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MONOIDS OF O-TYPE, SUBWORD REVERSING, AND ORDERED

GROUPS

PATRICK DEHORNOY

Abstract. We describe a simple scheme for constructing finitely generated monoids in
which left-divisibility is a linear ordering and for practically investigating these monoids.
The approach is based on subword reversing, a general method of combinatorial group
theory, and connected with Garside theory, here in a non-Noetherian context. As an
application we describe several families of ordered groups whose space of left-invariant

orderings has isolated points.

A group G is left-orderable if there exists a linear ordering on G that is left-invariant,
i.e., g < g′ implies hg < hg′ for every h in G. Viewing an ordering on G as a subset
of G ×G, one equips the family LO(G) of all left-invariant orderings of G with a topology
induced by the product topology of P(G×G). Then LO(G) is a compact space and, in many
cases, in particular when G is a countable non-abelian free group, LO(G) has no isolated
points and it is a Cantor set [20, 3]. By contrast, apart from the cases when LO(G) is
finite and therefore discrete, as is the case for the Klein bottle group and, more generally,
for the Tararin groups [21, 14], not so many examples are known when LO(G) contains
isolated points. By the results of [11], this happens when G is an Artin braid group (see also
[15]), and, by those of [16, 12], when G is a torus knot group, i.e., a group of presentation
〈x, y | xm = yn〉 with m,n > 2. These results, as well as the further results of [13], use
non-elementary techniques.

The aim of this paper is to observe that a number of ordered groups with similar prop-
erties, including the above ones, can be constructed easily using a monoid approach. A
necessary and sufficient condition for a submonoid M of a group G to be, when 1 is re-
moved, the positive cone of a left-invariant ordering on G is that M is what will be called
of O-type, namely it is cancellative, has no nontrivial invertible element, and its left-and
right-divisibility relations (see Definition 1.1) are linear orderings. Moreover, the involved
ordering is isolated in the corresponding space LO(G) whenever M is finitely generated.
We are thus naturally led to the question of recognizing which (finite) presentations define
monoids of O-type.

Here we focus on presentations of a certain syntactical type called triangular. Although
no complete decidability result can probably be expected, the situation is that, in practice,
many cases can be successfully addressed, actually almost all cases in the samples we tried.
The main tool we use here is subword reversing [4, 5, 6, 7], a general method of combinatorial
group theory that is especially suitable for investigating divisibility in a presented monoid
and provides efficient algorithms that make experiments easy. Both in the positive case
(when the defined monoid is of O-type) and in the negative one (when it is not), the approach
leads to sufficient Σ1

1-conditions, i.e., provides effective procedures returning a result when
the conditions are met but possibly running forever otherwise. At a technical level, the
main new observation is that subword reversing can be useful even in a context where all
traditional Noetherianity assumptions fail.

1Work partially supported by the ANR grant ANR-08-BLAN-0269-02
1991 Mathematics Subject Classification. 06F15, 20M05, 20F60.
Key words and phrases. monoid presentation, subword reversing, divisibility, quasi-central element, or-

dered group, space of orderings, Garside theory.
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The outcome is the construction of families of finitely generated monoids of O-type, hence
of ordered groups with isolated points in the space of left-orderings, together with algorithmic
tools for analysing these structures. There is a close connection with Garside theory [8] in
that all examples we obtain admit a Garside element. The scheme is summarized in the
following result (see Propositions 5.4, 5.5, and 5.9 for more general versions).

Theorem 1. Assume that G (resp. M) is the group (resp. monoid) defined by a (finite or
infinite) presentation (a1, a2, ... ; a1 = a2 w2 a2, a2 = a3w3 a3, ...) with w2, w3, ... words in
{a1, a2, ...} (no a

−1
i ). Assume moreover that there exists in M a power ∆ of a1 such that,

for every i > 2, there exist g, g′ satisfying ai∆ = ∆g and ∆ai = g′∆. Then (i) M\{1} is the
positive cone of a left-invariant ordering 6 on G; (ii) If {a1, a2, ...} is finite, 6 is isolated in
the space LO(G), and the word problem of G and the decision problem for 6 are decidable.

Among others, the approach applies to the above mentioned torus knot groups, providing
a short construction of an isolated ordering, and to the groupB3 of 3-strand braids, providing
one more proof of its orderability. More examples are listed in Table 1.

