. We write M ≥ N if the matrix M−N is nonnegative
definite. For a, b ∈ Rn, the symmetric tensor product a⊗b if the matrix with entries
1
2 (aibj + biaj). If X is a square matrix, we denote the transpose of X by Xt.

Given 0 < λ ≤ Λ, the Pucci extremal operators P+
λ,Λ and P−λ,Λ are the nonlinear

functions Sn → R defined by

P+
λ,Λ(M) := sup

A∈Jλ,ΛK
[− trace(AM)] and P−λ,Λ(M) := inf

A∈Jλ,ΛK
[− trace(AM)] ,

where Jλ,ΛK is the subset of Sn consisting of matrices A for which λI ≤ A ≤ ΛI.
When performing calculations it is useful to keep in mind that P+

λ,Λ and P−λ,Λ may
also be expressed as

(2.1) P+
λ,Λ(M) = −λ

∑
µj>0

µj−Λ
∑
µj<0

µj and P−λ,Λ(M) = −Λ
∑
µj>0

µj−λ
∑
µj<0

µj ,

where µ1, . . . , µn are the eigenvalues of M . These operators satisfy the inequalities

(2.2) P−λ,Λ(M) + P−λ,Λ(N) ≤ P−λ,Λ(M +N) ≤ P−λ,Λ(M) + P+
λ,Λ(N)

≤ P+
λ,Λ(M +N) ≤ P+

λ,Λ(M) + P+
λ,Λ(N).

We also observe that P+
λ,Λ and P−λ,Λ are rotationally invariant, so that if U is an

orthogonal matrix, then P±λ,Λ(U tMU) = P±λ,Λ(M).

For π ⊆ Sn−1, we denote by Cπ the cone-like domain Cπ := {ty : y ∈ π, t > 0}.
Annular sections of Cπ are written

E(π, r,R) := Cπ ∩ (BR\Br) , 0 ≤ r < R.

Throughout, we reserve the symbol ω to denote a C2-smooth subdomain of Sn−1.
We denote spaces of continuous, homogeneous functions on Cω by

Hα(ω) := {u ∈ C(Cω) : u(x) = tαu(tx) for all x ∈ Cω, t > 0} ,

for each number α ∈ R \ {0}. Observe that each function u ∈ Hα(ω) is −α-
homogeneous and thus determined by its values on ω.

Let us state our primary assumptions on the nonlinear operator F = F (M,p, x),
which we take to be a continuous function

F : Sn × Rn × (Cω\{0})→ R
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which is uniformly elliptic, in the sense that for some constants 0 < λ ≤ Λ and
µ ≥ 0, and every M,N ∈ Sn, p, q ∈ Rn, and x ∈ Cω\{0} we have

(2.3) P−λ,Λ(M −N)− µ|x|−1|p− q| ≤ F (M,p, x)− F (N, q, x)

≤ P+
λ,Λ(M −N) + µ|x|−1|p− q|.

We assume F is positively 1-homogeneous in (M,p):

(2.4) F (tM, tp, x) = tF (M,p, x) for t ≥ 0, (M,p, x) ∈ Sn × Rn × (Cω\{0}).
In order to apply comparison results (found for example in [19]) we require F to
possess some regularity in x; specifically, for some constants K > 0 and θ ∈ ( 1

2 , 1],

(2.5) |F (M, 0, x)− F (M, 0, y)| ≤ K(1 + |M |) |x−y|θ forM ∈ Sn, x, y ∈ Cω\{0}.
Finally, in order to prove that F possesses homogeneous singular solutions in cones
we need to assume that F is invariant under dilations:

(2.6) F (r2M, rp, x) = r2F (M,p, rx) for r > 0, (M,p, x) ∈ Sn ×Rn × (Cω\{0}).
Note that if F = F (M,x) is independent of p and (2.4) holds, then (2.6) is

equivalent to F (M,x) = F (M,x/|x|). Obviously if F = F (M), then (2.3)-(2.6)
reduce to uniform ellipticity and positive 1-homogeneity. Examples of operators
which satisfy (2.3)-(2.6) are the extremal operators

(2.7) F±(D2u,Du, x) := P±λ,Λ(D2u)± µ 1

|x|
|Du|.

The scaling relation (2.6) ensures that u is a solution of F (D2u,Du, x) = f(x)
in Ω ⊆ Cω if and only if the function ur(x) := u(rx) is a solution of the equation

F (D2ur, Dur, x) = r2f(rx) in Ωr := {x : rx ∈ Ω}
As we will see below, our proofs are made much shorter by the fact that the

class of operators satisfying (2.3)-(2.6) is invariant with respect to inversions in
Rn \{0}. We mention in passing that it will be quite clear from our arguments
that our results from [4] (where we considered only the case F = F (M)) extend to
operators which satisfy (2.3)-(2.6).

2.2. The inverted operator. Given an operator F = F (M,p, x), we define the
inversion F ∗ of F by

(2.8) F ∗(M,p, y) :=

F
(
J(y)MJ(y)− 2|y|−2 ((y · p)J(y) + y ⊗ J(y)p+ y ⊗ p) , J(y)p, y

)
,

where the matrix J = J(y) := I − 2|y|−2y ⊗ y is symmetric and orthogonal. The
operator F ∗ has the property that if u is a (sub/super)solution of the equation

F (D2u(x), Du(x), x) = f(x) in Ω ⊆ Cω,
then the inverted function

(2.9) u∗(y) = u(x), x = |y|−2y,

is a (sub/super)solution of the equation

F ∗(D2u∗(y), Du∗(y), y) = |y|−4f∗(y) in Ω∗ :=
{
y ∈ Cω : |y|−2y ∈ Ω

}
.

This is easy to check for smooth u, and so it holds in the viscosity sense as well
since we can perform nearly the same calculation with smooth test functions.
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Obviously, C∗ω = Cω, and u ∈ Hα(ω) if and only if u∗ ∈ H−α(ω). The usefulness
of the inverted operator F ∗ comes from the fact that if F satisfies (2.3)-(2.6), then
F ∗ does as well (possibly with a larger value of µ in (2.3)). For example, we have

F ∗(M,p, y)− F ∗(N, q, y)

≤ P+
λ,Λ

(
J(M −N)J − 2|y|−2(2y ⊗ (p− q) + y · (p− q)I

+8|y|−4(y · (p− q))y ⊗ y
)

+ µ|y|−1|Jp− Jq|
≤ P+

λ,Λ(M −N) + 2|y|−2 P+
λ,Λ

(
4|y|−2y · (p− q)y ⊗ y − 2y ⊗ (p− q)

−y · (p− q)I) + µ|y|−1|p− q|
≤ P+

λ,Λ(M −N) + |y|−1 (2((n− 1)Λ− λ) + µ) |p− q|.

The other side of the ellipticity condition is verified in a similar fashion. It is routine
to check the scaling and homogeneity relations. The condition (2.5) is immediate.
Finally, a long but routine calculation confirms that we have the duality property

F ∗∗ = F.

In general, F ∗ has gradient dependence even if F does not.

Finally, we remark that (−∆)∗u = −∆u + 2(2 − n)|y|−2y · Du, and that the
function u∗ in (2.9) is the Kelvin transform of u only if the dimension n = 2.
The properties of the inverted operator F ∗ we need are not related to the Kelvin
transform, which is to be expected since this transform does not possess special
properties vis-à-vis a general nonlinear operator F .

2.3. Several known results. In this section we state some results for viscosity
solutions of uniformly elliptic equations which are well-known or essentially known.
We refer to [12, 8] for an introduction to the theory of viscosity solutions, including
basic definitions.

For 0 < λ ≤ Λ and µ, ν ≥ 0, we define the extremal operators L+ and L− by

(2.10) L±[u] := P+
λ,Λ(D2u)± µ|Du| ± ν|u|.

A crucial ingredient in several of our proofs is the following global Harnack
inequality for quotients of positive solutions. For strong solutions of general linear
equations in nondivergence form this result goes back to the work of Krylov [22]
(see also Bauman [5]). In Appendix A we give an outline of the proof for viscosity
solutions of fully nonlinear equations, since we could not find a reference in the
literature.

Proposition 2.1 (Global Harnack inequality). Assume Ω is a bounded domain
and Σ is an open, C2 subset of the boundary ∂Ω. Suppose that u, v ∈ C(Ω∪Σ) are
both positive solutions of the inequalities

(2.11) L+[u] ≥ 0 ≥ L−[u] in Ω.

such that u = 0 = v on Σ. Then for each Ω′ ⊂⊂ Ω ∪ Σ, we have the estimate

(2.12) sup
Ω′

u

v
≤ C inf

Ω′

u

v
.

The constant C > 1 depends only on n, λ, Λ, µ, ν, the curvature of Σ, a lower
bound for dist(Ω′, ∂Ω\Σ), and the diameter of Ω measured in the path distance.
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We will also use the following global Hölder gradient estimate (see Winter [33,
Theorem 3.1] and Swiech [31]). We state it for an operator G : Sn×Rn×R×Ω̄→ R
which is continuous and satisfies the structural conditions

(2.13) P−λ,Λ(M −N)− µ|p− q| − ν|z − w| ≤ G(M,p, z, x)−G(N, q, w, x)

≤ P+
λ,Λ(M −N) + µ|p− q|+ ν|z − w|,

and, for some γ > 0,

(2.14) |G(M, 0, 0, x)−G(M, 0, 0, y)| ≤ K(1 + |M |)|x− y|γ for every x, y ∈ Ω̄.

Proposition 2.2 (Global gradient Hölder estimate). Suppose G is continuous and
satisfies (2.13) and (2.14) above. Suppose that Ω is a bounded domain and Σ is an
open, C2 portion of the boundary ∂Ω. Suppose that u satisfies{

G(D2u,Du, u, x) = f in Ω,

u = ϕ on Σ,

for some ϕ ∈ C1,γ(Σ), f ∈ Lp(Ω), p > n. Then for every Ω′ ⊂⊂ Ω ∪ Σ, we have
the estimate

‖u‖C1,γ(Ω′) ≤ C
(
‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ϕ‖C1,γ(Σ)

)
where C, γ > 0 depends on n, p, λ, Λ, µ, ν, β0, the diameter of Ω, the curvature
of Σ, and in the case Σ 6= ∂Ω, a lower bound for dist(Ω′, ∂Ω\Σ).

Our construction of singular solutions relies on the following result of Rabi-
nowitz [28], which is a generalization of the Leray-Schauder alternative. A nice
proof can also be found for example in [11].

Proposition 2.3. Let X be a real Banach space, K ⊆ X a convex cone, and
A : [0,∞) × K → K a compact and continuous map such that A(0, u) = 0 for
every u ∈ K. Then there exists an unbounded connected set S ⊆ [0,∞) ×K with
(0, 0) ∈ S, such that A(α, u) = u for every (α, u) ∈ S.

2.4. Some maximum principles. We will frequently use the following lemma,
which is a technical tool enabling us to handle some issues involving the conical
boundaries. It asserts that a supersolution, which is positive on a compact subset
of an annular slice E ⊂ Cω, vanishes on the sides of the cone and is not too small
near the top and bottom of E, must be nonnegative on a smaller annular slice; see
Figure 1.

Lemma 2.4. Assume ω′ ⊂⊂ ω, a ≥ 0, ε ∈ R, and u ∈ LSC(Ē(ω, 1
2 , 4)) satisfy

L+[u] ≥ 0 in E(ω, 1
2 , 4)\E(ω′, 1, 2),

u ≥ a in E(ω′, 1, 2),

u ≥ 0 on ∂Cω ∩ (B4\B1/2),

u ≥ −ε on Cω ∩ ∂
(
B4\B1/2

)
(see Figure 1). Then there exists ε0 = ε0(n, ω, ω′, λ,Λ, µ, ν) > 0 such that

ε ≤ ε0a implies that u ≥ 0 in E(ω, 1, 2).
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1
2 1

2

4

E(ω′, 1, 2) E(ω, 1
2 , 4)

Cω

Figure 1. The function u in Lemma 2.4 is a supersolution in the
grey region Ω and positive in the white region illustrated above.

Proof. We denote Ω := E(ω, 1
2 , 4) \ E(ω′, 1, 2). Let v+ and v− be the solutions of

the Dirichlet problems {
L±(D2v±) = 0 in Ω,

v± = g± on ∂Ω,

where g+ = 0 on the lateral sides ∂Cω∩(B4\B1/2) of the outer part of the boundary
of Ω, g+ = 1 and g− = 0 on the inner boundary ∂E(ω′, 1, 2), g+ = 0 and g− = 1
on the top and bottom parts Cω ∩ ∂

(
B4 ∩B1/2

)
of the outer boundary, and finally,

g− is continuous and such that g2 = 0 on ∂Cω ∩ (B3 \ B3/4), and 0 ≤ g2 ≤ 1 on
∂Cω∩(B4 \B3) and ∂Cω∩(B3/4 \B1/2). Elliptic estimates and Hopf’s lemma imply
that, if ε0 = ε0(n, ω, ω′, λ,Λ, µ, ν) > 0 is sufficiently small, then

v+ > ε0v− in Ω ∩ (B2 \B1) = (Cω \ Cω′) ∩ (B2 \B1) .

Set v := av+ − εv−, and observe that u ≥ v on ∂Ω. Therefore, by the comparison
principle, u ≥ v in Ω. In particular, u > 0 in (Cω \ Cω′)∩(B2 \B1) if ε < ε0a. Since
we have u ≥ a > 0 in E(ω′, 1, 2) = Cω′ ∩ (B2 \B1), we obtain u ≥ 0 in E(ω, 1). �

We now give a comparison principle for spaces of homogeneous functions in Cω,
which is analogous to some results in the principal eigenvalue theory asserting the
simplicity of the principal eigenvalue. To prove a result like this, it is typical to use
a small domain maximum principle to deal with the behavior close to the boundary.
For this purpose, we use instead Lemma 2.4.

