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‡ Institut de Recherche en Communications et Cybernétique de Nantes
IRCCyN, UMR CNRS 6592, Nantes, FRANCE

Abstract Usually, identification models of parallel robots are sim-
plified and take only the dynamics of the moving platform into
account. Moreover the input efforts are estimated through the use
of the manfucaturer’s actuator drive gains that are not calibrated
thus leading to identification errors. In this paper a systematic way
to derive the full dynamic identification model of the Orthoglide
parallel robot in combination with a method that allows the iden-
tification of both robot inertial parameters and drive gains.

1 Introduction

Many modern robotic applications require high-performances (in terms of
speed, accuracy, payload capability, etc.) that cannot be obtained without
a good controller (Amiral et al., 1996; Vivas and Poignet, 2005). It appears
that, for high-speed robots or when varying loads have to be compensated
(e.g. in pick-and-place operations or machining), computed torque control
is generally used (Khalil and Dombre, 2002). This approach needs a correct
identification of the dynamic model of the robot with the load (Khalil et al.,
2007).

Several papers deal with the identification of parallel robots (Honegger
et al., 2000, 1997). These publications are restricted to very simple models,
which take only the dynamics of the moving platform into account. Only few
of them deal with the systematic computation of the full Inverse Dynamic
Identification Model (IDIM). In (Guegan et al., 2003), the authors propose
an attempt to create a systematic IDIM based on a Newton-Euler approach.
The closed loops are first virtually opened to compute the dynamic model of
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the tree structure and then, the closure constraints are imposed. However,
the way to open the loop is not straightforward. In (Grotjahn et al., 2004;
Diaz-Rodriguez et al., 2010), the authors propose methods for computing
the IDIM based on the Jourdain’s principle or Lagrange multipliers. But
the way to identify the drive gains is not treated. Moreover, some jacobian
matrices, whose computation is not straightforward, are not clearly derived.

This paper presents the application of a Total Least Square procedure for
the identification of the inertial parameters (IDIM-TLS) of the Orthoglide
(Chablat et al., 2004). It is the second part of our work on the identifica-
tion of the parallel robots dynamic parameters and it uses the theoretical
approach developped in (Briot and Gautier, 2012).

2 Modeling of the Orthoglide

2.1 Description of the architecture

The Orthoglide is a parallel robot with three translational degrees of free-
dom (dof) composed of three identical legs (Fig. 1). Each leg is achieved via
one linearly actuated foot linked at its extremity to a spatial parallelogramm
(Fig. 2a). The parallelogram is also attached to the mobile platform.

(a) Prototype (b) Kinematic chain

Figure 1: The Orthoglide robot.

The direction of the three linear actuators of the Orthoglide are orthog-
onal (Fig. 1b). This aims at creating a mechanism with a workspace shape
close from a cube and whose behavior is close from the isotropy wherever
it is located in its workspace.

For the remainder of the paper, it should be mentioned that the gravity
field g is directed along the vector y0 of Fig. 2c.
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Figure 2: Kinematic chain description.

2.2 Dynamic modeling

For the dynamic modeling of the Orthoglide, as the bars of the parallel-
ograms are parallel and as the prototype has been design so that they are
identical, it is possible to replace the long bars by only one equivalent bar
linked at each extremity by two orthogonal pivots (Fig. 2b) without loss
of generality. Let us recall that the computation of the dynamic model is
decomposed into two steps (Briot and Gautier, 2012):

1. All closed loops are virtually opened and the robot platform is virtu-
ally disassembled from the rest of the structure so that an open-loop
tree structure is created;

2. The loops are then closed using the loop-closure equations and the
Lagrange multipliers.

Dynamic modeling of the virtual tree structure Using the previ-
ous assemption, the Orthoglide kinematics necessary for computing the dy-
namic model are defined using the modified Denavit and Hartenberg nota-
tion (MDH) (Khalil and Dombre, 2002). The geometric parameters of the
virtual open-loop tree structure are given in Tables 1 and 2. The MDH
notation is well known, therefore the parameters of Tables 1 and 2 will not
be defined here. For more information concerning the MDH parameters,
the reader should refer to (Khalil and Dombre, 2002).

Using these MDH parameters, the dynamic model of the virtual tree
structure that expresses the virtual input efforts τidmt of all joints as a linear
function of the inertial parameters χstt can be automatically computed with
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an algorithm based on the Newton-Euler approach (Khalil and Dombre,
2002; Khalil and Creusot, 1997):

τidmt(qt, q̇t, q̈t) = φstt(qt, q̇t, q̈t)χstt (1)

where qt = [q11, q21, ..., q53]
T is the (15 × 1) vector regrouping all joint

variables.