1: 〈a, b | a = b(apb)q〉 ∆ = a
p+1 central (Proposition 6.4);

is also 〈x, y |xp+1=yq+1〉 (torus knot group)

2: 〈a, b | a = b(abp)qab〉 ∆ = (abp−1)2 central (Proposition 6.5);
is also 〈x, y |xq+2=y2〉 (torus knot group)

3: 〈a, b | a = ba
pq−1

ba
p−1

ba
pq−1

b〉 ∆ = a
2pq−p central;

is also 〈x, y |xp = (yxpq−py)2〉,
and 〈a, b, c | a = ba

p−1
b, b = ca

pq−1
c〉

4: 〈a, b | a = ba
pq
ba

p−1
ba

pq
b〉 ∆ = (apqb)2 quasi-central (Propos. 6.7);

is also 〈x, y |xp = (yxpq−p+1y)2〉,
and 〈a, b, c | a = ba

p−1
b, b = ca

pq
c〉

5: 〈a, b, c | a = ba
p−1

b, b = ca
pq−1

bc〉 ∆ = a
p
2
q−p(p−1) central

6: 〈a, b, c | a = ba
p−1

b, b = ca
pq
bc〉 ∆ = a

pq
b
2 quasi-central (central for p = 1)

7: 〈a, b, c | a = b(ab)p, b = cb(a2q−1
b)pc〉 ∆ = a

2p(p+1)(q−1) central

8: 〈a, b, c | a = b(apb)q , b = c((apb)rapc)s〉 ∆ = a
(p+1)(r+1) central (Proposition 8.2);

is also 〈x, y, z |xp+1 = yq+1, yr+1 = zs+1〉

Table 1. Some groups eligible for the current approach, hence ordered with an
isolated point in the space of orderings: all values p, q, r, s > 1 are permitted.

The paper is organized as follows. In Section 1, we introduce the notion of a monoid of
O-type and describe its connection with ordered groups. In Section 2, we define triangular
presentations, raise the central question, namely recognizing when a (right)-triangular pre-
sentation defines a monoid of (right)-O-type (and therefore leads to an ordered group), and
state without proof the main technical result (“Main Lemma”), which reduces the central
question to the existence of common right-multiples. Section 3 contains a brief introduction
to subword reversing, with observations about the particular form it takes in the context of
right-triangular presentations. In Section 4, we establish that every right-triangular presen-
tation is what we call complete for right-reversing, and deduce a proof of the Main Lemma.
Next, we investigate in Section 5 the notion of a quasi-central element in a monoid and,
putting things together, we obtain the expected sufficient conditions for a presentation to
define a monoid of O-type, completing in particular the proof of Theorem 1. Various ex-
amples are then exhibited in Sections 6 and 8, with an intermission in Section 7 where we
establish some negative results about the existence of triangular presentations. Finally, some
questions are gathered in Section 9.
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The author thanks A.Navas, L. Paris, C.Rivas, and D. Rolfsen for discussions about the
subject of the paper.

1. Monoids of O-type

If G is an orderable group and < is a left-invariant ordering of G, the positive cone P<
of <, i.e., the set {g ∈ G | g > 1}, is a subsemigroup of G satisfying G = P< ∐ P<

−1 ∐ {1}.
Conversely, if P is a subsemigroup of G satisfying G = P ∐ P−1 ∐ {1}, then the relation
g−1h ∈ P defines a left-invariant ordering on G and P is the associated positive cone.

In the sequel, the notions of divisors and multiples will play a central role. It is convenient
to consider them in the context of monoids, i.e., semigroups with a unit.

Definition 1.1. Assume that M is a monoid. For g, h in M , we say that g is a left-divisor
of h, or, equivalently, h is a right-multiple of g, denoted g 4 h, if there exists h′ in M
satisfying gh′ = h. Symmetrically, we say that g is a right-divisor of h, or, equivalently, h
is a left-multiple of g, denoted h <̃ g, if there exists h′ in M satisfying h = h′g.

For every monoid M , left- and right-divisibility are partial preorders on M , and they are
partial orders whenever 1 is the only invertible element of M . Note that the right-divisibility

relation of a monoid M is the left-divisibility relation of the opposite monoid M̃ , i.e., the
monoid with the same domain equipped with the operation defined by g ·̃ h = hg.

It is easy to translate the existence of an invariant ordering in a group into the language
of monoids and divisibility. We recall that a monoid is called left-cancellative (resp. right-
cancellative), for all g, g′, h in the monoid, hg = hg′ (resp. gh = g′h) implies g = g′.
A monoid is cancellative if it is both left- and right-cancellative. The monoids we shall
investigate are as follows.