Proposition 2.5. Suppose that α > 0, and f ∈ Hα+2(ω) is nonnegative. Suppose
that u, v ∈ Hα(ω) satisfy the differential inequalities

(2.15) F (D2u,Du, x) ≤ f ≤ F (D2v,Dv, x) in Cω,

as well as

u ≤ 0 on ∂Cω \ {0} and v > 0 in Cω.
Then either u ≤ v in Cω or else there exists t > 1 such that u ≡ tv.
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Proof. We claim that u ≤ kv in Cω for sufficiently large k > 0. Choose ω′ ⊂⊂ ω,
and put a := 1

2 infE(ω′,1,2) v > 0. Let C0 be such that u ≥ −C0 in E(ω, 1
2 , 4), and

let k > 1 be so large that u ≤ ak in E(ω′, 1
2 , 4). Define z := kv − u, and observe

that, formally,

P+
λ,Λ(D2z) + 2µ|Dz| ≥ (k − 1)f ≥ 0 in E(ω, 1

2 , 4).

This differential inequality is easily verified in the viscosity sense using the tran-
sitivity of inequalities in the viscosity sense, which is essentially equivalent to the
comparison principle (see for example [3, Lemma 3.2]). Many times below we freely
use this fact without further mention.

Notice also that z ≥ 0 on ∂Cω ∩ (B4 \B1/2), z ≥ ak on E(ω′, 1, 2), and z ≥ −C0

in E(ω, 1
2 , 4). Thus we may apply Lemma 2.4 to deduce that z ≥ 0 in E(ω, 1, 2),

provided that we choose k > C0(ε0a)−1, where ε0 > 0 is as in Lemma 2.4. By
homogeneity, z ≥ 0 in Cω, and the claim is proved.

We have established that the quantity

t := inf {s > 1 : u ≤ sv in Cω}

is finite. If t = 1, then we have the first alternative in the conclusion of the
proposition, and hence nothing more to show. Suppose instead that t > 1, and set
w := tv − u ≥ 0. We must show that w ≡ 0. As before, w satisfies

P+
λ,Λ(D2w) + 2µ|Dw| ≥ 0 in E(ω, 1

2 , 4).

If w 6≡ 0, then the strong maximum principle implies w > 0 in Cω. In this case,
we repeat the argument from the first paragraph. Select ω′ ⊂⊂ ω and redefine
a := 1

2 infE(ω′,1,2) w. For sufficiently small 0 < δ < t− 1, the function w̃ := w − δv
satisfies w̃ ≥ 0 on Cω′ and w̃ ≥ a on E(ω′, 1, 2). Choosing δ > 0 smaller still, we
may assume that w̃ ≥ −ε0a in E(ω, 1

2 , 4), so Lemma 2.4 applies and we conclude
that w̃ ≥ 0 in E(ω, 1, 2). By homogeneity, this implies that w̃ ≥ 0 in Cω. That is,
u ≤ (t− δ)v, a contradiction to the definition of t. �

3. Definition of α+(F, ω) and α−(F, ω)

Define the quantities

(3.1) α+(F, ω) := sup {α > 0 : there exists u ∈ Hα(ω)

such that F (D2u,Du, x) ≥ 0 and u > 0 in Cω
}

and

(3.2) α−(F, ω) := inf {α < 0 : there exists u ∈ Hα(ω)

such that F (D2u,Du, x) ≥ 0 and u > 0 in Cω
}
.

Note these definitions bear some resemblance to the definition of the scaling expo-
nents given in (2.4) of [4], but there are important differences.

Immediate from the definition above is the monotonicity property

(3.3) α+(F, ω) ≤ α+(F, ω′) provided ∅ 6= ω′ ⊆ ω ⊂ Sn−1.

It follows from the properties of F ∗ and the fact that u ∈ Hα(ω) if and only if
u∗ ∈ H−α(ω), that we have

(3.4) α−(F, ω) = −α+(F ∗, ω).
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Now the reader can see why the inverted operator F ∗ is useful: it reduces the length
of our arguments by half. Thus while we state most of our results for α+(F, ω), we
easily obtain analogues for α−(F, ω) by applying them to the dual operator F ∗ and
using (3.4).

We must show that the admissible set in (3.1) is nonempty and that α±(F, ω)
are finite. In fact, we obtain positive upper and lower bounds for α+(F, ω) in terms
of the width of ω and its complement. These are summarized in the following two
lemmas.

Lemma 3.1. Suppose that ω ⊆ π :=
{
x ∈ Sn−1 : x · ξ < σ

}
, for some ξ ∈ Sn−1

and σ < 1. Then there is a constant c > 0 depending only on n, λ, Λ, µ and a
lower bound for 1− σ, such that

(3.5) α+(F, ω) ≥ c.
Lemma 3.2. Suppose that ω ⊇ π :=

{
x ∈ Sn−1 : x · ξ > σ

}
, for some ξ ∈ Sn−1

and σ < 1. Then there is a constant C > 0 depending only on n, λ, Λ, µ, and a
lower bound for 1− σ, such that

(3.6) α+(F, ω) ≤ C.
These two lemmas can be deduced from the results of Miller [24] mentioned

above. Since the proofs in [24] rely on some rather involved ODE techniques, we
give simpler proofs of Lemmas 3.1 and 3.2 by exhibiting an explicit subsolution
and supersolution of F = 0 in Cω, whose form is of interest in itself. Recalling that
F− ≤ F ≤ F+ with F± defined in (2.7), we check that the function

(3.7) v(x) := |x|−α
(
exp(κ)− exp

(
κ|x|−1xn

))
,

is a solution of F−(D2v,Dv, x) ≥ 0 in Cπ with π :=
{
x ∈ Sn−1 : xn < σ

}
provided

α > 0 is sufficiently small and κ is sufficiently large, which in light of (3.1) gives
Lemma 3.1. Likewise, the function

(3.8) w(x) :=
1

2

(
|x|−α−2x2

n − σ2|x|−α
)2

is a solution of F+(D2w,Dw, x) ≤ 0 in Cπ with π :=
{
x ∈ Sn−1 : xn > σ

}
provided

α > 0 is sufficiently large, which implies Lemma 3.2 thanks to the definition of
α+(F, ω) and Proposition 2.5. The computations are performed in Appendix B,
and from these we obtain explicit constants in (3.5) and (3.6).

4. Singular solutions in a conical domain

We proceed with the construction of the singular solutions of (1.2) in Cω. We
assume throughout this section that F satisfies the conditions (2.3)-(2.6). We often
do not display the dependence of α+ on F and ω.

Lemma 4.1. Suppose that 0 < α < α+. Then there exists u ∈ Hα(ω) satisfying

(4.1) F (D2u,Du, x) ≥ c|x|−2u in Cω and u > 0 in Cω,
where c := 1

2λα(α+ − α).

Proof. According to the definition of α+, we can find 1
2 (α+ + α) ≤ β ≤ α+ and a

function v ∈ Hβ(ω) such that v > 0 in Cω and F (D2v,Dv, x) ≥ 0 in Cω. We now
bend v by defining

u(x) := (v(x))
1/τ

, for τ :=
β

α
> 1 +

α+ − α
2α

,
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Formally we have

Dv = τuτ−1Du, D2v = τuτ−1
(
D2u+ (τ − 1)u−1Du⊗Du

)
,

and thus in Cω we have, by (2.3),

F (D2u,Du, x) + (τ − 1)u−1P+
λ,Λ(Du⊗Du) ≥ (τuτ−1)−1F (D2v,Dv, x) ≥ 0

and thus (2.1) implies

F (D2u,Du, x) ≥ λ(τ − 1)u−1|Du|2.

From the homogeneity of u it follows that |Du(x)| ≥ α|x|−1u(x). Using also that
τ − 1 ≥ (2α)−1(α+ − α), we get (4.1). Our calculation above is merely formal, but
it can be justified in the viscosity sense by doing a similar calculation with smooth
test functions. This is done for instance in the proof of [4, Lemma 3.3]. We thereby
obtain the lemma. �

A consequence of Lemma 4.1 and Proposition 2.5 is the following maximum
principle for subsolutions in Hα(ω).

Corollary 4.2. Suppose that 0 < α < α+ and u ∈ Hα(ω) satisfies the inequality

F (D2u,Du, x) ≤ 0 in Cω,

and u ≤ 0 on ∂Cω \ {0}. Then u ≤ 0 in Cω.

Proof. According to Lemma 4.1 we can find a function v ∈ Hα(ω) such that v > 0
and

F (D2v,Dv, x) ≥ c|x|−2v in Cω,
for some c > 0. We may apply Proposition 2.5 to u and any positive multiple of v to
deduce that either u ≡ tv for some t > 0 or else u ≤ tv for every t > 0. Obviously
the first alternative implies v ≡ 0, a contradiction. Thus the second alternative
holds, and we can send t→ 0, to infer that u ≤ 0. �

Lemma 4.3. Assume that α, β > 0 and v ∈ Hα(ω) is nonnegative. Then there
exists a unique function u ∈ Hα(ω) which is a solution of the problem

(4.2)


F
(
D2u− α(α+ 2)|x|−4(u− v)x⊗ x, Du+ α|x|−2(u− v)x, x

)
= (1 + µ)|x|−2(αv − βu) + α|x|−α−2 in Cω,

u = 0 on ∂Cω\{0}.

Moreover, u > 0 in Cω, and we have the estimate

(4.3) ‖u‖L∞(ω) ≤
Cα

β

(
1 + (1 + α)‖v‖L∞(ω)

)
for a constant C > 0 which depends only on n, Λ and µ.

Proof. Fix α, β > 0 and w ∈ Hα(ω) with w ≥ 0. The zero function is a smooth,
strict subsolution of (4.2) since by (2.3)

F (α(α+ 2)|x|−4vx⊗ x,−α|x|−2vx, x) ≤ −λα(α+ 2)|x|−2v + µα|x|−2v

< (1 + µ)α|x|−2v + α|x|−α−2.
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We claim that the function w := k|x|−α ∈ Hα(ω) is a smooth supersolution of (4.2)
provided that we choose k > 0 large enough. Observe that

Dw = −α|x|−2wx,

D2w = α(α+ 2)|x|−4wx⊗ x− α|x|−2wI,

and insert into (4.2) to find that

F
(
D2w − α(α+ 2)|x|−4(w − v)x⊗ x, Dw + α|x|−2(w − v)x, x

)
= F

(
−α|x|−2wI + α(α+ 2)|x|−4vx⊗ x, −α|x|−2vx, x

)
≥ αnλ|x|−2w − α(α+ 2)|x|−2Λv − αµ|x|−2v.

Thus w is a supersolution of (4.2) if

αnλ|x|−2w − α(α+ 2)|x|−2Λv − αµ|x|−2v ≥ (1 + µ)|x|−2(αv − βw) + α|x|−α−2,

which is equivalent to

(αnλ+ (1 + µ)β)w ≥ α
(
|x|−α + (Λ(α+ 2) + 2µ+ 1) v

)
.

Thus w is a (strict) supersolution of (4.2) provided that we set

(4.4) k :=
α
(
1 + (Λ(α+ 2) + 2µ+ 1)‖v‖L∞(ω)

)
αnλ+ β

.

We use the standard Perron method to build a solution of (4.2). Let us define

u(x) := sup
{
ũ(x) : ũ ∈ USC(Cω\{0}) is a subsolution of (4.2) such that

ũ ≤ w in Cω and ũ ≤ 0 on ∂Cω\{0}} .
Clearly u is well-defined and u ≥ 0 in Cω since the zero function is a subsolution
of (4.2). By the invariance of the equation (4.2) (recall (2.6)) and the fact that
w ∈ Hα(ω), we see that any ũ in the admissible class is such that the function
x 7→ rαũ(rx) is also in the admissible class, for any r > 0. Thus by construction we
have that u is (−α)-homogeneous. Standard arguments from the theory of viscosity
solutions imply that u ∈ C(Cω), hence u ∈ Hα(ω), and that u is a solution of (4.2).
The estimate (4.3) follows from u ≤ w and (4.4).

It remains to demonstrate the uniqueness of u. This follows from the fact that
(4.2) is “strictly proper” in the sense that if w is any supersolution of (4.2), then
w(x) + ε|x|−α is a strict supersolution for any ε > 0, as it is easy to check. Thus
if u1, u2 ∈ Hα(ω) are two solutions, say with ε := maxω(u1 − u2) > 0, then the
function u2 + ε|x|−α is a strict supersolution which touches the solution u1 from
above at some point, which is impossible. �

Proof of Theorem 1. It suffices to prove the statements only for α+ and Ψ+, since
we obtain the corresponding assertions for α− and Ψ− by considering the dual
operator F ∗ in place of F .

Let K denote the convex cone of nonnegative continuous functions on the closure
ω̄ of ω, which is a subset of the Banach space C(ω̄). For each α > 0 and w ∈ K, let
A(α,w) ∈ K denote the restriction to ω̄ of the unique solution of the problem (4.2)
with v = |x|−αw( x

|x| ) and β = α+. We also define A(α,w) = 0 for every w ∈ K,

and every α ≤ 0. It follows from the estimate (4.3), the global Hölder estimates
for solutions of uniformly elliptic equations, and the stability of viscosity solutions
under local uniform convergence, that A : [0,∞)×K → K is a compact, continuous
mapping.
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According to Theorem 2.3 there exists an unbounded, connected subset S ⊆
[0,∞)×K such that (0, 0) ∈ S, and for every (α, ũ) ∈ S we have A(α, ũ) = ũ. That
is, for each (α, ũ) ∈ S, the function u(x) := |x|−αũ( x

|x| ) is a solution of the problem{
F (D2u,Du, x) = (1 + µ)(α− α+)|x|−2u+ α|x|−α−2 in Cω,
u = 0 on ∂Cω \ {0}.

