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Abstract This paper deals with the optimal dynamics of the 3-
RRR decoupled robot in which the linear displacements of the plat-
form are decoupled from its orientation. The particularity of the
3-RRR decoupled robot is that an optimal choice of the leg’s ge-
ometric parameters allows an unlimited platform rotation, which
can be attractive for many industrial applications. However, a sin-
gular configuration is necessarily encountered during full platform
rotation. In order to generate a stable motion in the presence of
singularities, optimal dynamic conditions are disclosed. The sug-
gested optimal conditions ensuring unlimited platform rotation are
illustrated and validated by numerical simulations with ADAMS.

1 Introduction

In the last few decades, parallel manipulators have been the subject of var-
ious studies. Many problems devoted to their singularity, kinematics and
dynamics properties were disclosed. Parallel manipulators are used in more
and more applications nowadays. Consequently, new research problems are
continuously appearing. One of the structural disadvantages of parallel ma-
nipulators is the low platform rotation capability due to the multi-branch
architecture. In the last years this problem has been studied by several
researchers. In (Liu et al., 2005) a new family of 3-DOF parallel manipula-
tors with high rotational capability was proposed. The platform orientation
range was increased by non symmetric placement of three non-identical legs.
In (Sacludean et al., 2002; Company et al., 2005; Nabat et al., 2006b) new
architectures of 3-DOF parallel manipulators with unlimited rotation of the
end-effectors were developed. They consist of a pair of connected five-bar



mechanisms. A similar approach was applied in a parallel robot for medical
3D-ultrasound imaging (Lessard et al., 2008, 2007). In the parallel manip-
ulator H4, a complementary gear transmission (Kokikabushiki et al., 2000)
together with a belt transmission (Nabat et al., 2006a) were used to amplify
the orientation angle of the end-effector. A new family of spatial parallel
mechanisms with decoupled and unlimited rotation of the moving platform
was proposed in (Gogu, 2009). In the suggested architectures the mov-
ing platform performs two independent translations and one independent
unlimited rotation whose axis is perpendicular to the plane of translation.

A modified mobile platform design (Fig. la) was proposed in a recent
study (Arakelian et al., 2011), thus decoupling the position and the orien-
tation of the platform. In the 3-RRR decoupled robot, the loop (01, Aj,
C, As, O3) moves point C and the leg (O3, As, Bs) adjusts the orientation
¢ according to the position. If the position of point C' is given, this third
leg is equivalent to a four-bar linkage, which ensures a full rotation of the
platform. For the generation of a full rotation of the platform, however, the
four-bar linkage must cross a singularity.

In this paper, the optimal dynamic conditions are found in order that
the 3-RRR decoupled robot can cross a singularity during a full rotation
motion of its platform.

2 Description of the 3-RRR Decoupled Robot

2.1 Structural features and singularities

Let us consider the architecture of the suggested manipulator (Fig. 1a).
As shown in Fig. la, axis xg is along vector 01—02> The lengths of link O; A;
(resp. A;B;) are denoted as Li; (resp. Lg;). The length of the platform
CBs is denoted as R. The positions of the base joints O; along x¢ and ygo
are denoted as (zo,,¥yo,), with zo, = yo, = yo, = 0.

The aim of such a modification of the 3-RRR robot is to obtain an un-
limited platform rotation. Indeed, the four-bar linkage, which generates the
rotation of the platform, is equivalent to a rocker-crank mechanism. In this
case, it is able to transfer the oscillation of the input link O3A3 to the full
rotation of the platform C'Bs. The robot should be designed so that this
condition is satisfied in the whole workspace. However, a singularity must
be encountered during a full platform rotation motion. This singularity oc-
curs when C'Bs and A3Bs are aligned (Fig. 1b). As a result, the optimal
generation of the input link O3As for passing through singular configura-
tions must be achieved (Briot and Arakelian, 2008). This approach is based
on the study of the robot dynamic model.
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Figure 1: Schematics of the 3-RRR decoupled parallel robot and its singular
configurations encountered during a full platform rotation.