Definition 1.2. A monoid M is said to be of right-O-type (resp. left-O-type) if M is left-
cancellative (resp. right-cancellative), 1 is the only invertible element in M , and, for all g, h
in M , at least one of g 4 h, h 4 g (resp. g <̃ h, h <̃ g) holds. A monoid is of O-type if it is
both of right- and left-O-type.

In other words, a monoid M is of right-O-type if it is left-cancellative and left-divisibility
is a linear ordering on M , and it is of O-type if it is cancellative and left- and right-
divisibility are linear orderings on M . The letter O stands for “order”; it may seem strange
that the notion connected with left-divisibility is called “right-O-type”, but this option is
natural when one thinks in terms of multiples and it is more coherent with the forthcoming
terminology. The connection with ordered groups is easy.

Lemma 1.3. For G a group and M a submonoid of G, the following are equivalent:
(i) The group G admits a left-invariant ordering whose positive cone is M\{1};
(ii) The monoid M is of O-type.

Proof. Assume (i). Put P = M\{1}. First, by assumption, M is included in a group,
hence it must be cancellative. Next, assume that g is an invertible element of M , i.e., there
exists h in M satisfying gh = 1. If g belongs to P , then so does h and, therefore, g belongs
to P ∩ P−1, contradicting the assumption that P is a positive cone. So 1 must be the only
invertible element of M . Now, let g, h be distinct elements of M . Then one of g−1h, h−1g
belongs to P , hence to M : in the first case, g 4 h holds, in the second, h 4 g. Symmetrically,
one of gh−1, hg−1 belongs to P , hence to M , now implying g <̃ h or h <̃ g. So any two
elements of M are comparable with respect to 4 and <̃. Hence M is of O-type, and (i)
implies (ii).

Conversely, assume that M is of O-type. Put P = M\{1} again. Then P is a subsemi-
group of G. The assumption that 1 is the only invertible element in M implies P ∩P−1 = ∅.
Next, the assumption that any two elements of M are comparable with respect to 4 implies
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a fortiori that any two of its elements admit a common right-multiple. By Ore’s theorem [2],
this implies that G is a group of right-fractions for M , i.e., every element of G admits an
expression of the form gh−1 with g, h in M . Now, let f be an element of G. As said above,
there exist g, h in M satisfying f = gh−1. By assumption, at least one of g <̃ h, h <̃ g
holds in M . This means that at least one of f ∈ M , f ∈ M−1 holds. Therefore, we have
G = M ∪M−1, which is also G = P ∪ P−1 ∪ {1}. So P is a positive cone on G, and (ii)
implies (i). �

It will be convenient to restate Lemma 1.3 in terms of presentations. A semigroup pre-
sentation (or positive group presentation [6]) is a pair (S ;R) with S a (nonempty) set and
R a family of relations of the form u = v, where u, v are nonempty words in the alphabet S.
Every semigroup presentation (S ;R) naturally defines three structures, namely a semigroup,
a monoid, and a group; we use 〈S |R〉+ and 〈S |R〉 for the monoid and the group so defined.

Lemma 1.4. For every semigroup presentation (S ;R), the following are equivalent:
(i) The group 〈S |R〉 admits a left-invariant ordering whose positive cone admits, as a

semigroup, the presentation (S ;R);
(ii) The monoid 〈S |R〉+ is of O-type.

Proof. The proof that (i) implies (ii) is the same as for Lemma 1.3: the only additional
point is that, if a semigroup P admits, as a semigroup, the presentation (S ;R), then the
monoid P ∪ {1} admits, as a monoid, the same presentation.

As for (ii) implying (i), let G be a group with presentation (S ;R) and let M be a monoid
with that presentation. By Ore’s theorem, as in the proof of Lemma 1.3, the hypothesis that
M is of right-O-type implies that M embeds in a group of right-fractions. Moreover (this
is the additional point) the latter group admits the presentation (S ;R). So there exists an
embedding ι of M into G. Then the rest of the verification is the same, and ιM\{1} is a
positive cone on G. �

2. Triangular presentations

We are thus led to looking for monoids of O-type and, more specifically, for recognizing
which presentations define monoids of O-type. Owing to the symmetry of the definition, we
shall mainly focus on recognizing monoids of right-O-type and then use the criteria for the
opposite presentation. Now, if a monoid M is of right-O-type and it is generated by some
subset S, then, for all s, s′ in S, the elements s and s′ are comparable with respect to 4,
i.e., s′ = sg holds for some g, or vice versa. In other words, some relation of the particular
form s′ = sw must be satisfied in M . We shall consider presentations in which all relations
have this form (see Section 7 for a discussion about the relevance of this approach).