We claim that S ⊆ [0, α+] ×K. Suppose on the contrary that (α, ũ) ∈ S with
α > α+. We see immediately that u ∈ Hα(ω) satisfies the inequality

F (D2u,Du, x) ≥ 0 in Cω.

By the strong maximum principle, we have u > 0. The definition of α+ implies
that α ≤ α+, a contradiction. Thus we have the claim.

By the unboundedness of S, for each j ≥ 1 there exists 0 < αj ≤ α+ and
uj ∈ Hαj (ω) such that ‖uj‖L∞(ω) ≥ j and A(αj , ũj) = ũj , that is,{

F (D2uj , Duj , x) = (1 + µ)(αj − α+)|x|−2uj + αj |x|−αj−2 in Cω,
uj = 0 on ∂Cω\{0}.

By taking a subsequence if necessary, we may assume that αj → ᾱ ∈ [0, α+]. We
claim that ᾱ > 0. Indeed, using ‖uj‖L∞(ω) → ∞ and the estimate (4.3) with

u = v = uj and β = α+, we deduce that ᾱ ≥ cmin{α+,
√
α+}, for some c > 0

depending only on n,Λ, and µ.
By defining vj(x) := ‖uj‖−1

L∞(ω)uj(x) and taking another subsequence we may

suppose that vj → v locally uniformly in Cω, and uniformly on ω̄. Observe that
v is nonnegative, ‖v‖L∞(ω) = 1, and v ∈ Hᾱ(ω). Dividing the equation for uj by
‖uj‖L∞(ω) and passing to limits in the viscosity sense, we deduce that v satisfies

(4.5)

{
F (D2v,Dv, x) = (1 + µ)(ᾱ− α+)|x|−2v in Cω,
v = 0 on ∂Cω\{0}.

By the strong maximum principle, v > 0 in Cω. It remains to show that ᾱ = α+.
This is easy, since if on the contrary ᾱ < α+, then we obtain a contradiction to
Corollary 4.2. Setting Ψ+ := v, the proof is complete. �

5. Proof of Theorem 2

The main results proved in this section are Theorem 2 and Theorem 6 in the
particular case Ω = Cω. From now on we assume that Ψ+ is normalized so that

(5.1) max
Cω∩∂B1

Ψ+ = 1, min
Cω′∩∂B1

Ψ+ ≥ 1/2,

where ω′ is some fixed smooth proper subdomain of ω.

Proof of Theorem 6 in the case Ω = Cω. We may assume

A := lim sup
∂Ω3x→0

u+(x) <∞,

since otherwise we have nothing to prove. We can replace u by u+ since the maxi-
mum of subsolutions is a subsolution, so we can also assume u ≥ 0 in Ω.
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We set M(r) := supCω∩∂Br u and claim that r 7→ M(r) is nondecreasing in the
interval (0, 1/2). Fix r ∈ (0, 1/2) and δ > 0, and for each 0 < s < 1/4, consider the
function

ws(x) := sα
+ (
δΨ+(sx)− u(sx) +As

)
= δΨ+(x)− sα

+

u(sx) + sα
+

As,

where As := sup(∂Cω)∩(B4s\Bs/2) u is such that lims→0As = A. According to (2.3)

and (2.4), ws satisfies

P+
λ,Λ(D2ws) + 2µ|Dws| ≥ 0 in E(ω, 1

2 , 4).

Obviously ws ≥ 0 on ∂Cω ∩ (B4\B1/2). The hypothesis (1.11) clearly implies that
for each δ1 > 0 we can find s1 > 0 such that for all s ∈ (0, s1)

ws ≥ δΨ+(x)− δ1 ≥ δ2−α
+

− δ1 on ∂E(ω′, 1, 2),

and of course ws ≥ −δ1 on Cω ∩ ∂
(
B4\B1/2

)
, since Ψ+ is positive.

We can now apply Lemma 2.4, fixing δ1 = ε02−α
+−1, where ε0 is the number

from that lemma, to conclude that ws ≥ 0 in E(ω, 1, 2) for sufficiently small s > 0.
It follows that

u ≤ δΨ+ + sα
+

As +M(r) on ∂E(ω, s, r).

By the maximum principle, we deduce that

u ≤ δΨ+ + sα
+

As +M(r) in E(ω, s, r).

This holds for all small enough s > 0, and so we may pass to the limit s → 0 and
then send δ → 0 to obtain u ≤ M(r) in Cω ∩ Br. Thus M(r) = supCω∩Br u, so
r 7→M(r) is nondecreasing.

It follows that δ := inf0<r<1/2M(r) = limr↘0M(r). To complete the proof, we
must show that δ ≤ A. Arguing by contradiction, we suppose that δ > A. Denote
ur(x) := u(rx), and let ũr be the solution of the Dirichlet problem{

F (D2ũr, Dũr, x) = 0 in E(ω, 1/2, 4),

ũr = ur on ∂E(ω, 1/2, 4).

The maximum principle yields

(5.2) sup
E(ω,1/2,4)

ur ≥ sup
∂E(ω,1/2,4)

ur = sup
E(ω,1/2,4)

ũr ≥ ũr ≥ ur in E(ω, 1/2, 4),

and hence supE(ω,1/2,4) ũr = supE(ω,1/2,4) ur. It follows that for sufficiently small

r > 0, we have 0 ≤ ũr ≤ δ+1 in E(ω, 1/2, 4). By Hölder regularity, we may assume
that ũr → ũ uniformly on E(ω, 1/2, 4) as r → 0, and ũ solves the same PDE as ũr.
It is clear that maxE(ω,1/2,4) ũ = δ and there is a point x0 ∈ Cω ∩ ∂B1 such that
ũ(x0) = δ (indeed, since we assumed δ > A, we have ũ = ũr < δ on ∂Cω for small
r > 0). The strong maximum principle yields that ũ ≡ δ. This is impossible since
ũ ≤ A < δ on ∂Cω ∩ (B4 \B1/2).

To prove Theorem 6 in case we have a condition at infinity, using (3.4), we
observe that u∗(y) = u( y

|y|2 ) satisfies the condition at zero with F ∗ in place of F ,

since

lim sup
|x|→∞

|x|α
−(F )u(x) = lim sup

y→0
|y|α

∗(F∗)u∗(y).

Thus we conclude by what we already proved. �
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Next, for each π ⊆ ω and a given function u we set

q±(π, r) := inf
E(π,r,2r)

u

Ψ±
, Q±(π, r) := sup

E(π,r,2r)

u

Ψ±
.

We write Q±(r) = Q±(ω, r), and similarly for q±.
In the following two simple lemmas we describe some monotonicity properties of

the quantities q± and Q±, which play a crucial role in the proof of Theorem 2.

Lemma 5.1. Suppose that u ∈ USC(C̄ω\{0}) satisfies{
F (D2u,Du, x) ≤ 0 in Cω,
u ≤ 0 on ∂Cω\{0}.

(i) If lim sup|x|→∞ u(x) ≤ 0, then r 7→ Q+(r) is nonincreasing on (0,∞);

(ii) If lim supx→0 u(x) ≤ 0, then r 7→ Q−(r) is nondecreasing on (0,∞).

Proof. (i) Observe that for each ε > 0 and r > 0, there exists R > r such that

u ≤ ε+Q+(r)Ψ+ on ∂E(ω, r,R).

By the maximum principle, u ≤ ε + Q+(r)Ψ+ in E(ω, r,R). Sending R → ∞ and
then ε→ 0 we obtain u ≤ Q+(r)Ψ+ in Cω \Br, that is, Q+(r) = supCω\Br (u/Ψ

+).

Thus Q+(s) ≤ Q+(r) for all 0 < r < s.
(ii) Apply (i) to u∗ and F ∗ and rewrite the result in terms of u and F . �

Lemma 5.2. Suppose that u ∈ LSC(C̄ω\{0}) satisfies{
F (D2u,Du, x) ≥ 0 in Cω,
u ≥ 0 on ∂Cω\{0}.

(i) If lim inf |x|→∞ u(x) ≥ 0, then r 7→ q+(r) is nondecreasing on (0,∞);

(ii) If lim infx→0 u(x) ≥ 0, then r 7→ q−(r) is nonincreasing on (0,∞).

Proof. (i) For each ε > 0 and r > 0, choose R > 0 so large that

u ≥ q+(r)Ψ+ − ε on ∂E(ω, r,R).

Using the maximum principle and sending R → ∞ and then ε → 0, we obtain
u ≥ q+(r)Ψ+ in Cω \Br. Thus r 7→ q+(r) is nondecreasing.

(ii) Apply (i) to u∗ and F ∗ and rewrite the result in terms of u and F . �

We now proceed to the proof of Theorem 2, which relies on the global Harnack
inequality for quotients (Proposition 2.1) and the previous lemmas.

Proof of Theorem 2. We prove only (i), since (ii) is obtained by a similar argument,
or alternatively by applying (i) to F ∗ and u∗.

Recall the function ûr(x) = u(rx) satisfies the same equation as u, by the hy-
pothesis (2.6). The global Harnack inequality for quotients (Proposition 2.1) then
implies

(5.3) Q+(r) ≤ Cq+(r),

for some C > 0 which does not depend on r. The monotonicity of Q+ and q+ given
by Theorem 6 and Lemmas 5.1 and 5.2 then yield

(5.4) 0 < c ≤ q+(r) ≤ Q+(r) ≤ C.
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as well as q+(0) ≤ q+(r) ≤ Q+(r) ≤ Q+(0), where q+(0) := limr↘0 q
+(r) and

Q+(0) := limr↘0Q
+(r). Therefore to obtain u ≡ tΨ+, it suffices to show that

t := Q+(0) = q+(0). For this we use a rescaling (blow-up) argument. Define the

function ur(x) := rα
+

u(rx). By the monotonicity of q+(r) and Q+(r), for every
k > 0 we have

q+(kr)Ψ+ ≤ ur ≤ Q+(kr)Ψ+ in Cω \Bk,
and

inf
E(ω,k,2k)

ur
Ψ+

= q+(kr), sup
E(ω,k,2k)

ur
Ψ+

= Q+(kr).

Using Hölder estimates and passing to the limit along a subsequence r → 0, we
obtain a function u0 which satisfies F (D2u0, Du0, x) = 0 in Cω, u0 = 0 on ∂Cω\{0},

q+(0)Ψ+ ≤ u0 ≤ Q+(0)Ψ+ in Cω,

and for every k > 0,

(5.5) inf
E(ω,k,2k)

u0

Ψ+
= q+(0), sup

E(ω,k,2k)

u0

Ψ+
= Q+(0).

We will show that u0 ≡ Q+(0)Ψ+, from which Q+(0) = q+(0) follows. Sup-
pose on the contrary that u0 6≡ Q+(0)Ψ+, so u0 < Q+(0)Ψ+ in Cω. Set a :=
1
2 infE(ω′,1,2)(Q

+(0)Ψ− u0) > 0. Then for all δ > 0, the function

ṽ(x) := (Q+(0)− δ)Ψ+(x)− u0(x) ≥ −δΨ+(x)

satisfies

P+
λ,Λ(D2ṽ) + 2µ|Dṽ| ≥ 0 in E(ω, 1

2 , 4)

as well as ṽ = 0 on ∂Cω ∩ (B\B1/2), ṽ ≥ 1
2a on E(ω′, 1, 2), and ṽ ≥ −δ2−α+

on

E(ω, 1
2 , 4).

Thus if δ > 0 is sufficiently small with respect to a, Lemma 2.4 applies and
we can deduce that ṽ ≥ 0 in E(ω, 1, 2). This contradicts (5.5), and confirms that
Q+(0) = q+(0). If we let t denote this value, then by the monotonicity properties
of Q+ and q+, we deduce that Q+ ≡ q+ ≡ t on (0,∞). That is, u ≡ tΨ+. �

6. Continuous dependence estimates

In this section, we state and prove a continuous dependence estimate which has
an important role in the classification of isolated boundary singularities. To simplify
the presentation, we do not attempt to achieve maximal generality in the structural
hypotheses below, and we state the result in a form well-suited to its primary end,
which is in the proof of Theorem 3 in Section 7. Nevertheless, in view of further
applications and since no technical complications arise, we consider operators which
may include zero-order or inhomogeneous terms.

We consider an operator F = G0 which satisfies the assumptions (2.3)–(2.6) as
well as a family of continuous functions

Gr : Sn × Rn × R× (Cω \B1)→ R

which converge to G0 as r → 0 in the following sense: there exists ε ∈ (0, 1) such
that, for all M ∈ Sn, p ∈ Rn, z ∈ R, and for all x, y ∈ Cω such that 1 ≤ |x|, |y| ≤ r−ε
and |x− y| ≤ rε, we have

(6.1) |Gr(M,p, z, x)−G0(M,p, y)| ≤ Crε(1 + |z|+ |p|+ |M |).
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1
2

4

r−κ

E(ω, 2, 4)

E(ω, 1, r−κ)

Figure 2. The domain on which we prove the continuous depen-
dence estimate is illustrated in grey. In the dark grey region, we
can control the ratio between the two solutions.