Table 1: MDH parameters for the frames corresponding to the first body of
each leg.

ji a(ji) μji σji γji bji αji dji θji rji
11 0 1 1 0 0 0 0 0 q11
12 0 1 1 π/2 a π/2 0 0 q12 − a
13 0 1 1 0 a −π/2 0 −π/2 q13 + a

Table 2: MDH parameters for the frames corresponding to the leg i.

ji a(ji) μji σji γji bji αji dji θji rji
2i 1i 1 0 0 0 −π/2 0 q2i 0
3i 2i 1 0 0 0 −π/2 0 q3i 0
4i 3i 1 0 0 0 0 d4 q4i 0
5i 4i 1 0 0 0 π/2 0 q5i 0

Dynamic modeling of the actual robot As proposed in (Briot and
Gautier, 2012), the loop contraints can be taken into account by using the
robot loop-closure equations (Merlet, 2006) and the Lagrange multipliers
(Moon, 2007). The loop closure-equations of the Orthoglide can be ex-
pressed as

ft =
[
fTt11 , f

T
t21 , f

T
t12 , f

T
t22 , f

T
t13 , f

T
t23

]T
= 0 with (2)

ft1i =

⎡
⎣xy
z

⎤
⎦−Ri

0

⎡
⎣ d4 cos q2i cos q3i + aδi

−d4 sin q3i + aδi+1

q1i − aδ̄i+2 − d4 sin q2i cos q3i + d6

⎤
⎦ , ft2i =

[
q2i
q3i

]
+

[
q5i
q4i

]
,

fp =

⎡
⎣ x2 + y2 + (z − q11 − d6)

2 − d24
(x− q12 − d6 + a)2 + y2 + (z − a)2 − d24
x2 + (y − q13 − d6 + a)2 + (z − a)2 − d24

⎤
⎦ = 0, (3)

where Ri
0 is the rotation matrix between the leg frame (Oi,x1i,y1i, z1i) and

the base frame (O0,x0,y0, z0) (Fig. 2c), d6 is a length defined at Fig. 2b,
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δi is a scalar of which value is equal to 1 if i = 3, 0 if not and δ̄i = 1 (δ̄i = 0,
resp.) if δi = 0 (δi = 1, resp.).

As shown in (Briot and Gautier, 2012), the dynamic model of the real
robot can be computed as:

τidm = JT
t τidmt + JT

p fp = JT
t φstt (qt, q̇t, q̈t)χstt + JT

p φp (γ)χp

=
[
JT
t φstt JT

p φp

] [
χT
stt χT

p

]T
= φst (q, q̇, q̈)χst

(4)

where χp represents the standard parameters of the platform (as the Or-
thoglide is a translational robot, the platform mass m6 is the only identi-
fiable parameter, i.e. χp = m6), γ = [ẍ, ÿ, z̈]T is the platform acceleration
and φp = diag(ẍ, ÿ− g, z̈). The same expressions can be used for adding in
the model the contribution of the payload 7.

The matrices Jt and Jp and all positions, velocities and accelerations
that are necessary for computing the dynamic model of the real robot can
be straightforwardly calculated from (2) and (3) using expressions of (Briot
and Gautier, 2012).

3 Total Least Square Identification (IDIM-TLS)

In this part, experimentations are performed and the dynamic model identi-
fication is carried out on the Orthoglide. The actuation of its feet is achieved
by a rotary DC motor Sanyo Denki linked to a ball-screw. The actuators
are powered by current source amplifiers Sanyo Denki. The global drive
gains given by the manufacturer are equal to 637π ≈ 2001.

The approach presented in (Briot and Gautier, 2012) requires that the
robot moves on two types of exciting trajectories: (i) a first type of trajec-
tory without any payload and (ii) a second type of trajectory with a pay-
load. The way to compute exciting trajectories for identification presented
in (Gautier and Khalil, 1992) and is not detailed here. In our experiments,
the payload mass has been measured with an accurate weighing machine
(M7 = 1.983kg± 0.001kg).

Table 3 presents the identification results. In this table, 2σχ̂i repre-
sents the standard deviation of the parameters and %σχ̂ri the percentage of
estimation error.

