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Abstract Most of the papers dealing with the dynamic parame-
ters identification of parallel robots are based on simple models,
which take only the dynamics of the moving platform into account.
Moreover the actuator drive gains are not calibrated which leads to
identification errors. In this paper a systematic way to derive the
full dynamic identification model of parallel robots is proposed in
combination with a method that allows the identification of both
robot inertial parameters and drive gains.

1 Introduction

Parallel robots are increasingly being used since a few decades. This is due
to their main advantages compared to their serial counterparts that are: (i) a
higher intrinsic rigidity, (ii) a larger payload-to-weight ratio and (iii) higher
velocity and acceleration capacities (Merlet, 2006). In order to obtain these
interesting properties, a good controller should be implemented. Several
approaches could be envisaged (Amiral et al., 1996; Vivas and Poignet,
2005), but it appears that, for high-speed robots or when varying loads
have to be compensated (e.g. in pick-and-place operations or machining),
computed torque control is generally used (Khalil and Dombre, 2002). This
approach needs a correct identification of the dynamic model of the robot
with the load (Khalil et al., 2007), which can be obtained provided two
main conditions are satisfied: (i) a well-tuned derivative band-pass filtering
of actuated joints position is used to calculate the actuated joints velocities
and accelerations, and (ii) the accurate values of actuator drive gains g, are
accurately known to calculate the actuator force/torque as the product of
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the known control signal calculated by the numerical controller of the robot
(the current references) by the drive gains. However, this is rarely the case
and they need to be calibrated (Restrepo and Gautier, 1995; Corke, 1996).

Among all papers dealing with dynamic parameters identificiation for
parallel robots, only few of them propose a systematic computation of the
full Inverse Dynamic Identification Model (IDIM). In (Guegan et al., 2003),
the authors propose an attempt to create a systematic IDIM based on a
Newton-Euler approach. The closed loops are first virtually opened to com-
pute the dynamic model of the tree structure and then, the closure con-
straints are imposed. However, the way to open the loop is not straightfor-
ward. In (Grotjahn et al., 2004; Diaz-Rodriguez et al., 2010), the authors
propose methods for computing the IDIM based on the Jourdain’s prin-
ciple or Lagrange multipliers. But the way to identify the drive gains is
not treated. Moreover, some jacobian matrices, whose computation is not
straightforward, are not clearly derived.

In this paper it is proposed a global approach for both the identification
of parallel robots dynamic parameters and drive gains. This paper is the
first part of our work on the identification of the parallel robots dynamic
parameters and it presents the theoretical approach. A case study will be
treated in (Briot and Gautier, 2012).

2 A Systematic Procedure for the IDIM Computation

A parallel robot is a complex multi-body system having several closed loops
(Fig. 1la). It is composed of a moving platform connected to a fixed base
by n legs and m elements. In this paper, a method similar to (Ibrahim
and Khalil, 2010) is applied for the computation of IDIM of non-redundant
parallel robots. The proposed method is decomposed into two steps: (i)
all closed loops are virtually opened to make the platform virtually disas-
sembled from the rest of the structure (Fig. 1b); each leg joint is virtually
considered actuated (even for unactuated actual joints) so that the robot be-
comes a tree structure with a free body: the platform; the dynamic model of
the tree structure and of the free platform is then computed using a system-
atic procedure based on the Newton-Euler principle and (ii) the loops are
then closed using the loop-closure equations and the Lagrange multipliers.

2.1 IDIM of Tree Open Loop Robots

It is known that the complete rigid dynamic model of any open-loop tree
structure can be linearly written in term of a (n; x 1) vector with respect



(a) Kinematic chain (b) Virtual tree structure

Figure 1: A general parallel robot.

to the standard parameters yg;, (Khalil and Dombre, 2002),

Tidm, (At At Ae) = Gst, (Aes Ae, Ge) Xty (1)

where Tigm, is the (ns x 1) vector of the virtual input efforts of the tree
structure, ¢sq, is the (ny X ng,) jacobian matrix of 7;4m, , with respect to the
(nst, x 1) vector s, of the standard parameters given by s, = [x1, x2L,

.x2F] that are described in (Khalil and Dombre, 2002) and q, ¢, §; are
the vectors of the joint positions, velocities and accelerations, respectively.