To prove Theorem 3, we need a continuous dependence estimate to control the
separation between solutions of Gr = 0 and G0 = 0, for small r. It is well-known
how to obtain such estimates using classical viscosity solution methods [12, 17].
Indeed, such estimates have been obtained for degenerate fully nonlinear elliptic
equations under various hypotheses, see for instance [18].

However, to prove Theorem 3, we need more than usual. In particular, we need
to control the ratios of the solutions up to the boundary on which they vanish as
well as allow for perturbations of the boundary values far away from the region
which concerns us (see Figure 2). It is for this reason that the estimate recorded in
Proposition 6.1 has a rather unusual form.

For convenience and with the application to the proof of Theorem 3 in mind,
we state the continuous dependence estimate for perturbations of Ψ+, where Ψ+

is the function given in Theorems 1 and 2 for the operator F = G0. Thanks to
Proposition 2.2 and the fact that Ψ+ is −α+-homogeneous for some α+ > 0, we
have that Ψ+ ∈ C1,γ(Cω \ {0}), for some γ > 0 depending only on n, λ, Λ and µ,
as well as the estimate

(6.2) ‖Ψ+‖C1,γ(E(ω,1,∞)) ≤ C.

The continuous dependence estimate is the following.

Proposition 6.1. Set κ = ε/16 and β = ε/4, where ε > 0 is as in (6.1). For each
K0 > 0, there exists r0 > 0 depending on n, λ,Λ, µ, γ, K0, the curvature of ω and
ε, such that if ψ ∈ C1(E(ω, 1, r−κ)) is a solution of

(6.3)

{
Gr(D

2ψ,Dψ,ψ, x) = 0 in E(ω, 1, r−κ),

ψ = Ψ+ + h on ∂E(ω, 1, r−κ),

for some function h ∈ C(∂E(ω, 1, r−κ)) satisfying |h| ≤ 1, and

(6.4) ‖ψ‖C0,1(E(ω,1,r−κ)) ≤ K0,
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then, for all 0 < r ≤ r0,

(6.5) |ψ −Ψ+| ≤ Crβ + max
∂E(ω,1,r−κ)

|h| in E(ω, 1, r−κ).

If, in addition, h = 0 on ∂Cω ∩ ∂E(ω, 3/2, 6) and

(6.6) ‖ψ‖C1,γ(E(ω,3/2,6)) ≤ K0,

then, for all 0 < r ≤ r0,

(6.7)

∣∣∣∣ ψΨ+
− 1

∣∣∣∣ ≤ C (rβ + max
∂E(ω,1,r−κ)

|h|
) γ

1+γ

in E(ω, 2, 4).

Proof. For convenience we write R = r−κ and Vr := E(ω, 1, R) = E(ω, 1, r−κ). Let
ϕ(x) ∈ C2(Vr) be the solution of the following boundary value problem

(6.8)

P
−
λ,Λ(D2ϕ)− µ

|x|
|Dϕ| = 1 in Vr,

ϕ = 0 on ∂Vr.

The ABP inequality (see Proposition 6.3 below, and the remarks that follow it)
yields

(6.9) 0 ≤ ϕ ≤ R4 in Vr,

for sufficiently small r > 0. Define the auxiliary function ξ : V r × V r → R by

ξ(x, y) := Ψ+(x)− ψ(y)− kϕ(x)− A

2δ
|x− y|2 − max

∂E(ω,1,r−κ)
|h| − δ,

for some positive constants δ, k, A > 0, to be selected below. Observe that

(6.10) ξ(x, x) ≤ −δ for each x ∈ ∂Vr.

We will choose the constants δ, k, A appropriately so that ξ ≤ 0 on V r × V r.
Suppose, on the contrary, that there exists (x0, y0) ∈ V r × V r such that

ξ(x0, y0) = sup
V r×V r

ξ(x, y) > 0.

It is not difficult to show in this case that

(6.11) |x0 − y0| ≤ C̄A−1δ < δ,

by taking A > C̄, where C̄ depends only on the Lipschitz constants of Ψ+ and ψ
(which we are fixed in (6.2) and (6.4)). Specifically, if one of the points x0 and y0

belongs to ∂Vr, then (6.11) follows from h = ψ −Ψ+ on ∂Vr and

A

2δ
|x0 − y0|2 < Ψ+(x0)− ψ(y0)− max

∂E(ω,1,r−κ)
|h|.

If x0, y0 ∈ Vr, then (6.11) follows from ∂ξ
∂y (x0, y0) = 0.

If one of x0, y0 belongs to ∂Vr, then (6.10) and the mean value theorem imply

δ ≤ C|x0 − y0|,

where C depends only on (6.2) and (6.4). Combining this inequality with (6.11),
we see that we can fix A > 0 sufficiently large to get a contradiction. Hence we
may assume that x0, y0 ∈ Vr.
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By the maximum principle for semicontinuous functions (see [12, Theorem 3.2]
and [17, Proposition II.3]), there exist matrices X,Y ∈ Sn such that

(6.12) −3A

δ

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3A

δ

(
I −I
−I I

)
and

(6.13)

(
x0 − y0

δ
, X

)
∈ J 2,+(

Ψ+− kϕ
)

(x0),

(
x0 − y0

δ
, Y

)
∈ J 2,−

ψ(y0).

See [12] for the definition and basic properties of the semijets J 2,±
and their relation

to viscosity solutions. The second matrix inequality in (6.12) and simple linear
algebra facts (see [17, Proposition II.3 and Lemma III.1]) imply that X ≤ Y , as
well as

(6.14) |X|, |Y | ≤ C
(
δ−1/2 trace(Y −X)1/2 + trace(Y −X)

)
, C = C(n,A).

Since ϕ ∈ C2, the first inclusion on (6.13) may be rewritten as(
x0 − y0

δ
+ kDϕ(x0), X + kD2ϕ(x0)

)
∈ J 2,+

(Ψ+)(x0).

Since Ψ+ and ψ are, respectively, solutions of F = 0 and (6.3), we obtain

(6.15) F

(
X + kD2ϕ(x0),

x0 − y0

δ
+ kDϕ(x0), x0

)
≤ 0,

and

(6.16) Gr

(
Y,

1

δ
(x0 − y0), ψ(y0), y0

)
≥ 0.

The uniform ellipticity of F and (6.8) yield

F

(
Y,

1

δ
(x0 − y0), x0

)
≤ F (X + kD2ϕ(x0),

x0 − y0

δ
+ kDϕ(x0), x0)

+ P+
λ,Λ(Y −X)− k

(
P−λ,Λ(D2ϕ(x0))− µ

|x|
|Dϕ(x0)|

)
≤ −λ trace(Y −X)− k.

Set t := trace(Y −X) and

δ := rε.

Subtracting the last inequality from (6.16) and using (6.1), (6.11) and (6.14), we
arrive at

k + λt ≤ Cδ
(

1 +K0 +
|x0 − y0|

δ
+ |Y |

)
≤ C

(
δ + δ1/2t1/2 + δt

)
.

Hence

(6.17) k + λt ≤ C1r
ε/2(1 + t).

If r > 0 is sufficiently small, then C1r
ε/2 < λ. Hence

k ≤ 2C1r
ε/2.

Selecting k := 4C1r
ε/2 yields a contradiction.
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We have shown that, for sufficiently small r > 0, we have ξ ≤ 0 on V r × V r.
Therefore, for every x ∈ E(ω, 1, R),

Ψ+(x)− ψ(x)− max
∂E(ω,1,R)

|h| ≤ kϕ(x) + δ ≤ Crε/2−4κ + Crε,

where we have used (6.9) and the choice of k we just made. We now set κ := ε/16
to obtain

Ψ+ − ψ − max
∂E(ω,1,R)

|h| ≤ Crβ

with β := ε/4. Reversing the roles of ψ and Ψ+, and repeating the same argument,
we obtain (6.5).

We conclude by showing that (6.7) follows from (6.5), (6.6) and an interpolation
inequality, which is recorded in Lemma 6.2 below. Set v := ψ − Ψ+ and Γ :=
(B4 \B2) ∩ ∂Cω. By the Hopf lemma,

Ψ+(x) ≥ 1

C
dist(x,Γ) in E(ω, 2, 4).

Fix a smooth domain Ω such that E(ω, 2, 4) ⊆ Ω ⊆ E(ω, 3/2, 6). Since v = 0 on Γ,
Lemma 6.2 implies that, for any x ∈ E(ω, 2, 4),∣∣∣∣ ψ(x)

Ψ+(x)
− 1

∣∣∣∣ =
|v(x)|
Ψ+(x)

≤ C |v(x)|
dist(x,Γ)

≤ C‖v‖C0,1(E(ω,2,4)) ≤ C‖v‖
1

1+γ

C1,γ(Ω)‖v‖
γ

1+γ

L∞(Ω).

The bounds (6.2), (6.6) and (6.5) yield (6.7) with β̄ := γ
1+γ . �

The following interpolation inequality is certainly known. We cannot find a
reference, so we record a simple proof.

Lemma 6.2. Let Ω be a bounded C2-domain. Then for each u ∈ C1,γ(Ω),

‖u‖C0,1(Ω) ≤ C‖u‖
1

1+γ

C1,γ(Ω)‖u‖
γ

1+γ

L∞(Ω),

for a constant C depending only on n, γ, and the curvature of ∂Ω.

Proof. Let Ω satisfy a uniform interior ball condition with radius h0 > 0. For each
point x ∈ Ω we can fix a direction νx ∈ Sn−1 such that

|∂νxu(x)| ≥ (1/
√
n)|Du(x)|.

We may also assume that x+ hνx ∈ Ω for all h ∈ (0, h0), since if necessary we can
replace νx by −νx.

Set K1 := ‖u‖C1,γ(Ω) and K2 := ‖u‖L∞(Ω). By Taylor’s formula we have

(6.18)
1√
n
|Du(x)|h−K1h

1+γ ≤ |u(x+ hνx)− u(x)| ≤ 2K2

for any h ∈ (0, h0). We apply (6.18) with

h :=
h0

2
|Du(x)|

1
γK
− 1
γ

1 ≤ h0

2

and, making the additional requirement that h0 ≤ 21−1/γn−2/γ , obtain after a
rearrangement of the resulting inequality that

|Du(x)| ≤ CK
1

1+γ

1 K
γ

1+γ

2 . �
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We next recall the Alexandrov-Bakelman-Pucci inequality with explicit depen-
dence on the coefficients in the equation and the diameter of the domain, which
was also used in the proof of Proposition 6.1 above.

Proposition 6.3. Let Ω be a bounded domain such that Ω ⊂ BR for R > 0, and
set ΩR := {x : Rx ∈ Ω} ⊂ B1. There exist constants C1, C2 depending only on
n, λ,Λ such that if u ∈ C(Ω) is a solution of

P−λ,Λ(D2u)− µ(x)|Du| ≤ f(x) in Ω

for some f, µ ∈ Ln(Ω) with f, µ ≥ 0, then

(6.19) sup
Ω
u ≤ sup

∂Ω
u+ CAR

2‖f(Rx)‖Ln(ΩR),

where

CA := C1 exp
(
C2R‖µ(Rx)‖Ln(ΩR)

)
.

If in addition ν ∈ Ln(Ω), ν ≥ 0 in Ω is such that R2‖ν(Rx)‖Ln(ΩR) < C−1
A and

P−λ,Λ(D2u)− µ(x)|Du| − ν(x)|u| ≤ f(x) in Ω,

then

(6.20) sup
Ω
u ≤

(
1− CAR2‖ν(Rx)‖Ln(ΩR)

)−1
(

sup
∂Ω

u+ CAR
2‖f(Rx)‖Ln(ΩR)

)
.

Proof. The first statement is a scaled version (with respect to R) of the classical
estimate, for strong solutions. For viscosity solutions it is Proposition 2.8 in [21].
The second statement follows from Proposition 3.4 in [30] and its proof. �

We use the precise form of the constants which appear in this inequality. In
particular, if µ(x) = |x|−1, R = r−κ and Ω ⊂ BR \B1 we see that

CA = C1 exp
(
C2

n
√
− log(r)

)
,

hence for any δ > 0 we have CA ≤ r−δ if r > 0 is sufficiently small. In particular,
we see that for the case f = 1, (6.19) implies (6.9) for small r > 0.

Furthermore, if for some ε > 0 we have ν(x) ≤ rε|x|−2+ε for 1 ≤ |x| ≤ R = r−κ,
then we compute that

CAR
2‖ν(Rx)‖Ln(Ωd) ≤ CArε−κ ≤ rε−κ−δ → 0 as r → 0,

if we set κ = δ = ε/4, so in this case (6.20) is valid for sufficiently small r > 0, and
the term in the first parentheses in (6.20) is close to 1 for large R = r−κ.

We are interested in applying the above continuous dependence estimate to the
family of operators

Gr(M,p, z, x) = r2G(r−2M, r−1p, z, rx),

where G is some fixed operator. A typical example of an operator G to which
Proposition 6.1 applies is the general extremal operator

G±(D2u,Du, u, x) = P±(D2u)± µ

|x|
|Du|± ν

|x|1−ε1
|Du|± α

|x|2−ε2
|u|± β

|x|2−ε2
f(x),

for some µ, ν, α, β ∈ R+, ε1, ε2 > 0, f ∈ C(B1). The extremal operators F±,L±
which we defined in Section 2 correspond to ν = α = 0, resp. µ = 0, ε1 = 1, ε2 = 2,
and f = 0.
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Let us check that Proposition 6.1 can be applied to these operators. First,
for G±r the limit operator G0 is precisely F± and (6.1) holds, as it is very easy to
check. That the Dirichlet problem (6.3) for G±r has a unique solution for sufficiently
small r > 0 follows from the ABP inequality, the above remarks and the available
existence and uniqueness results; see [13, 19], and pages 592-595 of [30]. The
ABP inequality implies that the solution ψ of (6.3) with Gr = G±r is uniformly
bounded in E(ω, 1, r−κ), independently of r. Since E(ω, 1, r−κ) satisfies an exterior
sphere condition, a standard barrier argument gives the Lipschitz bound (6.4).
The global gradient Hölder estimate stated in Proposition 2.2 yields, in each set
B(x0, 1/4)∩E(ω, 1, r−κ) with x0 ∈ E(ω, 3/2, 6), that the C1,γ-norm of ψ is bounded
by a constant independent of x0. Therefore (6.6) holds.