Definition 2.1. A semigroup relation u = v is called triangular if either u or v consists of
a single letter.

So, a triangular relation has the generic form s′ = sw, where s, s′ belong to the reference
alphabet. For instance, a = bab and b = c

2
ba are typical triangular relations in the alphabet

{a, b, c}. The problem we shall address now is

Question 2.2. Assume that (S ;R) is a presentation consisting of triangular relations. Is
the associated monoid necessarily of right-O-type?

The following counter-example shows that a uniform positive answer is impossible.

Example 2.3. The presentation (a, b, c; c = ab, c = ba) consists of two triangular relations.
The associated monoid M is a rank 2 free Abelian monoid based on a and b, and neither
of a, b is a right-multiple of the other. So M is not of right-O-type.
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Clearly, the problem in Example 2.3 is the existence of several relations c = ... simulta-
neously. We are thus led to restricting to particular families of triangular relations. If S is
a nonempty set, we denote by S∗ the free monoid of all words in the alphabet S. We use ε
for the empty word.

Definition 2.4. A semigroup presentation (S ;R) is called right-triangular if there exist
S′ ⊆ S and maps N (“next”) : S′ → S and C (“complement”) : S′ → S∗\{ε} such
that N is injective with no fixpoint and R consists of the relations N(s) = sC(s) for s

in S′. We write Ci(s) for C(s)C(N(s))···C(N i−1(s)) when N i(s) is defined, and R̂ for
R ∪ {N i(s) = sCi(s) | i > 2}. A left-triangular presentation is defined symmetrically by

relations Ñ(s) = C̃(s)s. A presentation is triangular if it is both right- and left-triangular.

Example 2.5. Assume S = {a, b, c} and R = {a = bac, b = cba}. Then (S ;R) is a right-
triangular presentation. The associated maps N and C are given by N(b) = a, C(b) = ac,

N(c) = b, C(c) = ba, and we have R̂ = R ∪ {a = cba
2
c}. The presentation (S ;R) is also

left-triangular, with Ñ and C̃ defined by Ñ(a) = b, C̃(a) = cb, Ñ(c) = a, C̃(c) = ba.

If (S ;R) is a right-triangular presentation, the family R̂ is a sort of transitive closure

of R, and the presentations (S ;R) and (S ; R̂) define the same monoid and the same group.
Triangular presentations can be described in terms of the left- and right-graphs [1, 18]. The
left-graph (resp. right-graph) of (S ;R) is the unoriented graph with vertex set S such that
{s, s′} is an edge if and only if there exists a relation s... = s′... (resp. ...s = ...s′) in R.
Then a presentation (S ;R) is right-triangular if it consists of triangular relations and, in
addition, the left-graph of (S ;R) is a union of discrete chains. In practice, we shall be
mostly interested in the case when there is only one (countable) chain, in which case there
exists a (finite or infinite) subset I of Z such that S is {ai | i ∈ I} and R consists of one
relation ai−1 = aiwi for each i in I that is not minimal.

Our main technical result will be a criterion for recognizing which right-triangular pre-
sentations give rise to a monoid of right-O-type.

Proposition 2.6 (Main Lemma). Assume that (S ;R) is a right-triangular presentation.
Then the following are equivalent:

(i) The monoid 〈S |R〉+ is of right-O-type;
(ii) Any two elements of 〈S |R〉+ admit a common right-multiple.

The proof of the Main Lemma will be completed at the end of Section 4 below. In terms
of ordered groups, this result merged with Lemma 1.4 provides a characterization for ordered
groups with an explicitly presented positive cone.

Corollary 2.7. For every triangular presentation (S ;R), the following are equivalent:
(i) The group 〈S |R〉 admits a left-invariant ordering whose positive cone admits, as a

semigroup, the presentation (S ;R);
(ii) Any two elements of the monoid 〈S |R〉+ admit a common right-multiple and a com-

mon left-multiple.