Several methods can be used to systematically derive these equations.
Here, an algorithm based on the use of the modified Denavit-Hartenberg
robot geometric description and the Newton-Euler principle is applied. This
modelling is known to give the dynamic model equations in the most com-
pact form (Khalil and Dombre, 2002).

2.2 IDIM of Parallel Robots

The previous dynamic model does not take into account the closed loop
characteristics of parallel robots: among all joint coordinates q; and plat-
form coordinates x, only a subset denoted as q is independent (the actual
actuated joints positions). As a result, vectors q; and x can be computed
as functions of q using the loop-closure equations (Merlet, 2006),

ft(qv qt) = 07 fp(qv X) =0 (2)

Using these equations, all joint and platform velocities and accelerations



can be computed:
a4 =-A;'Big =314, t = -A,)'B,q=J,q, (3)

d = —A; (A +Big+Biq)y = A A+ B G+ B,a) (4)

where t is the platform twist, v the platform acceleration screw and matrices
A, A, (B, B,, resp.) can be obtained through the differentation of the
loop-closure equations (2) with respect to all joint coordinates q; and the
platform coordinates (actuated joints positions, resp.). It should be noticed
that the computation of matrices A; and By is generally not straightforward.
Therefore, it is preferable to:

1. express the kinematic relation between the platform twist t and the
velocities tyy, of all leg extremities Cy,, k (Fig. 1a), ti = Jut,

2. express the kinematic relation between the velocities t;; of all leg
extremities C,,,  and the velocities of all joints q, ti = Jidp,

3. combine these two relations with (3) in order to obtain ¢, = J:q, with
Jy=J glthJp. All the previous expressions are valuable as long as
the robot does not meet any singularity.

To take into account the closure-loop constraints into the dynamic model
of the parallel robot, the Lagrange multipliers A can be used (Khalil and
Dombre, 2002) to compute the (n x 1) vector of the actuated joint force/
torque T;qm of the closed-loop structure:

AT 0 Tidm
Tiam = —[B{ , B} ]\, where [ Ot Aﬂ A= [ 1;:} (5)
f, being the (6 x 1) vector of inertia forces of the platform plus the external
loading (Ibrahim and Khalil, 2010). (5) can be rewritten as:

Tidm = JzTidmt + Jgfp - Jz¢8tt (qta qta qt) Xstt + ngsp (Xa v, ’Y) X;D (6)
T .
= [I st T3] or. X3]

= Gst (Qa q, CI) Xst
where x, is the (10 x 1) vector of platform parameters, ¢, is the (6 x 10)
jacobian matrix between f, and x,, Xs¢ is the (ng x 1) vector of the global
standard parameters of the parallel robot and ¢4 the (n X ng) jacobian
matrix between T;q.,, and .

The identifiable parameters are the base parameters which are the min-
imum number of dynamic parameters from which the dynamic model can
be calculated (Khalil and Dombre, 2002). The minimal dynamic model can
be written using the n; base dynamic parameters y as follows:

Tidm = d) (qv (.17 q) X (7)



where ¢ is a subset of independant columns in ¢ which defines the identi-
fiable parameters.

Because of perturbations due to noise measurement and modelling errors,
the actual force/torque 7 differs from 7,4, by an error, e, such that:

. ; T o e
T=v,8 =diag(v]) [gt ... 9] =Tim te=0¢(q,q, 4 x+e (8)

v, is the (n x n) diagonal matrix of the actual current references of the cur-
rent amplifiers (vJ corresponds to actuated joints j) and g, is the (n x 1)
vector of the drive gains (g/ corresponds to actuator j). Equation (8) rep-
resents the IDIM.