These remarks are valid for any operator G(M,p, z, x) which is positively homo-
geneous in (M,p, z) and is appropriately bounded between G− and G+, so Propo-
sition 6.1 holds for such operators provided that a limit operator G0 exists.

7. Classification of isolated boundary singularities

7.1. Hypotheses and the statement of the theorem. In this section we study
the solutions of fully nonlinear, uniformly elliptic equations which are possibly
singular near a conical boundary point.

Let Ω be a domain, 0 ∈ ∂Ω, and (1.6) holds. We assume we are given an
continuous operator G : Sn × Rn × (Ω̄ ∩ B̄1) → R which satisfies the structural
conditions (2.3), (2.4) and (2.5) (but not necessarily (2.6)) for all M ∈ Sn, p ∈ Rn,
and x, y ∈ Ω̄ ∩ B̄1. We set Ωr := r−1Ω and

(7.1) Gr(M,p, x) := r2G
(
r−2M, r−1p, rx

)
= G(M, rp, rx).

It is easy to check that Gr : Sn × Rn × (Ω̄r ∩ B̄1/r)→ R is such that

(7.2) Gr satisfies (2.3)-(2.5) in Ωr with constants independent of r ≤ 1.

Note that Gr = G for every 0 < r ≤ 1 if and only if G satisfies (2.6).
We recall that (2.3)-(2.5) ensure that Gr satisfies the comparison principle and

that the Dirichlet problem associated to Gr is uniquely solvable in any bounded
domain satisfying an uniform exterior cone condition; see the remarks at the end
of the previous section.

We further assume that there exists an operator G0 = F which satisfies all
assumptions (2.3)-(2.6) and which is such that Gr → G0 in the sense that for some
C > 0 and 0 < ε < 1

3 ,

(7.3) |Gr(M,p, x)−G0(M,p, y)| ≤ Crε(1 + |p|+ |M |)

for all M ∈ Sn, p ∈ Rn, and all x, y ∈ Ω̄r ∩ B̄1/r such that 1
2 ≤ |x|, |y| ≤ 2r−ε

and |x − y| ≤ 2rε. Then, as we explained in the previous section, the continuous
dependence estimate (Proposition 6.1) applies to Gr and G0, with Ψ+ and α+ being
defined as in Theorem 1 for the operator G0(M,p, x) with respect to the cone Cω.
Recall we have normalized Ψ+ according to (5.1), and that (6.2) holds.

We now state our main result concerning the behavior of a solution near the
isolated boundary point 0. The following theorem reduces to Theorem 3 if G
satisfies all hypotheses (2.3)-(2.6).
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Theorem 9. Suppose that G and Ω are as above, u ∈ C
(
(Ω̄\{0}) ∩B1

)
solves

(7.4)

{
G(D2u,Du, x) = 0 in Ω ∩B1,

u = 0 on (∂Ω\{0}) ∩B1,

and u is bounded below on Ω ∩B1. Then the conclusion of Theorem 3 is valid.

7.2. Flattening the boundary. We may use the diffeomorphism ζ assumed to
exist in (1.6) to rephrase the problem (7.4) in the domain Cω ∩ B1. We define
H : Sn × Rn × R× (Cω ∩B1)→ R by

H(M,p, x) := G
(
Dζ(x)tMDζ(x) +D2ζ(x)p, Dζ(x)tp, ζ−1(x)

)
,

where the product D2ζ(x)p is the matrix with entries
∑n
k=1 ζ

k
xixjpk. It is very easy

to check that H satisfies (2.3), (2.4) and (2.5), with possibly modified constants de-
pending only on the C2-norm of the diffeomorphism ζ. If we set v(x) := u

(
ζ−1(x)

)
,

then (7.4) is equivalent to

(7.5)

{
H(D2v,Dv, x) = 0 in Cω ∩B1,

v = 0 on (∂Cω\{0}) ∩B1.

Indeed, this can be checked at once for a C2 function u, and an analogous calculation
can be performed with smooth test functions to confirm the equivalence in the
viscosity sense. We claim that, thanks to our hypotheses on ζ, the rescaled operator

Hr(M,p, x) := r2H
(
r−2M, r−1p, rx

)
= Gr

(
Dζ(rx)tMDζ(rx) + rD2ζ(rx)p, Dζ(rx)tp, r−1ζ−1(rx)

)
converges to G0 in the sense of (6.1). Indeed, by (1.6) we have, for every 0 < r ≤ 1
and x ∈ Cω ∩B1 such that 1 ≤ |x| ≤ r−1,

(7.6)
∣∣r−1ζ−1(rx)− x

∣∣ ≤ Cr|x|2, |Dζ(rx)− I| ≤ Cr|x|,
∣∣rD2ζ(rx)

∣∣ ≤ Cr.
Hence if x, y ∈ Cω ∩ B1/r are such that 1 ≤ |x|, |y| ≤ r−ε and |x− y| ≤ rε then we
have

1

2
≤ 1− Cr1−2ε ≤

∣∣r−1ζ−1(rx)
∣∣ ≤ r−ε + Cr1−2ε ≤ 2r−ε

and ∣∣r−1ζ−1(rx)− y
∣∣ ≤ rε + Cr1−2ε ≤ 2rε,

provided r is sufficiently small. Then, evaluating the difference∣∣Hr(M,p, x)−G0(Dζ(rx)tMDζ(rx) + rD2ζ(rx)p, Dζ(rx)tp, y)
∣∣

with the help of (7.3) and (7.6), and evaluating the difference∣∣G0(Dζ(rx)tMDζ(rx) + rD2ζ(rx)p, Dζ(rx)tp, y)−G0(M,p, y)
∣∣

with the help of (2.3) and (7.6), we arrive at

(7.7) |Hr(M,p, x)−G0(M,p, x)| ≤ Crε(1 + |p|+ |M |),
which is (6.1) with Gr replaced by Hr.

We have reduced the proof of Theorem 9 to the case that Ω = Cω. Indeed,
G and H satisfy the same structural conditions, and the function u will satisfy
the conclusion of Theorem 9 if and only if v satisfies the same assertions with Ω
replaced by Cω. It therefore suffices to prove Theorem 9 in the case Ω = Cω, which
we assume in the rest of this section.
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7.3. Strategy of proof. The proof of Theorem 9 is delicate and technical. How-
ever, the underlying idea can already be found in the argument used in Section 5
in order to prove Theorem 2, in particular, the combined use of blow-up, the
global Harnack inequality for quotients and the monotonicity properties of the
maps r 7→ q+(r), Q+(r) given in Lemmas 5.1 and 5.2.

The main difficulty we encounter when trying to adapt these ideas in order to
prove Theorem 9 is that, while we can define q+ and Q+ in almost the same way,
these functions do not have the same monotonicity properties due to the fact that
u and Ψ+ are not solutions of the same equation. In particular, this leads to a
difficulty in obtaining (5.4) and the existence of limits of q+ and Q+.

On the other hand, the function u is nearly a solution of F = 0 very close to
the origin. To see this, let us rescale the equation by defining ur(x) := u(rx) and
observe that ur is a solution of

Gr(D
2ur, Dur, x) = 0 in Cω ∩B1/r,

where Gr is defined by (7.1). Notice that for r > 0 very small, the operator Gr is
very close to F = G0, by (7.3). We therefore expect the maps r 7→ q±(r), Q±(r) to
be nearly monotone, in an appropriate way to be determined, which would permit
us to pass to the limit r → 0, and complete the proof using a blow-up argument as
in Section 5.

To make this intuition precise, we use the continuous dependence estimate from
the previous section in order to control the separation between rescaled solutions of
F = 0 and those of Gr = 0 in Cω∩B1. Precisely, we use Proposition 6.1 to construct
solutions of Gr = 0 in large slices of the cone, and these functions are very close

to Ψ+. These solutions can be more easily compared to ur(x) = rα
+

u(rx), since
they solve the same equation as ur. The estimate between the ratios (6.7) will then
lead us to an inequality between q+(r) and q+(2r) (and another between Q+(r)
and Q+(2r)) which roughly asserts that, for small r, the map q is nearly monotone
in r. These inequalities may be iterated to see that Q+(r) and q+(r) have limits as
r → 0. We also need Lemma 2.4 and the global Harnack inequality to show that
Q+(r) is bounded as r → 0.

If the limit of q+(r) is positive, we have (5.4) and obtain alternative (ii) similarly
to the proof of Theorem 2. On the other hand, if limr→0Q

+(r) = 0 then the “almost
monotonicity” estimate for Q+ is enough to see that in fact we have an algebraic
rate of convergence: Q+(r) ≤ Crβ0 for some β0 > 0. A blow-up argument is then
combined with the uniqueness Theorem 2 in order to show that β0 may be improved
to α+, which implies that u is bounded from above. With the latter information in
hand, another blow-up argument yields alternative (i).

7.4. Characterization of isolated boundary singularities. Given a function
u defined on Cω ∩B1, define the quantities

q+(r) := inf
E(ω,r,2r)

max{0, u}
Ψ+

and Q+(r) := sup
E(ω,r,2r)

max{0, u}
Ψ+

.

We begin our proof of Theorem 9 by showing that if u is a nonnegative superso-
lution of (7.4), then r 7→ q+(r) is nearly nondecreasing on an interval (0, r0).

Lemma 7.1. Suppose that u ∈ C
(
Cω ∩B1\{0}

)
satisfies u ≥ 0 and

(7.8) G(D2u,Du, x) ≥ 0 in Cω ∩B1.
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Then for some β0, r0 > 0 we have

(7.9) q+(s) ≤ exp(rβ0)q+(r) for every 0 < s < r ≤ r0.

In particular, r 7→ q+(r) is bounded on (0, r0).

Proof. The first step is to show that for some β0 > 0,

(7.10) q+(2r) ≥
(
1− rβ

)
q+(r) for sufficiently small r > 0.

Denote ur(x) := rα
+

u(rx). Then ur is a solution of the inequality

Gr(D
2ur, Dur, x) ≥ 0 in Cω ∩B1/r.

Let ψr be the solution of (6.3) for h = −Ψ+ on Cω ∩ ∂Br−κ and h = 0 elsewhere

on ∂E(ω, 1, r−κ). Observe that max∂E(ω,1,r−κ) |h| ≤ Crκα
+

.

By the homogeneity of Ψ+ and the definition of q+(r) we obtain

ur(x) ≥ q+(r)rα
+

Ψ+(rx) = q+(r)Ψ+(x) = q+(r)ψr on Cω ∩ ∂B1,

and ur ≥ 0 = q+(r)ψr on the rest of the boundary of E(ω, 1, r−κ). Since the
comparison principle holds for the operator Gr in E(ω, 1, r−κ), using the estimate
(6.7) we have

ur ≥ q+(r)ψr ≥ (1− rβ1)q+(r)Ψ+ = (1− rβ1)q+(r)rα
+

Ψ+(rx) in E(ω, 2, 4)

for sufficiently small r > 0, where β1 = βγ
2(1+γ) min{β, κα+}. This establishes (7.10).

By induction on (7.10), for every k ∈ N and r > 0 sufficiently small, we have

q+(2−kr) ≤ q+(r)

k∏
j=1

(
1−

( r
2j

)β1
)−1

.

Let 0 < s < r. Then for some k we have 2−(k+1)r < s ≤ 2−kr, and by using the
obvious inequality q+(s) ≤ max{q+(2−(k+1)r), q+(2−kr)} we obtain

q+(s) ≤ q+(r)

∞∏
j=1

(
1− rβ1

(
2−β1

)j)−1

.

To estimate this infinite product we use the elementary inequality

− log(1− y) ≤ 2y for every 0 < y ≤ 1

2
,

to obtain for each β > 0

log

∞∏
j=1

(
1− rβ

(
2−β

)j)−1

= −
∞∑
j=1

log
(

1− rβ
(
2−β

)j) ≤ 2rβ
∞∑
j=1

(
2−β

)j
= Crβ .

Setting β0 = β1/2 we have Crβ1 ≤ rβ0 for every r > 0 small enough. Hence for all
0 < s < r ≤ r0 we get (7.9). �

We would like to conclude from Lemma 7.1 that Q+(r) is bounded on (0, r0) if
u is a solution of (7.4) which is bounded below. Of course, if u is nonnegative then
the boundary Harnack inequality (Proposition 2.1) and Lemma 7.1 imply that

(7.11) Q+(r) ≤ Cq+(r) ≤ C.
However, obviously (7.11) fails to hold if u changes sign in E(ω, r, 2r). We circum-
vent this difficulty with the observation that if u is bounded below, then it may
only change sign if Q+(r) is small.
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Lemma 7.2. Let u ∈ C(Cω ∩ B1 \ {0}) be a solution of (7.4) which is bounded

below. Then there exists σ > 0 such that 0 < r < 1
4 and Q+(r) ≥ σrα

+

imply that
u > 0 in E(ω, r, 2r).