2.2 Dynamics of the robot

In this part, the robot inverse dynamic model is computed using the
Lagrange equations. To simplify the computation, it is preferable to replace
the masses of moving links 2¢ by concentrated masses (Seyferth, 1974). For
a link ji with mass m;; and its axial moment of inertia I;;, we have:

1 1 1 mji1 mj;
Tji 0 Tji — 1 mij2| = 0 (1)
TJQ-iL?,L- 0 (Tji - 1)2L?i m;i3 Ij'

where:

e 7j; is the non-dimensional position of the centre of masses Sj; of ele-
ment ji, i.e. for example for link 11, OS17 = r11L11,

o my;, (k= 1,2,3) are the values of the three point masses placed at
the centers of the revolute joints and at the center of masses of the
link ji.

The robot kinetic energy can be expressed as:

2T = Z (mjiV?S'ji + Ijiqu'i) +myp (5”2 + yz) + 1,¢°
i,
° - o . o oy (2)
= Z (Iv"liqli —+ ZIT-Qiqli(—x SN g1; + Y COS qli)) + Myp (J) +vy )

i=1

+ Ip¢? + 2I3qi36 cos(qi3 — @) + 2L, (—d sin ¢ + g cos @)



where
L = Ly + (magr?, + maj + ma(1 —12;)?)L3,,
Loi = maiorai (1 —r2;)) L3,
Myp = Mp + M213 + Mo23 + Ma33 + m2127”§1 + m2227“32 + m2327“%3,
Irp = I + (ma33 + mazaris) R?,
I3 = ma3ares(1 — ra3) R L3,
Iy = (mprp + ma33 + m2327’%3)R,
and &, ¥ are the platform translational velocities along x¢ and yo axes and
q5 is the platform rotation velocity, ¢i; is the joint rate of actuator i, vg,, is
the velocity of the centre of masses S;;, ¢;; the rotational velocity of link jz,
my, is the platform mass, I, its axial moment of inertia expressed at C and
rp the non-dimensional position of the centre of masses .S, of the platform,
ie. CSp, =rpR.

The gravity field is directed along the zg axis. As a result, the dynamic
model can be computed as (Moon, 2007):

7 =wp — BT\ with AT\ = w,, (3)

where \ are the Lagrange multipliers, matrices A and B are defined such

that At + B = 0 for t = [&,9, 6|7 and ¢ = [¢11, 12, ¢13]7 and

_d(oT\ oT  _d (oT\ OT T
=i (%) s ma () Gex-ted” @

3 Optimal Motion Generation

3.1 Condition for crossing the singularities

As disclosed in (Briot and Arakelian, 2008), the singularities considered
in this work can be crossed if and only if:

tiw, =0, (5)

where t; is the unit screw describing the gained degree of freedom when the
robot encounters a singularity. For the robot at hand, for the ’orientation’
singularity (Fig. 1b), it can be proven that t, is defined by t, = [0,0, 1]
throughout the workspace. Therefore, the condition for crossing this type
of singularity remains to cancel the last line of wp, i.e. from (2) and (4)

Lip$+Irs (G cos(qrs — §) — dis sin(ais — ) + L3 (j cos ¢ — i sin ) = 0, (6)

To lower the computation burden, it is preferable to express equation
(6) as a function of &, g, ¢, &, § and ¢ only. The terms ¢13 and ¢13 can be



removed using the following kinematic relationships:
g=-B At

. . . 7
G=-B (At + At +Bg) = -B YAt + (A - BB !A)t) ™)

The values of ¢13 and §13 can be extracted from the last line of vectors
g and q.

3.2 Illustrative example

In order to validate the previous approach, an ADAMS model is devel-
oped with the following robot parameters extracted from (Chablat et al.,
2012): R = 0.1 m; L1; = Lo; = 0.33 m; zp, = 0.1 m; zp, = 0.05 m;
Yo, = 0.6 m; mq; = me; = 1 kg; my, = 0.5 kg; I1; = Ir; = 0.009 kg.m?;
I, = 0.0017 kg.m?; r;; =7, = 0.5.

The robot is located at x(tg) = Xin = [—0.1 m,0.45 m,90 deg]” for
to = 0 s. Its task is to maintain the position of point C' while achieving
a full rotation of the platform in ¢ty = 1.5 s. Singularities will appear for
s1 ~ 269 deg and ¢4 ~ 328 deg. Two cases will be treated: (i) Case 1: a
motion without taking into account the conditions for passing through the
singularities, and (ii) Case 2: a motion that considers the conditions for
passing through the singularities.