Proof. If (i) is satisfied, then, by Lemma 1.4, the monoid 〈S |R〉+ is of O-type, and Propo-

sition 2.6 applied to (S ;R) and to the opposite presentation (S, R̃) implies (ii). Conversely,

if 〈S |R〉+ satisfies (ii), Proposition 2.6 applied to (S ;R) and (S, R̃) implies that 〈S |R〉+ is
both of right- and left-O-type. Then Lemma 1.4 implies (i). �

3. Subword reversing

We shall prove the Main Lemma by using subword reversing. In essence, subword re-
versing is a strategy for constructing van Kampen diagrams in a context of monoids, i.e.,
equivalently, for finding derivations between words, and we shall see that it is especially
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relevant for investigating triangular presentations (due to the special form of triangular
presentations, it might well be that alternative arguments using rewrite systems or other
approaches also exist, but this is not clear).

The description given below is sketchy, as we only mention the definition and the needed
technical results. We refer to [6, 7] for additional motivation and explanation.

As is usual with presented groups, if S is an alphabet, we introduce a formal copy S−1

of S consisting of one letter s−1 for each letter of S. The letters of S are then called positive,
whereas those of S−1 are called negative. Accordingly, a word in the alphabet S ∪ S−1 will
be called a signed S-word, whereas a word in the alphabet S is called an S-word, or a positive
S-word if we wish to insist that there is no negative letter. If w is a signed S-word, w−1

denotes the word obtained from w by exchanging s and s−1 everywhere and reversing the
order of the letters. A word of the form u−1v with u, v positive is called negative–positive.

Definition 3.1. Assume that (S ;R) a semigroup presentation and w,w′ are signed S-words.

We say that w is right-R-reversible to w′ in one step, denoted w y
(1)
R w′, if either there exist

s, s′ in S, a relation sv′ = s′v of R, and signed words w1, w2 satisfying

(3.1) w = w1 s
−1s′ w2 and w′ = w1 v

′v−1 w2,

or there exist s in S and signed S-words w1, w2 satisfying

(3.2) w = w1 s
−1sw2 and w′ = w1 w2.

We say that w is right-R-reversible to w′ in n steps, denoted w y
(n)
R w′, if there exist

w0, ... , wn satisfying w0 = w, wn = w′ and wi y
(1)
R wi+1 for each i. We write w yR w′ if

w y
(n)
R w′ holds for some n.

Note that (3.2) becomes an instance of (3.1) if, for every s in S, the trivial relation s = s
is considered to belong to R. Right-reversing consists in replacing a negative–positive length
two subword with a positive–negative word, hence somehow reversing the signs, whence the
terminology. We shall often write “reversing” for “right-reversing” (except at the end of
Section 5 where left-reversing, the symmetric counterpart of right-reversing, occurs).

Example 3.2. Assume S = {a, b, c} and R = {a = bab, b = cbc, a = cbcab}. Starting for
instance with w = a

−1
c
−1

a, we find

w = a
−1

c
−1

a y
(1)
R a

−1
bcab y

(1)
R b

−1
a
−1

cab,

where, at each step, the reversed subword is underlined. Observe that the word obtained

after two reversing steps is b−1w−1
b, so that w y

(4n)
R b

−2nwb2n holds for every n.

It is useful to associate with every sequence of reversing steps a rectangular grid diagram
that illustrates it (see [7] for full details). Assume that w0, w1, ... is an R-reversing sequence,

i.e., wi y
(1)
R wi+1 holds for every i. The diagram is analogous to a van Kampen diagram, and

it is constructed inductively. First we associate with w0 a path shaped like an ascending
staircase by reading w0 from left to right and iteratively appending a horizontal right-
oriented edge labeled s for each letter s, and a vertical down-oriented edge labeled s for
each letter s−1. Then, assume that the diagram for w0, ... , wi has been constructed, and
wi+1 is obtained from wi by reversing some subword s−1s′ into v′v−1. Inductively, the

subword s−1s′ corresponds to an open pattern

s′

s in the diagram, and we complete

it by appending new arrows forming the closed pattern

s′

s

v′

vyR . If the length ℓ of v is
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more than one, the arrow labeled v consists of ℓ concatenated arrows. If v is empty, we

append a equality sign, as in

s′

s

v′

yR . It then follows from the inductive definition that

all words wi can be read in the diagram by following the paths that connect the bottom-left
corner to the top-right corner, see Figure 1.

a

b c a b

yRc

a
a

b
yR

Figure 1. Reversing diagram associated with the reversing sequence of Exam-
ple 3.2: starting from the signed word a

−1
c
−1

a, which corresponds to the left and
top arrows, we successively reverse c

−1
a into bcab, and a

−1
b into b

−1
a
−1, thus

obtaining the final word b
−1

a
−1

cab.