3 Identification Procedure

3.1 Recalls on Least Squares Identification of the Dynamic Pa-
rameters (IDIM-LS)

The off-line identification of the base dynamic parameters x can be
achieved given measured or estimated off-line data for 7 and (q, q, §), col-
lected while the robot is tracking some planned trajectories. The model
(8) is sampled, low pass filtered and decimated in order to get an over-

determined linear system of (n X r) equations and n;, unknowns:

Y(r) = W(&,48)x +p (9)

where (4, 4, q) are an estimation of (q, 4, q), obtained by band-pass filtering
and sampling the measure of q (Gautier, 1997), p is the (r x 1) vector of
errors and W (@, q, §) is the ((n x r) X ny) observation matrix.

Using the base parameters and tracking some ’exciting’ reference trajec-
tories (Gautier and Khalil, 1992), a well conditionned matrix W is obtained.

The LS solution x of (9) is given by:
Y =WTY, where W = (WIW) ‘w7’ (10)

~

Standard deviations oy, can be estimated assuming that p is a zero
mean independant noise (Gautier, 1997). The ordinary LS can be improved
by taking into account different standard deviations on actuated joint j
equations errors (Gautier, 1997). This weighting operation normalises the
errors in (9) and gives the weighted LS estimation of the parameters (IDIM-
WLS).

3.2 Total Least Squares Identification

In the classical IDIM-LS, to compute vector Y, the drive gains are sup-
posed known. But usually the manufacturers give drive gain parameters



with an uncertainty of about 10%, thus leading to identification errors.
Therefore, it is preferable to introduce the drive gains into the base param-
eters and to use the Total Least Squares Identification (IDIM-TLS).

Details on the Total LS (TLS) identification method can be found in
(Huffel and Vandewalle, 1991) and many papers of the same authors. This
method has been applied in (Gautier et al., 1994) for the identification of the
drive gains and the dynamic parameters on a two degrees of freedom (dof)
serial robot but gives arguable results due to the lack of an accurate scale
factor. In this paper a major improvement is proposed: the accurate scaling
of parameters using the precise weighed value of an additional payload mass.
However, by the use of the model (9) without any modification, the payload
parameters are regrouped with the end-effector parameters and cannot be
independently identified. In order to apply the proposed approach, the
model (9) must be modified. This procedure is detailed below.

IDIM Including a Payload and Drive Gains The inertial parameters
of the payload are easily added to the IDIM by considering the payload as
a link m + 1 fixed to the robot platform. The model (8) becomes:

T=v.8 = [0 dur kL] X7 XL xﬁ}”e (11)

where xgr is the (ngr x 1) vector of the known inertial parameters of
the payload (calculated with CAD or accurately measured), y.r is the
((10 = ngr) x 1) vector of the unknown inertial parameters of the payload,
orr is the (n X ngr) jacobian matrix of g, with respect to the vector
XL and ¢, is the (n x (10 — ngr)) jacobian matrix of 7;4y,, with respect
to the vector y,r.

Solution of the IDIM-TLS The identification of the dynamic parame-
ters of the robot and the payload requires the achievement of two types of
trajectories: (a) trajectories without payload and (b) trajectories with the
payload fixed to the end-effector (Khalil et al., 2007). The sampling and
filtering of the model IDIM (11) can be then written as:

Y{Vfb] gT[Wb W.r Wiy R A (12)

where W, is the observation matrix of the robot in the unloaded case, Wy
is the observation matrix of the robot in the loaded case, W, is the obser-
vation matrix corresponding to the unknown payload inertial parameters,
‘W, is the observation matrix corresponding to the known payload inertial
parameters, V,, is the matrix of v, samples in the unloaded case, V. is
the matrix of v, samples in the loaded case.



Eq. (12) becomes:

-W, V 0 0 T T T T
WtotXtot = _W: V:: _WuL _WkLXkL [X ’ gT ’ XuL7 6]

=p

(13)

where Wy isa (1 x (np +n + 11 — ngr)) matrix, Xeor is & (np+n+11—nyp)
vector and ¢ is a scalar which should be equal to 1.