Only the essential parameters are shown (Gautier, 1997), i.e. the param-
eters that have a real influence on the model. Let us recall that parameter
gτj represents the drive gain of actuator j, XXj, XYj , XZj, Y Yj , Y Zj, ZZj

are the 6 components of the inertia matrix of link j at the origin of frame
j, MXj ,MYj,MZj are the 3 components of the first moment of link j, Mj

is its mass, Iaj is the total inertia moment for rotor and gears, Fvj , F cj
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are the visquous and Coulomb friction coefficients in the joint. Moreover,
subscript ’R’ stands for the parameters that have been regrouped (Gautier,
1991)1. It should also be noticed that the given value of standard deviation
and percentage of error for the payload mass M7 are those estimated by the
use of the weighing machine.

The results show that the identified drive gains are about 5% far from
those given by the manufacturer. With these identified parameters, the
actuator efforts are reconstructed and compared with the measured ones
(Fig 3). It can be seen that the efforts are well simulated.

In order to definitely validate our method, a second payload of 1.136 kg is
mounted on the platform and a classical weighted least square identification
is performed (Gautier, 1997). Two cases are considered: (Case 1) the drive
gains used are those of the manufacturer and (Case 2) the drive gains are
those identified in Table 3. The following results are found: (Case 1) M7 =
1.09 kg with 2σχ̂i = 0.02 kg, (Case 2) M7 = 1.14 kg with 2σχ̂i = 0.02 kg.
It is thus possible to conclude that the identification of the drive gain using
IDIM-TLS leads to better payload reconstruction.

4 Conclusions

This paper has presented a global approach for both the identification of
parallel robots dynamic parameters and drive gains. It is based on a IDIM-
TLS technique using current reference and position sampled data while the

1

M11R =M11 + Ia11 +M21 +M31 +M41 +M51 + 3.23MX32 +M42 +M52

+ 3.23MX33 +M43 +M53 +M6

M12R =M21 + Ia21 +M22 − 3.23MX32 +M32

M13R =M31 +M23 − 3.2258MX33 +M33

ZZ21R =ZZ21 + Ia21 + Y Y31 + Y Y41 + 0.1M41 + 0.1M51 + 0.31MX32 + 0.1M42

+ 0.1M52 + 0.31MX33 + 0.1M43 + 0.1M53 + 0.1M6

Fv21R =Fv21 + Fv51

ZZ31R =ZZ31 + Ia31 + 0.1M41 + 0.1M51 + 0.31MX32 + 0.1M42 + 0.1M52

+ 0.31MX33 + 0.1M43 + 0.1M53 + 0.1M6

MX31R =MX31 + 0.31M41 + 0.31M51 +MX32 + 0.31M42 + 0.31M52 +MX33

+ 0.31M43 + 0.31M53 + 0.31M6

Fs31R =Fs31 + Fs41

Fs32R =Fs32 + Fs42

Fv33R =Fv33 + Fv43

Fs33R =Fs33 + Fs43
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Table 3: Essential parameters of the Orthoglide.

Par. Val. 2σχ̂i %σχ̂ri Par. Val. 2σχ̂i %σχ̂ri

gτ1 2110 8.93 0.42 Fs13 24.4 0.0813 0.33
gτ2 2130 8.83 0.41 ZZ21R 0.0970 1.13 · 10−3 1.17
gτ3 2070 5.16 0.25 MX21 −0.123 4.87 · 10−3 3.95

M11R 9.93 0.0468 0.47 Fv21R 5.50 0.0796 1.45
Fv11 83.0 0.377 0.45 ZZ31R 0.0739 1.04 · 10−3 1.41
Fs11 34.5 0.160 0.46 MX31R 0.202 3.43 · 10−3 1.70
M12R 8.86 0.0417 0.47 Fs31R 1.60 0.0245 1.54
Fv12 87.5 0.463 0.53 MX41 0.0377 7.73 · 10−4 2.05
Fs12 43.0 0.192 0.45 Fs32R 1.57 0.0245 1.56
M13R 1.10 0.0131 1.19 Fv33R −5.51 0.0851 1.54
Ia13 7.93 0.0242 0.31 Fs33R 1.37 0.0273 2.00
Fv13 84.1 0.238 0.28 M7 1.983 0.001 0.05
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(a) Actuator 1
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(b) Actuator 2
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(c) Actuator 3

Figure 3: Measured and computed torques of the Orthoglide with the pay-
load of 1.983 kg.

robot is tracking one reference trajectory without load fixed on the robot
and one trajectory with a known payload fixed on the robot, whose inertial
parameters are measured or calculated with a CAD software. Experiments
show that the technique increase the identification quality and that with
the new identified gains, the payload reconstruction is improved.
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