If (S ;R) is a semigroup presentation, and u, v are S-words, applying iterated subword
reversing to the signed word u−1v may lead to three different behaviours:

- either the process continues for ever (as in the case of Example 3.2),
- or one gets stuck with a factor s−1s′ such that R contains no relation s... = s′...,
- or the process leads in finitely many steps to a positive–negative word v′u′−1 where u′

and v′ are S-words (no letter s−1): then the sequence cannot be extended since the last
word contains no subword of the form s−1s′; this case corresponds to a reversing diagram

of the form

v

u

v′

u′yR , and we shall then say that the reversing of u−1v is terminating.

We shall use without proof two (elementary) results about reversing. The first one con-
nects R-reversing with R-equivalence and it expresses that a reversing diagram projects to
a van Kampen diagram when the vertices connected with equality signs are identified.

Notation 3.3. For (S ;R) a semigroup presentation, we denote by ≡+

R the smallest congru-
ence on S∗ that includes R, so that 〈S |R〉+ is S∗/≡+

R. For w an S-word, we denote by [w]+

the ≡+

R-class of w, i.e., the element of the monoid 〈S |R〉+ represented by w.

Lemma 3.4. [6, Proposition 1.9] Assume that (S;R) is a positive presentation, and u, v, u′, v′

are S-words satisfying u−1v yR v′u′−1. Then uv′ ≡+

R vu′ holds. In particular, u−1v yR ε
implies u ≡+

R v.

In other words, the existence of a reversing diagram

v

u

v′

u′yR implies uv′ ≡+

R vu′,

which also reads [u]+[v′]+ = [v]+[u′]+: the element represented by uv′ and vu′ is a common
right-multiple of [u]+ and [v]+ in the associated monoid. Thus subword reversing can be
seen as a tool for constructing common right-multiples in presented monoids.

The second basic result says that, when the reversing of a compound word u−1v1v2
terminates, the reversing steps involving v1 and v2 can be separated.

Lemma 3.5. [6, Lemma 1.8] Assume that (S ;R) is a semigroup presentation and u, v, u′, v′

are S-words satisfying u−1v y
(n)
R v′u′−1. Then, for every decomposition v = v1v2, there exist
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an S-word u0 and decompositions v′ = v′1v
′
2 and n = n1 + n2 such that u−1v1 y

(n1)
R v′1u

−1
0

and u−1
0 v2 y

(n2)
R v′2u

′−1 hold.

In other words, every diagram

v1 v2

u

v′

u′y
(n)
R splits into

v1 v2

u

v′1 v′2

u0 u′y
(n1)
R y

(n2)
R .

Here comes the first specific observation about reversing with triangular relations.

Lemma 3.6. If (S ;R) is a semigroup presentation consisting of triangular relations, and
u, v, u′, v′ are S-words satisfying u−1v yR v′u′−1, then at least one of u′, v′ is empty.

Proof. We use induction on the number of reversing steps, i.e., the number n such that

u−1v y
(n)
R v′u′−1 holds. For n = 0, the only possibility is that u, v, u′, v′ all are empty and

the result is trivial. For n = 1, the only possibility is that u or v consists of one letter, say
for instance u = s ∈ S. Write v = s′w with s′ in S. If the (unique) reversing step is of the
type s−1s y ε, we obtain u′ = ε (and v′ = w). Otherwise, the reversing step is either of the
type s−1s′ y w′ with sw′ = s′ a relation of R, or of the type s−1s′ y w′−1 with s′w′ = s
a relation of R. In the first case, we obtain u′ = ε (and v′ = w′w); in the second case, the
final word w′−1w is positive–negative only if w is empty, and, in this case, we have v′ = ε
(and u′ = w′). The argument is similar if v, instead of u, has length one.

Assume now n > 2. Then at least one of the words u, v has length two or more. Assume
that v does, and write it as v1v2 with v1, v2 nonempty. By Lemma 3.5, the assumption
that u−1v1v2 reverses to v′u′−1 in n steps implies the existence of S-words v′1, v

′
2, u0 and of

numbers n1, n2 satisfying

v′ = v′1v
′
2, n = n1 + n2, u−1v1 y

(n1)
R v′1u

−1
0 , and u−1

0 v2 y
(n2)
R v′1u

′−1.