Proof. Let us suppose that u ≥ −M in Cω ∩ B1 for some M > 0. Let ũr be the
solution of the boundary value problem{

Gr(D
2ũr, Dũr, x) = 0 in E(ω, 1/2, 4),

ũr(x) = max{u(rx), 0} for x ∈ ∂E(ω, 1/2, 4).

We have u(rx) ≤ ũr(x) ≤ u(rx) + M for x ∈ ∂E(ω, 1/2, 4) so by the maximum
principle the same inequality holds in the whole E(ω, 1/2, 4).

If Q+(r) ≥ σrα+

, then by the homogeneity of Ψ and the global Harnack inequal-
ity (Proposition 2.1) we have

inf
E(ω,1,2)

ũr
Ψ+
≥ c0 sup

E(ω,1,2)

ũr
Ψ+
≥ c0 sup

E(ω,r,2r)

u(x)

Ψ+(x/r)
≥ c0σ.

for some c0 > 0 which does not depend on r. Recalling (5.1) we obtain

u(rx) ≥ cũr(x)−M ≥ cσ −M on E(ω′, 1, 2),

and u(rx) ≥ −M on ∂E(ω, 1/2, 4). By Lemma 2.4 we see that σ > 0 may be taken
large enough relative to M to ensure that u > 0 in E(ω, r, 2r). �

From the previous lemmas and discussion we deduce the following corollary.

Corollary 7.3. Suppose that u ∈ C(Cω ∩ B1\ {0}) is a solution of (7.4) which is
bounded below. Then the map r 7→ Q+(r) is bounded on (0, 1

4 ).

Proof. If Q is unbounded, then in particular we may choose a sequence rj ↘ 0 such

that Q+(rj) ≥ σrα
+

j , so by the previous lemma u is positive in each E(ω, rj , 2rj).
The maximum principle then yields that u > 0 in E(ω, rj , 2r1), and letting j →∞
we obtain that u > 0 in Cω ∩Br1 . We may therefore apply the boundary Harnack
inequality and Lemma 7.1 to obtain (7.11) for r ≤ 2r1, a contradiction. �

Using Corollary 7.3, we show that if u ≥ −M is a solution of the problem (7.4),
then r 7→ Q+(r) is almost nonincreasing for small r.

Lemma 7.4. Suppose that u ∈ C(Cω ∩ B1 \ {0}) is a solution of (7.4) which is
bounded below. Then there exist constants β0, r0 > 0 such that

(7.12) Q+(r) ≤ exp(rβ0)Q+(s) + rβ0 for every 0 < s < r ≤ r0.

Proof. According to Corollary 7.3, we have that u ≤ k0Ψ+ in Cω ∩ B1/4 for some

k0 > 0. As usual we denote ur(x) := rα
+

u(rx) for small r, so that ur ≤ k0Ψ+ in
Cω ∩B1/(4r). Fix s ≤ r < 2s < 1/2 and consider the quantity

T := max{Q+(s), r
1
2κα

+

},

where 0 < κ < 1 is as in our continuous dependence estimate (Proposition 6.1). Let
ψr be the solution of the Dirichlet problem (6.3) with h = k0T

−1Ψ+ on Cω ∩∂Br−κ
and h = 0 elsewhere on ∂E(ω, 1, r−κ). Observe that

0 ≤ h ≤ kr− 1
2κα

+

Ψ+ ≤ kr 1
2κα

+

on ∂E(ω, 1, r−κ).
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Thus Proposition 6.1 furnishes constants β, r0 > 0 such that for every 0 < r ≤ r0,

(7.13)
∣∣ψr/Ψ+ − 1

∣∣ ≤ Crβ in E(ω, 2, 4).

Observe that ur ≤ k0Ψ+ ≤ Th ≤ Tψr on Cω ∩ ∂Br−κ and ur ≤ Q+(s)Ψ+ ≤ Tψr
on Cω ∩ ∂B1. Hence ur ≤ Tψr on ∂E(ω, 1, r−κ), so the comparison principle and
(7.13) imply that

ur ≤ Tψr ≤ (1 + rβ)TΨ+ in E(ω, 2, 4)

for some β > 0 and small r > 0. Taking β < 1
2κα

+ we have the inequality

T ≤ Q(s) + rβ , and so we deduce that for 0 < s ≤ r < 2s,

(7.14) Q+(2r) ≤ (1 + rβ)T ≤ (1 + rβ)Q+(s) + Crβ .

By induction on (7.14) with r = s, we find that for every positive integer k ≥ 1

(7.15) Q+(r) ≤ Q+(
r

2k
)

k+1∏
j=1

(
1 + 2−βjrβ

)
+ Crβ

k+1∑
j=1

2−βj
j−1∏
`=1

(
1 + 2−β`rβ

)
.

By using the inequality log(1 + t) ≤ t for t > 0, it is easy to check that

∞∏
j=1

(
1 + 2−βjrβ

)
≤ exp(Crβ),

so for each k ∈ N we have

(7.16) Q+(r) ≤ exp(Crβ)Q+(
r

2k
) + Crβ .

Since each s < r is such that 2−(k+1)r < s ≤ 2−kr for some k ∈ N, by using (7.14)
once more we obtain

(7.17) Q+
( r

2k

)
≤ max{Q(s), Q(2s)} ≤ (1 + sβ)Q+(s) + Csβ .

Combining (7.16) and (7.17) and setting β0 = β/2, we obtain the inequality (7.12)
for sufficiently small r > 0. �

Lemma 7.5. Assume that u ∈ C(Cω∩B1\{0}) is bounded below and satisfies (7.4).
Then the limits limr→0Q

+(r) and limr→0 q
+(r) exist.

Proof. It is clear from Corollary 7.3 and (7.12) that a := limr→0Q
+(r) ≥ 0 exists

(note (7.12) implies that every two convergent subsequences of Q+(r) have the same
limit as r → 0). If a > 0, then Lemma 7.2 applies for sufficiently small r, and we
deduce that u is positive in a neighborhood of zero. In this case, we may apply
Lemma 7.1 and (7.11) to infer that b := limr→0 q

+(r) exists and 0 < b ≤ a. In the
case that a = 0, then clearly lim supr→0 q

+(r) ≤ limr→0Q
+(r) = 0. �

With a := limr→0Q
+(r) and b := limr→0 q

+(r) as above, what remains of the
proof of Theorem 9 is to show:

• if a = 0, then u can be continuously extended by defining u(0) = 0; and
• if a > 0, then a = b.

We prove these statements in the following two lemmas.
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Lemma 7.6. Assume that u ∈ C(Cω∩B1\{0}) is bounded below and satisfies (7.4),
and suppose also that

(7.18) lim
r→0

Q+(r) = 0.

Then u(x)→ 0 as |x| → 0.

Proof. Sending s→ 0 in (7.12) we obtain the estimate

(7.19) Q+(r) ≤ rβ0

for some β0 > 0 and sufficiently small r > 0. We will combine a blow-up argument
with Theorem 2 to improve this algebraic rate of convergence by replacing β with
α+ in (7.19). That is, we claim that

(7.20) Q+(r) ≤ Crα
+

,

for sufficiently small r and some C independent of r. Note that (7.20) is equivalent
to u being bounded in a neighborhood of the origin, by the definition of Q+(r) and
the homogeneity of Ψ+.

Suppose on the contrary that (7.20) does not hold. Then Lemma 7.2 applies and
u > 0 in some neighborhood of the origin Cω ∩Br0 .

Denote M(s) := supCω∩∂Bs u. By the strong maximum principle, M(s) cannot
have a local maximum on (0, r0). Since M(s) is unbounded in any neighborhood of
zero, we see that s 7→M(s) is nonincreasing on some interval (0, r0] and M(s)→∞
as s→ 0. Define the function

ūr(x) :=
rα

+

u(rx)

Q+(r)
in Cω ∩Br0/r.

Obviously supE(ω,1,2) ūr ≤ supE(ω,1,2) Ψ+ ≤ C, and

(7.21) sup
E(ω,1,2)

ūr
Ψ+

= 1.

Using the global Harnack inequality we see that ūr/Ψ
+ ≤ C(A) in E(ω, 1/A,A)

for any A > 0 and r < 1/A. Therefore ūr is bounded in any compact subset of
Cω \{0} so we may use the global Hölder estimates to find a subsequence rj → 0

and a function v ≥ 0 such that ūrj → v uniformly on bounded subsets of Cω\{0}.
We claim that necessarily v ≡ Ψ+, from which we can conclude that the entire

sequence ūr converges to Ψ+ on bounded subsets of Cω. Passing to limits in the
viscosity sense along rj and using that Gr → F as r → 0 (recall (7.1)-(7.3)), we see
that v satisfies

F (D2v,Dv, x) = 0 in Cω,
as well as v = 0 on ∂Cω \{0}. We also have v > 0 in Cω by the strong maximum
principle (v ≡ 0 is excluded by (7.21)).

Recalling that Mr(s) := maxCω∩∂Bs ūr is nonincreasing on (0, r0/r) we deduce
that s 7→ maxCω∩∂Bs v is nonincreasing for all s > 0, and in particular v is bounded
away from the origin. We may now conclude from Theorem 2 that v ≡ tΨ+ for
some t > 0. Passing to limits in (7.21) we get t = 1. The claim is proved.

We have shown that the full sequence ūr → Ψ+ locally uniformly in Cω\{0} as
r → 0. This implies that for each ε > 0, there exists rε > 0 such that

M(2r)

M(r)
=

supCω∩∂B2
ūr

supCω∩∂B1
ūr
≤ 2−α

++ε for 0 < r ≤ rε,
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where, as usual, M(r) = supCω∩∂Br u. By induction, we then have

(7.22) M(2−kr0) ≥ 2(α+−ε)kM(r0)

for each k ∈ N. On the other hand, obviously,

(7.23) M(r) = sup
Cω∩∂Br

[(u/Ψ+)Ψ+] ≤ Q+(r)r−α
+

If we now fix ε = β0/2, combining (7.19), (7.22) and (7.23) with r = 2−kr0 yields
a contradiction for sufficiently large k. We have proved (7.20).

Knowing that u is bounded in a neighborhood of the origin, the third and final
step is to show that in fact u(x) → 0 as |x| → 0. To this aim we will use a simple
blow-up argument combined with the strong maximum principle and the stability
of viscosity solutions with respect to uniform convergence.

Let us give the argument, for completeness. Set M0 = lim supx→0 u(x) and
m0 = lim infx→0 u(x). Assume M0 > 0 and take a sequence rj → 0 such that
M(rj) → M0 as j → ∞. Set uj(x) = u(rjx). Then Grj (D

2uj , Duj , x) = 0 and
uj is bounded independently of j in E(ω, 1/2, 4). By the Hölder estimates we
can pass to the limit and obtain a function ū such that F (D2ū, Dū, x) = 0 and
m0 ≤ ū ≤ M0 in E(ω, 1/2, 4), and ū(x̄) = M0 > 0 for some point x̄ ∈ ∂B1. The
strong maximum principle then implies ū ≡ M0 in E(ω, 1/2, 4) which contradicts
the boundary condition ū = 0 on ∂Cω.

In the same way, we see thatm0 < 0 is impossible. Thus u(x)→ 0 as |x| → 0. �

We next discuss the case that limr→0Q
+(r) > 0, and show that the solution u

must blow up to a multiple of Ψ+.

Lemma 7.7. Suppose u ∈ C(Cω ∩B1\{0}) is a solution of (7.4) which is bounded
below, and suppose also that

a := lim
r→0

Q+(r) > 0.

Then limr→0 q
+(r) = a. That is,

(7.24) lim
Cω3x→0

u(x)

Ψ+(x)
= a.

Proof. As we discussed in the proof of Lemma 7.5, under our hypotheses we have
that the limit b := limr→0 q

+(r) exists and 0 < b ≤ a. Using a blow-up argument,
we may deduce that b = a. In fact, the argument is identical to the one used in the
proof of Theorem 2, so we omit it. �

Proof of Theorem 9. The proof is easily assembled from the above lemmas. �

Proof of Theorem 5. Fix x0 ∈ Ω. For each small r ∈ (0, |x0|), let ur be the solution
of the Dirichlet problem{

F (D2ur, Dur, x) = 0 in Ω \Br,
ur = gr on ∂(Ω \Br),

where gr is a nonnegative continuous function on ∂(Ω \ Br), gr 6≡ 0, which is
supported on ∂Br. By multiplying ur by a positive constant, we may suppose that
ur(x0) = 1. By the Harnack inequality and global Hölder estimates, we may select
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a subsequence rj → 0 such that urj converges locally uniformly in Ω\{0} as j →∞
to a continuous function u0, which satisfies, by the stability of viscosity solutions,

(7.25)

{
F (D2u0, Du0, x) = 0 in Ω \ {0},
u0 = 0 on ∂Ω \ {0}.

Since u0(x0) = limj→∞ urj (x0) = 1, the strong maximum principle implies that
u0 > 0 in Ω. The alternative (i) in Theorem 9 is excluded by the maximum
principle, since Ω is bounded. Hence u0(x)/Φ+(ζ(x)) → t0 as x → 0, for some
t0 > 0.

Let u 6≡ 0 be another nonnegative solution of (7.25). By the strong maxi-
mum principle, u > 0 in Ω. Theorem 9 and the maximum principle imply that
u(x)/Φ+(ζ(x)) → s as x → 0, for some s > 0, hence u(x)/u0(x) → s/t0 := t as
x→ 0. Therefore for each ε > 0 and r > 0 sufficiently small,

(t− ε)u0 ≤ u ≤ (t+ ε)u0 on Ω ∩ B̄r,

and u = u0 = 0 on ∂Ω \Br. By the maximum principle,

(t− ε)u0 ≤ u ≤ (t+ ε)u0 in Ω \Br.