For Case 1, the motion planning is achieved with a 7th degree polynomial
law in order to cancel the velocity, acceleration and jerk at the beginning
and at the end of the trajectory:

B(t) = 360s()+90, s(t) = 35(t/tp)* —84(t/t;)5+T0(t/t;)5 —20(t/ts)" (8)

where the following initial and final conditions are respected:
s(to) = s(to) = 5(ty) = 5(to) = 8(ts) = 8(to) = 5 (ty) = 0,s(ty) = 1.

The input torque of actuator 3 is plotted in Fig. 2a (it can be proven
that if the platform position is not changed, the torques of actuators 1 and
2 are cancelled). It is apparent that the input torque tends to infinity at
each singularity.

For Case 2, the motion is planned using three different polynomials sy.
Each part of the trajectory has to be achieved in 0.5s. s; is defined for
¢ € [90deg, ¢51] on the time interval [tg,tf1 = 0.5s], s2 for ¢ € [¢s1, Ps2] On
the time interval [tyi,to = 1s], and s3 for ¢ € [@s2,450deg] on the time
interval [tf2,tr3 = 1.5s]:

B(t) = (¢ps1 — 90)s1(t) + 90, for t € [to, 1]
2

P(t) = (¢s2 — Par)s2(t) + Pa1, for t € [ty1,t o] 9)
B(t) = (450 — @s2)s3(t) + dsa, for t € [tya, tys]



with

s1(t) =441.8819t* — 2074.5386t° + 3411.5717¢° — 1932.0441¢",

s2(t) =0.1690t + 0.0159(t — t 1) + 443.8291(t — t51)* — 2116.1982(t — t1)°
+3521.1306(t — t41)® — 2011.4236(¢ — t1)",

s3(t) =2.4400(t — tyo) + 3.8429(t — t r2)* + 15.8838(t — t 2)*
—316.3353(t — t2)° + 746.8231(t — t2)° — 506.5084(t — t12)",

where the following initial and final conditions are respected in order to
ensure the velocity, acceleration and jerk continuity all along the trajectory:

Torque (N.m Torque (N.m
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(a) For the trajectory defined at (8) (b) For the trajectory defined at (9)

Figure 2: Torque of actuator 3.

It should be mentioned that the value of 51 (tf1) (82(t2), resp.) is calcu-
lated so that it respects the condition for crossing the singularities expressed
at (6), taking into account that $1(ts1) = 1 ($2(ty2) = 1, resp.). The value
of ¢ all along this trajectory is plotted at Fig. 3a. Figure 3b presents the
resulting displacement of actuator 3. It can be observed that this actuator
has an oscillatory behaviour while the platform is ensuring a full rotation.



deg. .
450¢( eg.) 30 g3 (deg.)

400 / -40 / \
350 ,/ ~50 / \
300 / -60 / \
250 / -70 / \

200 / -80 / \

N
150 // -90 /
100 _
0 0.5 1.5 100 0.5 1.5
Time (s) Time (s)

(a) Value of the platform rotation ¢ (b) Resulting displacement of actuator 3
Figure 3: The trajectory defined at (9).

The input torque of actuator 3 is plotted in Fig. 2b. It appears now
that when crossing the singularities, the input torques remain finite.

It should be noted that in this example, only one turn has been achieved
with a fixed position of point C, but it is obvious that the number of platform
turns may be increased and that point C' can move as soon as the global
trajectory respects equation (6) at each singular configuration.

4 Conclusions

It is known that the singularity leads to a loss of robot controllability and
it is a serious obstacle for reproduction of stable motions. This drawback
can be overcome by means of the optimum force control. In this paper, the
optimal force generation of 3-RRR decoupled robots for ensuring unlim-
ited platform rotation has been studied. The particularity of these robots is
that an optimal choice of the legs’ geometric parameters allows an unlimited
platform rotation. However, a singular configuration is necessarily encoun-
tered during a full platform rotation. In order to generate a stable motion
in the presence of singularities, optimal dynamic conditions were found. To
illustrate the fruitfulness of the obtained results two different types of con-
trol have been compared: a motion generated via a 7th degree polynomial
law without taking into account the conditions for passing through the sin-
gularity and a motion that considers the optimal dynamic conditions for
passing through the singularity. For the second case, a full rotation of the
platform without perturbation of motion has been achieved. The obtained
results showed that the generation of stable unlimited platform rotation of
3-RRR decoupled robots is possible. It can be attractive for many industrial



applications.
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