Two cases are possible. Assume first n1 = n, whence n2 = 0. As, by assumption, v2 is
nonempty, the hypothesis that u−1

0 v2 is a positive–negative word implies that u0 is empty,
and so is u′. Assume now n1 < n. The value n1 = 0 is impossible as it would imply that u
or v1 is empty, contrary to the assumption. Hence we also have n2 < n. Now assume that
u′ is nonempty. Then, as we have n2 < n, the induction hypothesis implies that v′2 is empty.
Next, u′ can be nonempty only if u0 is nonempty. Then, as we have n1 < n, the induction
hypothesis implies that v′1 is empty as well, and we conclude that v′, which is v′1v

′
2, is empty.

See Figure 2. �

Figure 2. The three possible ways of concatenating two reversing diagrams in
which one of the output words is empty: in each case, one of the final output words
has to be empty.

So, in the context of triangular relations, when reversing is terminating, it shows not
only that the elements of the monoid represented by the initial words admit a common
right-multiple, but also that these elements are comparable with respect to left-divisibility.
Indeed, by Lemma 3.4, if we have u−1v yR v′ with v′ a (positive) S-word, we deduce
[u]+[v′]+ = [v]+, whence [u]+ 4 [v]+ in the monoid 〈S |R〉+ and, symmetrically, if we have
u−1v yR u′−1 with u′ an S-word, we deduce [v]+[u′]+ = [u]+, whence [v]+ 4 [u]+.
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4. Completeness of subword reversing

Owing to Lemma 3.6, if (S ;R) is a semigroup presentation that consists of triangular
relations, in order to prove that any two elements of the monoid 〈S |R〉+ are comparable
with respect to left-divisibility, it is enough to show that, for all S-words u, v, there exists
at least one reversing sequence from u−1v that is terminating, i.e., is finite and finishes with
a positive–negative word.

A natural situation in which reversing is guaranteed to be terminating is the case when,
for every pair of letters s, s′, there exists at least one relation s... = s′... in R (so that one
never gets stuck) and all relations u = v of R involve words u, v of length at most two, so that
reversing does not increase the length of words. More generally, termination is guaranteed

when one can identify a set of S-words Ŝ including S so that, for all u, v in Ŝ, there exist u′, v′

in Ŝ satisfying u−1v yR v′u′−1 (which amounts to meet the above conditions with respect

to the extended alphabet Ŝ). However, except in a few trivial examples, this approach

fails when applied to presentations with triangular relations: usually, the closure Ŝ of S
under reversing is infinite and difficult to work with. Therefore, we must use a more subtle
approach in two steps, namely showing that

(i) if two elements represented by words u, v admit a common right-multiple, then the
reversing of u−1v terminates, and

(ii) any two elements of the considered monoids admit a common right-multiple.
When this is done, Lemma 3.6 can be applied and one is close to concluding that the
considered monoid is of right-O-type. In this section, we address point (i). Here comes the
second, more important observation of the paper, namely that (i) is always true for a right-
triangular presentation. Technically, the proof relies on what is known as the completeness
condition.

If (S ;R) is any semigroup presentation, then, by Lemma 3.4, u−1v yR ε, i.e., the exis-

tence of a diagram

v

u yR , implies u ≡+

R v. We consider now the converse implication.

Definition 4.1 (complete). A semigroup presentation (S ;R) is called complete for right-
reversing if, for all S-words u, v,

(4.1) u ≡+

R v implies u−1v yR ε.

As the converse of (4.1) is always true, if (S ;R) is complete, (4.1) is an equivalence.

Remark 4.2. If there exist two letters s, s′ of S such that, in the presentation R, there
is more than one relation of the type s... = s′... (including the case when there exists
a relation s... = s... different from the implicit trivial relation s = s), then R-reversing
need not be a deterministic process and, starting from some words u, v, there may exist
several pairs u′, v′ satisfying u−1v yR v′u′−1. According to our definitions, the condition
u−1v yR ε involved in (4.1) means that there exists at least one way of obtaining the empty
word starting from u−1v. However, this type of non-determinism never occurs with a right-

triangular presentation (S ;R) or its completion (S, R̂): by definition, R̂ contains at most

one relation s... = s′... for each pair of letters, so R- and R̂-reversings are deterministic.

The intuition behind completeness is that, when a presentation is complete for right-
reversing, the a priori complicated relation ≡+

R can be replaced with the more simple re-
lation yR. As explained in [7], this makes recognizing some properties of the associated
monoid and group easy. In our current context, in order to address point (i) above, we are
interested in connecting the existence of common multiples and termination of reversing.
When the completeness condition is satisfied, this is easy.
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Lemma 4.3. Assume that (S ;R) is a positive presentation that is complete for right-
reversing. Then, for all g, h in 〈S |R〉+, the following are equivalent:

(i) The elements g and h admit a common right-multiple;
(ii) For some S-words u, v representing g and h, the reversing of u−1v is terminating;
(iii) For all S-words u, v representing g and h, the reversing of u−1v is terminating.