Sending r → 0 and then ε→ 0 yields u ≡ tu0. �

7.5. Behavior of a solution near a conical boundary point. Simple modi-
fications of the method we have used to prove Theorem 9 can be made to obtain
Theorem 4 and the assertions in Remark 1.1. We study the quantities

q−(r) := inf
E(ω,r,2r)

max{0, u}
Ψ−

and Q−(r) := sup
E(ω,r,2r)

max{0, u}
Ψ−

,

using similar ideas as above. The analysis turns out to be easier than that of
q+(r) and Q+(r), since q−(r) and Q−(r) have the reverse monotonicity; that is,
q−(r) is (nearly) nonincreasing, while Q−(r) is (nearly) nondecreasing. Hence these
quantities cannot tend to zero or to infinity, and so we do not need to use the global
Harnack inequality. An exact analogue of the continuous dependence estimate is
obtained, with nearly the same proof, if in Proposition 6.1 we replace Ψ+ by Ψ−,
E(ω, 1, r−κ) by E(ω, rκ, 1) and E(ω, 2, 4) by E(ω, 1/4, 1/2).

We remark that the use of continuous dependence estimate can also be con-
siderably simplified when we deal with a solution defined up to the boundary, in
particular in the model cases. For instance if F = F (D2u) we solve the approxi-
mate problem Gr(D

2ψr, Dψr, x) = 0 in Cω ∩ B1, ψr = Ψ− on ∂(Cω ∩ B1). Then
an easier argument than the one we gave in the proof of Proposition 6.1 yields that
Ψ−r /Ψ

− → 1 on compact subsets of Cω ∩ B1, with an algebraic rate which we can
estimate.

Proof of Theorem 4. If ψr is the function given by Proposition 6.1 thus modified
with h = 0 on Cω ∩ ∂B1, h = 0 on ∂Cω, h = −Ψ− on Cω ∩ Brκ , and u > 0 is as
in Theorem 4 (possibly with F replaced by the more general G as in Section 7.1),
by flattening the boundary and by setting q−(r) = infCω∩(B1\B1/2)(ur/Ψ

−) where

ur(x) := rα
−
u(rx), exactly as in the proof of Lemma 7.1 we see that the maximum

principle implies u ≥ q−(r)ψr in E(ω, rκ, 1), and hence

q−(r/2) ≥ q−(r)(1− rβ)
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for all sufficiently small r > 0. Iterating this inequality we obtain, as before,

q−(r) ≤ er
β

q−(s), for all 0 < s < r ≤ r0,

which implies that q−(s) ≥ c0q
−(r0) > 0 for all s > 0 small. Letting s → 0 we

obtain the statement of Theorem 4. Note that q−(r0) > 0 by the standard Lipschitz
estimates (Theorem 2.2) and the classical Hopf’s lemma applied at the flat lateral
boundary of the domain E(ω, r0/4, 2r0). �

Let us also sketch the proof of the statement we mentioned in Remark 1.1. If
u > 0 is such that u solves (1.7) (possibly with F replaced by G) and u(0) = 0, we
proceed exactly like in the proof of Lemma 7.4 to infer that

ur ≤ max{Q−(r), r−α
−κ/2}ψr

which after a iteration yields

Q−(s) ≤ er
β

Q−(r) + rβ , for all 0 < s < r ≤ r0,

so Q−(s) is bounded and has a limit as s→ 0. By what we already proved for q−(s)
we see that it also has a positive limit as s→ 0. These two limits have to coincide,
by the same blow-up argument as the one we used in the proof of Theorem 2.

8. The Phragmèn-Lindelöf principles

As a further application of Theorem 9, we prove the Phragmèn-Lindelöf princi-
ples stated in the introduction.

Proof of Theorem 6. In Section 5 we proved the result in the case that Ω = Cω.
We need only show how to modify the argument for a general domain Ω for which
0 ∈ ∂Ω and (1.6) holds, and for a subsolution of

G(D2u,Du, x) ≤ 0,

where (7.1)-(7.3) are verified for G (resp. for G∗, if we have a condition at infinity),
with G0 = F . We first flatten the boundary as in the previous section, so that

the function us(x) = sα
+

u(sx) is a solution of Gs(D
2us, Dus, x) ≤ 0 in Cω ∩ B1/s.

We consider the function ψs given by Proposition 6.1 with h ≡ 0 (we apply the
proposition with E(ω, 1, r−κ) replaced by E(ω, 1/2, r−κ) and E(ω, 2, 4) replaced by
E(ω, 1, 2)) and repeat the argument given in Section 5 with Ψ+ replaced by ψs,
observing that ψs ≥ 1

2Ψ+ in E(ω, 1, 2) for small s > 0. �

Proof of Theorem 7. We may assume that D′ = D, by replacing u by u+ and then
defining u to be zero in D \ D′. Theorem 6 implies that, for each ε > 0 and
sufficiently small r > 0, we have u ≤ ε on D ∩ (∂Br ∪ ∂B1/r). The maximum
principle implies that u ≤ ε in D∩ (B1/r \Br) for small 0 < r < 1. Sending r →∞
and then ε→ 0 yields the result. �

Proof of Theorem 8. The result follows at once from Theorem 6, after we note that

F̃ (D2u,Du, x) ≥ 0 is equivalent to F (D2(−u), D(−u), x) ≤ 0. �

We can prove a sharper Phragmèn-Lindelöf maximum principle, of Nevanlinna-
Heins type (see the references in [29]) in the case that the domain Ω has only
one conical singularity (at zero or infinity), and u ≤ 0 on the whole boundary ∂Ω
except possibly at the singularity. In this classical case stronger results are readily
obtained, as we will see in Proposition 8.2 below. To prove this proposition we
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will combine the method of Gilbarg, Hopf and Serrin with the following lemma, in
which we construct a special barrier function, with the help of Theorem 3.

Lemma 8.1. Let Ω be a bounded Lipschitz domain such that 0 ∈ ∂Ω and (1.6)
holds, and fix x0 ∈ Ω. Let G be an operator as in Section 7.1. For each r > 0
sufficiently small, there exists a function φr ∈ C(Ω \ Br) and a constant ar which
satisfies

(8.1) cr−α
+

≤ ar ≤ Cr−α
+

,

such that φr(x0) = 1 and

(8.2)


G(D2φr, Dφr, x) = 0 in Ω \Br,
0 ≤ φr ≤ ar on ∂Ω,

φr = 0 on ∂Ω \B2r,

φr = ar on Ω ∩ ∂Br,

Proof. The existence of a function φr for some ar is simple to obtain: we solve
(8.2) with ar = 1 and then divide the function thus obtained by its value at x0.
Moreover, by the Hölder estimates and Theorem 5, the function φr converges locally
uniformly on Ω \ {0} to the unique nonnegative function φ0 ∈ C(Ω \ {0}) which
satisfies φ0(x0) = 1 and{

G(D2φ0, Dφ0, x) = 0 in Ω,

φ0 = 0 on ∂Ω \ {0}.

By Theorem 9, there exists t > 0 such that

(8.3) φ0(x)/Ψ+(ζ(x))→ t > 0 as x→ 0, x ∈ Ω.

It remains to obtain the bounds on ar. Set δr = rα
+

ar. By (8.3), for each

ε > 0 and sufficiently small r we have φ0 ≤ (t+ ε)r−α
+

= (t+ ε)δ−1
r φr on Ω∩ ∂Br

and φ0 = 0 on the rest of the boundary of Ωr, so by the maximum principle
φ0 ≤ (t+ ε)δ−1

r φr in Ωr. Evaluating at x0 we get the second inequality in (8.1).

Set φ̃r = rα
+

φr(rx) and φ0r = rα
+

φ0(rx). Observe that φ̃r ≤ δr in (Ω/r) ∩
(B8 \ B1). Then (8.3) and the global Harnack inequality imply φ̃r/φ0r ≤ Cδr in

(Ω/r)∩(B4\B2). By the maximum principle φ̃r ≤ Cδrφ0r in (Ω/r)\B2. Evaluating
at x0/r we obtain the first inequality in (8.1). �

Proposition 8.2. Suppose that Ω is such that 0 ∈ ∂Ω and (1.6) holds. Let D ⊆ Ω
be a bounded domain, x0 ∈ D, and φ0 be the unique solution of (1.9) in Ω ∩ BR
such that φ0(x0) = 1, where R > 0 is large enough that D ⊂ BR. Let u satisfy the
inequality

F (D2u,Du, x) ≤ 0 in D, u ≤ 0 on ∂D \ {0} (resp. in Ω∗, on ∂Ω∗).

Set M(r) := maxD∩∂Br u, and assume in addition that

(8.4) lim inf
r→0

rα
+

M(r) ≤ k
(

resp. lim inf
R→∞

Rα
−
M(R) ≤ l

)
for some 0 ≤ k, l < ∞. Then there exists a constant A > 0, depending only on F ,
ω, and x0, such that

u ≤ Akφ0 in D (resp. u ≤ Alφ0 in Ω∗).
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Proof. Take sequences rj → 0, kj ↘ k such that u ≤ kjr−α
+

j on ∂Brj . Let φj = φrj
be the functions constructed in Lemma 8.1. By (8.1), we have u ≤ Akjφj on ∂Brj
and u ≤ 0 ≤ Akjφj on ∂D \Brj . Hence, for each x ∈ D,

u(x) ≤ Akjφj(x)→ Akφ0(x) as j →∞. �

Appendix A. Harnack inequalities up to the boundary

Here we prove Proposition 2.1, the global Harnack inequality for quotients of
positive solutions. First we recall the interior Harnack inequality, a proof of which
can be found in [27, Theorem 3.6] and the references therein.

Proposition A.1. Assume that Ω is a bounded domain and u ∈ C(Ω) is a positive
solution of the inequalities

(A.1) L+[u] ≥ 0 ≥ L−[u] in Ω,

where L± are defined in (2.10) above. Then for each Ω′ ⊂⊂ Ω we have the estimate

(A.2) sup
Ω′

u ≤ C inf
Ω′
u.

The constant C > 1 depends only on n, λ, Λ, µ, ν, and the number of balls of
radius 1

2 dist(Ω′, ∂Ω) needed to cover Ω′.

Another preliminary result is the following boundary Harnack inequality which
is due to Krylov [22] in the case of linear operators with measurable coefficients.
We indicate a proof for viscosity solutions of fully nonlinear equations following [6].

Proposition A.2. Assume u, v are positive solutions of the inequalities

(A.3) L+[u] ≥ 0 ≥ L−[u] , L+[v] ≥ 0 ≥ L−[v] in Ω.

Let Q2 = Q2(z0) ⊂ Ω be a cube with side 2 centered at z0 = (1, 0, . . . , 0) ∈ Ω,
and assume u = v = 0 on Q2 ∩ {x1 = 0}. Then there exists a constant C =
C(λ,Λ, µ, δ) > 0 such that for each x ∈ Q1 = Q1(z0/2) we have

(A.4)
1

C

u(x)

u(z0)
≤ v(x)

v(z0)
≤ C u(x)

u(z0)
.

Proof. We can assume that the principal eigenvalues of the operators L+[u], L−[u]
are positive in Q2, that is, these operators satisfiy the comparison principle in each
subdomain of Q2 (see [27]). Indeed, we can find r0 = r0(λ,Λ, µ, δ) sufficiently small
that these eigenvalues be positive in each cube with side r0, then apply the result
in [2/r0] cubes with base on {x1 = 0} included in Q2, and conclude with the help
of the interior Harnack inequality.

Repeating the proof of the Harnack inequality in [6, Section 2], with obvious
modifications (replacing the operator M in theorems 1.3-1.5 in that paper by the
Pucci extremal operators and so forth), we infer that

(A.5) u(x) ≤ Cu(z0) for each x ∈ Q1.

Next, using some ideas from [9], we take two functions g1, g2 ∈ C(∂Q2) such that
0 ≤ g1, g2 ≤ 1 on ∂Q2; g1 ≡ 1 on ∂Q2∩{x1 ≥ 1/2} and g1 ≡ 0 on ∂Q2∩{x1 ≤ 1/4};
and g2 ≡ 1 on ∂Q2 ∩ {x1 > 0}, while g2 ≡ 0 on ∂Q2 ∩ {x1 = 0} ∩ {|x| ≤

√
2}. Let

w1, w2 ∈W 2,p
loc (Q2) ∩ C(Q2), p <∞, be the solutions of the Dirichlet problems{
L+[w1] = 0 in Q2

w1 = g1 on ∂Q2,

{
L−[w2] = 0 in Q2

w2 = g2 on ∂Q2.
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Hopf’s lemma and the boundary Lipschitz estimates imply that

(A.6) w2(x) ≤ Cdist(x, ∂Q2) ≤ Cw1(x) for each x ∈ Q1.

On the other hand, we clearly have u ≤ Cu(z0)w2 on ∂Q2, by (A.5) and the
definition of w2. Hence the comparison principle implies

(A.7) u(x) ≤ Cu(z0)w2(x) for each x ∈ Q2.

Finally, the interior Harnack inequality implies that v(x) ≥ Cv(z0), for each
x ∈ ∂Q2 ∩ {x1 ≥ 1/6}. This implies that v ≥ Cv(z0)w1 on ∂Q2, so by the
comparison principle

(A.8) v(x) ≥ Cv(z0)w1(x) for each x ∈ Q2.