Without perturbation, p = 0 and W, should be rank deficient to get the
solutions Axiot # 0 depending on a scale coefficient \. However because of
the measurement perturbations, Wy, is a full rank matrix. Therefore, the
system (13) is replaced by the compatible system closest to (13) with respect
to the Frobenius norm: VAVtot)Qtot = 0, where Wtot is the rank deficient
matrix, with the same dimension as W;,;, which minimizes the Frobenius

norm |[Wior — Wio|| (Gautier et al., 1994) and i = [T 87 %I, cﬂT
is the solution of the compatible system closest to (13).

There are infinity of vectors Xt = AXj,; that can be obtained by a
scale factor A. A unique solution {¥,, = AX", can be found by taking into
account that the last value of x7,, should be equal to 1, i.e. A= 1/5 More
information on IDIM-TLS can be found in (Gautier and Briot, 2012).

This section ends the theoretical part of this work. A case study is
developped in (Briot and Gautier, 2012) and shows the effectivess of the
method.

4 Conclusions

This paper has presented a global approach for both the identification of
parallel robots dynamic parameters and drive gains. It is based on a IDIM-
TLS technique using current reference and position sampled data while
the robot is tracking one reference trajectory without load fixed on the
robot and one trajectory with a known payload fixed on the robot, whose
inertial parameters are measured. This paper has presented only theoretical
derivations and a case study will be presented in (Briot and Gautier, 2012).

Bibliography

Y. Amiral, G.F. Francois, J. Pontnauand, and M. Dafaoui. Design and
control of a new six-dof parallel robot: application to equestrian gait
simulation. Mechatronics, 6:227239, 1996.

S. Briot and M. Gautier. Global identification of drive gains and dynamic
parameters of parallel robots - part 2: Case study. In Proceedings of



the 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and
Control (RoManSy), 2012.

P. Corke. In situ measurement of robot motor electrical constants. Robotica,
23(14):433436, 1996.

M. Diaz-Rodriguez, V. Mata, A. Valera, and A. Page. A methodology
for dynamic parameters identification of 3-dof parallel robots in terms
of relevant parameters. Mechanism and Machine Theory, 45:13371356,
2010.

M. Gautier. Dynamic identification of robots with power model. In Pro-
ceedings IEEE ICRA, pages 1922-1927, Albuquerque, USA, April 1997.

M. Gautier and S. Briot. Global identification of drive gains parameters of
robots using a known payload. In Proceedings of the 2012 International
Conference on Robotics and Automation (ICRA 2012), 2012.

M. Gautier and W. Khalil. Exciting trajectories for the identification of the
inertial parameters of robots. International Journal of Robotics Research,
11(4):362-375, 1992.

M. Gautier, P. Vandanjon, and C. Presse. Identification of inertial and drive
gain parameters of robots. In Proceedings IEEE CDC, pages 3764-3769,
Lake Buena Vista, FL, USA, 1994.

M. Grotjahn, B. Heiman, and H. Abdellatif. Identification of friction and
rigid-body dynamics of parallel kinematic structures for model-based
control. Multibody System Dynamics, 11:273294, 2004.

S. Guegan, W. Khalil, and Ph. Lemoine. Identification of the dynamic
parameters of the orthoglide. In Proceedings IEEE ICRA, pages 3272—
3277, Taipei, Taiwan, September 2003.

S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Compu-
tational Aspects and Analysis. Frontiers in Applied Mathematics series
9. Philadelphia, Pennsylvania: STAM, 1991.

O. Ibrahim and W. Khalil. Inverse and direct dynamic models of hybride
robots. Mechanism and Machine Theory, 45:627-640, 2010.

W. Khalil and E. Dombre. Modeling, Identification and Control of Robots.
Hermes Penton London, 2002.

W. Khalil, M. Gautier, and P. Lemoine. Identification of the payload inertial
parameters of industrial manipulators. In Proceedings IEEE ICRA, pages
4943-4948, Roma, Italy, April 2007.

J.P. Merlet. Parallel Robots. Springer, 2nd edition, 2006.

P.P. Restrepo and M. Gautier. Calibration of drive chain of robot joints. In
Proceedings of the 4th IEEE Conference on Control Applications, pages
526-531, 1995.

A. Vivas and P. Poignet. Predictive functional control of a parallel robot.
Control Engineering Practice, 13:863874, 2005.