Combining (A.6), (A.7), (A.8) yields the statement of the proposition. �

Proof of Proposition 2.1. We denote Ω0 := {x ∈ Ω : dist(x, ∂Ω) > r0}, and Ω′′ :=
Ω′ ∩Ω0, where r0 <

1
2 dist(Ω′, ∂Ω \Σ) is fixed so small that ∂Ω0 is C2-smooth. By

straightening the boundary (see, e.g., the proof of [6, Theorem 1.4]), we obtain, by
Propositions A.1 and A.2,

max

{
sup
Ω′′

u

v
, sup

Ω′\Ω′′

u

v

}
≤ sup

Ω′∩∂Ω0

u

v
≤ inf

Ω′∩∂Ω0

u

v
≤ min

{
inf
Ω′′

u

v
, inf

Ω′\Ω′′
u

v

}
. �

Appendix B. Proofs of Lemma 3.1 and 3.2

We give the precise computations which establish that the functions defined
in (3.7) and (3.8) are respectively a supersolution and a subsolution of any fully
nonlinear equation in a proper cone of Rn.

Proof of Lemma 3.1. According to (3.3), we may suppose that ω = π. Due to (2.3),
we may assume that

F (M,p, x) = P−λ,Λ(M)− µ|x|−1|p|.

Since this operator is rotationally invariant, we may also assume without loss of
generality that ξ = en := (0, . . . , 0, 1).

For constants α, κ > 0 to be selected, consider the function

ϕ(x) := |x|−α
(
exp(κ)− exp

(
κ|x|−1xn

))
,

which is smooth in Rn \{0} and positive on Cω\{0}. We will show that if 0 < α < 1
is very small and κ > 0 is very large, then for every x ∈ Cω,

(B.1) P−λ,Λ
(
D2ϕ(x)

)
− µ|x|−1|Dϕ(x)| ≥ 0.

Routine calculations give

Dϕ(x) = −α|x|−α−2
(
eκ − eκ|x|

−1xn
)
x+ κ|x|−α−3eκ|x|

−1xn
(
|x|2en − xnx

)
,

D2ϕ(x) = α|x|−α−4
(
eκ − eκ|x|

−1xn
) (

(α+ 2)x⊗ x− |x|2I
)

+ 2κ(α+ 1)|x|−α−5eκ|x|
−1xnx⊗ (|x|2en − xnx)

− κ|x|−α−5xne
κ|x|−1xn

(
x⊗ x− |x|2I

)
− κ2|x|−α−6eκ|x|

−1xn
(
|x|2en − xnx

)
⊗
(
|x|2en − xnx

)
.
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We easily estimate

|Dϕ(x)| ≤ α|x|−α−1eκ + κ|x|−α−2eκ|x|
−1xn

(
|x|2 − x2

n

) 1
2 ,

where we have used the equality
∣∣|x|2en − xnx∣∣2 = |x|2(|x|2 − x2

n).

To estimate P−λ,Λ(D2ϕ), we apply P−λ,Λ to each term on the right side of the

expression for D2ϕ(x) above, and sum them using the superlinearity property (2.2).
We recall that for a, b ∈ Rn the nonzero eigenvalues of the symmetric matrix a ⊗
b+ b⊗a are a · b±|a||b|, each with multiplicity 1. Thus to calculate P−λ,Λ applied to

the second term in the expression for D2ϕ, for example, we notice that x · (|x|2en−
xnx) = 0 and use the identity

∣∣|x|2en − xnx∣∣2 = |x|2(|x|2−x2
n). With this in mind,

and using (2.1) and (2.2) and our estimate for |Dϕ|, after some work we obtain

(B.2)

P−λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)|
≥ −α (Λ(α+ 1)− λ(n− 1) + µ) |x|−α−2eκ

− κ ((α+ 1)(Λ− λ) + µ) |x|−α−3eκ|x|
−1xn(|x|2 − x2

n)
1
2

+ κ|x|−α−5eκ|x|
−1xnP−λ,Λ(−xn(x⊗ x− |x|2I))

+ κ2|x|−α−4eκ|x|
−1xnλ(|x|2 − x2

n).

We estimate the second term on the right side of (B.2) using Cauchy’s inequality:

− κ ((α+ 1)(Λ− λ) + µ) |x|−α−3eκ|x|
−1xn(|x|2 − x2

n)
1
2

≥ − 1
2κ

2|x|−α−4eκ|x|
−1xnλ(|x|2−x2

n)− 1
2λ ((α+ 1)(Λ− λ) + µ)

2 |x|−α−2eκ|x|
−1xn .

Inserting this into (B.2) and imposing the requirement α ≤ 1 produces

(B.3)

P−λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)|

≥ −αC1|x|−α−2eκ − C2|x|−α−2eκ|x|
−1xn

+ κ|x|−α−5eκ|x|
−1xnP−λ,Λ(−xn(x⊗ x− |x|2I))

+
1

2
κ2|x|−α−4eκ|x|

−1xnλ(|x|2 − x2
n).

where C1 := max{0, 2Λ+µ−λ(n−1)} and C2 := (2Λ+µ)2/(2λ). The terms on the
right side of (B.3) must be estimated in the regions {xn ≤ 0} and {0 ≤ xn ≤ σ|x|}
separately. First, in the region {xn ≤ 0}, we have

P−λ,Λ(−xn(x⊗ x− |x|2I)) = λ(n− 1)|x|2|xn|.

Then in the region {xn ≤ 0} we obtain

P−λ,Λ(D2ϕ(x))− µ|x|−1|Dϕ(x)| ≥ −αC1|x|−α−2eκ

+ |x|−α−2eκ|x|
−1xn

(
κλ(n− 1)|x|−1xn + 1

2κ
2λ|x|−2(|x|2 − x2

n)− C2

)
.

Using max{|x|−1xn, 1− x2
n/|x|2} ≥ 1/2 we obtain

(B.4) P−λ,Λ(D2ϕ(x))− µ|x|−1|Dϕ(x)| ≥ |x|−α−2
(
−αC1e

κ + e−κ
(

1
4λκ− C2

))
.

provided κ ≥ 1. We now impose the requirement κ ≥ 4(C2 + 1)/λ as well as
C1α ≤ e−2κ, so that we have (B.1) in the region {xn ≤ 0}.

In {0 ≤ xn ≤ σ|x|}, the factor in the middle term on the right side of (B.3) is

P−λ,Λ(−xn(x⊗ x− |x|2I)) = −Λ(n− 1)|x|2xn,
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and we have, using also that x2
n ≤ σ2|x|2,

P−λ,Λ(D2ϕ(x))− µ|x|−1|Dϕ(x)| ≥ −αC1|x|−α−2eκ

+ |x|−α−2eκ|x|
−1xn

(
−κΛ(n− 1) + 1

2κ
2λ(1− σ2)− C2

)
.

If we require that κ ≥ 1 + C2 + (2Λ(n − 1) + 1)/(λ(1 − σ2)), then the term in
the parentheses is at least 1. We then obtain (B.1) in the region {0 ≤ xn ≤ σ|x|}
provided that C1α ≤ e−κ.

We have shown that (B.1) holds if we set

κ := 1 + C2 + (2Λ(n− 1) + 1)/(λ(1− σ2)) + 4(C2 + 1)/λ,

α := min{1, e−2κ/C1}.

It follows that α+(P−λ,Λ(D2·)− µ|x|−1|D · |, ω) ≥ α. �

Proof of Lemma 3.2. It suffices to prove the lemma for the operator F (M,p, x) =
P+
λ,Λ(M)+µ|x|−1|p|. Since F is rotationally invariant, we may also suppose without

loss of generality that ξ = en := (0, . . . , 0, 1). By (3.3), we may assume that ω = π.
Define the functions

w(x) := |x|−α−2x2
n − σ2|x|−α and ϕ(x) :=

1

2
(w(x))2.

It is clear that ϕ is smooth on Rn \ {0}, ϕ ∈ H2α(ω), ϕ > 0 in Cω and ϕ vanishes
on ∂Cω \ {0}. We claim that for sufficiently large α > 0, the function ϕ satisfies

(B.5) P+
λ,Λ(D2ϕ) + µ|x|−1|Dϕ(x)| < 0 in Cω.

Assuming for a moment that (B.5) is satisfied for all α ≥ ᾱ > 0, with ᾱ depending on
the appropriate constants, let us complete the proof by showing that α+(F, ω) ≤ 2ᾱ.
If on the contrary α+(F, ω) > 2ᾱ, then there exists 2ᾱ < α ≤ α+(F, ω) and a
function v ∈ Hα(ω) satisfying F (D2v,Dv, x) ≥ 0 and v > 0 in Cω. Thus according
to Proposition 2.5, ϕ ≡ tv for some t > 0. This is impossible, since ϕ is a strict
subsolution of (B.5).

Commencing with the demonstration of (B.5), routine calculations give

Dw(x) = −α|x|−2w(x)x+ 2|x|−α−4xn(|x|2en − xnx),

D2w(x) = α|x|−4w(x)
(
(α+ 2)x⊗ x− |x|2I

)
− 2|x|−α−4

(
x2
nI − |x|2en ⊗ en

)
− 4(α+ 2)|x|−α−6xnx⊗ (|x|2en − xnx).

Further computations produce

Dϕ(x) = w(x)Dw(x)

= α|x|−2w(x)2x+ 2|x|−α−4w(x)xn
(
|x|2en − xnx

)
,

D2ϕ(x) = w(x)D2w(x) +Dw(x)⊗Dw(x)

= 2α(α+ 1)|x|−4w(x)2x⊗ x− α|x|−2w(x)2I − 2|x|−α−4x2
nw(x)I

− 8|x|−α−6xnw(x)x⊗ (|x|2en − xnx) + 2|x|−α−2w(x)en ⊗ en
+ 4|x|−2α−8x2

n

(
|x|2en − xnx

)
⊗
(
|x|2en − xnx

)
.

We estimate, using once again the identity
∣∣|x|2en − xnx∣∣2 = |x|2(|x|2 − x2

n),

|Dϕ(x)| ≤ α|x|−1w(x)2 + 2|x|−α−3w(x)|xn|
(
|x|2 − x2

n

) 1
2 , x ∈ Cω.
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We recall again that the matrix a⊗ b+ b⊗ a has two nonzero eigenvalues, namely

a · b± |a||b|. Using x · (|x|2en − xnx) = 0 and
∣∣|x|2en − xnx∣∣2 = |x|2(|x|2 − x2

n), the

sublinearity and homogeneity of P+
λ,Λ, that w > 0 in Cω, and our estimate for |Dϕ|

above, we have after some calculation
(B.6)
P+
λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)|
≤ −α (2λα− µ− (n− 1)Λ) |x|−2w(x)2 + 2nΛ|x|−α−4x2

nw(x)

+ (4Λ + 2µ)|x|−α−4|xn|
(
|x|2 − x2

n

) 1
2 w(x)− 4λ|x|−2α−6x2

n(|x|2 − x2
n)

for x ∈ Cω. We estimate the two middle terms using Cauchy’s inequality:

2nΛ|x|−α−4x2
nw(x) ≤ αn2Λ2λ−1|x|−2w(x)2 + α−1λ|x|−2α−6x4

n,

(4Λ + 2µ)|x|−α−4|xn|
(
|x|2 − x2

n

) 1
2 w(x)

≤ 1

2
(2Λ + µ)2λ−1|x|−2w(x)2 + 2λ|x|−2α−6x2

n(|x|2 − x2
n),

and inserting these into (B.6) gives

P+
λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)| ≤ −αC3|x|−2w(x)2

− 2λ|x|−2α−6x2
n(|x|2 − x2

n) + α−1λ|x|2α−6x4
n

where C3 := 2λα− µ− (n− 1)Λ− n2Λ2λ−1 − 1
2 (2Λ + µ)2λ−1α−1. If we require

(B.7) α ≥ 1 + (2λ)−1
(
µ+ (n− 1)Λ + n2Λ2λ−1 + 1

2 (2Λ + µ)2λ−1
)
,

then C3 ≥ 1, and we obtain

(B.8) P+
λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)|

≤ −α|x|−2w(x)2 − 2λ|x|−2α−6x2
n(|x|2 − x2

n) + α−1λ|x|−2α−6x4
n.

We may rewrite (B.8), using the definition of w and rearranging terms, as

(B.9) P+
λ,Λ(D2ϕ(x)) + µ|x|−1|Dϕ(x)|
≤ −|x|−2α−6

(
ασ4|x|4 − (2ασ2 − 2λ)x2

n|x|2 + (α− 2λ− α−1λ)x4
n

)
.

By Cauchy’s inequality,

(2ασ2 − 2λ)x2
n|x|2 ≤ ασ4|x|4 +

(2ασ2 − 2λ)2

4ασ4
x4
n,

and therefore the term in the parenthesis on the right side of (B.9) is positive
provided that

(2ασ2 − 2λ)2 − 4ασ4(α− 2λ− α−1λ) < 0,

which is equivalent to

(B.10) α >
λ+ σ4

2σ2(1− σ2)
.

We have shown that (B.5) is satisfied for α satisfying both (B.7) and (B.10). It
follows that

α+(F, ω) ≤ 2 +λ−1
(
µ+ (n− 1)Λ + n2Λ2λ−1 + 1

2 (2Λ + µ)2λ−1
)

+
λ+ σ4

σ2(1− σ2)
. �
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other applications. Ann. Mat. Pura Appl. (4), 90:297–329, 1971.
[25] Y. Pinchover. On positive Liouville theorems and asymptotic behavior of so-

lutions of Fuchsian type elliptic operators. Ann. Inst. H. Poincaré Anal. Non
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