Proof. Assume that g and h admit a common right-multiple f . By definition, there exist
g′, h′ satisfying f = gh′ = hg′. Let u, v, u′, v′ be arbitrary S-words representing g, h, g′,
and h′. Then we have uv′ ≡+

R vu′, whence (uv′)−1(vu′) yR ε, i.e., v′−1u−1vu′
yR ε since

(S ;R) is complete for right-reversing. Applying Lemma 3.5 twice, we split the reversing
diagram of (uv′)−1(vu′) into four diagrams:

v u′

u

v′ yR yR

yR yR

.

Each of the four diagrams above necessarily corresponds to a terminating reversing and, in
particular, the reversing of u−1v must terminate. So (i) implies (iii).

On the other hand, it is obvious that (iii) implies (ii). Finally, by Lemma 3.4, any relation
u−1v yR v′u′−1 implies that the element of 〈S |R〉+ both represented by uv′ and vu′ is a
common right-multiple of the elements represented by u and v, so (ii) implies (i). �

Owing to Lemmas 3.6 and 4.3, we are led to wondering whether a presentation consisting
of triangular relations is necessarily complete for right-reversing. A priori, the question may
seem hopeless as the only method known so far for establishing that a presentation (S ;R)
is complete for right-reversing [5, 6] consists in establishing a certain combinatorial condi-
tion (the “cube condition”) using an induction that is possible only when the associated
monoid M satisfies some Noetherianity condition, namely that, for every g in M ,

(4.2) there is no infinite sequence g0, g1, ... satisfying g0 ≺ g1 ≺ g2 ≺ ··· 4 g,

where g ≺ h means g 4 h with g 6= h. Now, (4.2) turns out to fail whenever R contains a
relation of the form s = ...s..., hence in most of the cases we are interested in. However, right-
triangular presentations turn out to be eligible for an alternative completeness argument.

Proposition 4.4. For every right-triangular presentation (S ;R), the associated presenta-

tion (S, R̂) is complete for right-reversing.

The proof will be split into several steps. Until the end of the proof, we assume that
(S ;R) is a fixed right-triangular presentation, with associated functions N and C. We
recall that this means that R consists of the relations N(s) = sC(s) with s in S. We recall
also that Ci(s) stands for C(s)C(N(s))···C(N i−1(s)) whenever N i(s) is defined.

By definition, if u, v are S-words, then u ≡+

R v holds, i.e., u and v represent the same
element in 〈S |R〉+, if and only if there exists an R-derivation from u to v, i.e., a sequence
w0 = u,w1, ... , wn = v such that each word wk is obtained from wk−1 by applying exactly

one relation of R. We write u ≡
+(n)
R v when there exists a length n derivation from u to v.

Definition 4.5. Assume that w is a nonempty S-word. We denote by I(w) the initial
letter of w, and by T (w) (like “tail”) the subword satisfying w = I(w)T (w). We say that
a letter s of S underlies w if I(w) = N i(s) holds for some i > 0. In this case, we put
Es(w) = sCi(s)T (w); otherwise, we put Es(w) = w.

A straightforward induction on i gives N i(s) ≡+

R sCi(s) whenever defined, and we deduce
w = N i(s)T (w) ≡+

R sCi(s)T (w) = Es(w) whenever I(w) = N i(s) holds.
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We begin with a direct consequence of the definition of a right-triangular presentation.

Lemma 4.6. Assume that (w0, ... , wn) is a sequence of S-words such that, for every k, some
letter of S underlies wk and wk+1. Then some letter underlies all of w0, ... , wn.

Proof. We use induction on n. The result is obvious for n 6 1. Assume n > 2. By induction
hypothesis, there exists s underlying w0 and w1, and s′ underlying w1, ... , wn. So there
exist i, j such that I(w1) is both N i(s) and N j(s′). Assume first i 6 j. The injectivity of
the map N implies s = N j−i(s′). Hence s′ underlies w0 as well, and, therefore, s′ underlies
all of w0, ... , wn. The argument is similar in the case i > j, with now s′ = N i−j(s′) and s
underlying all of w0, ... , wn. �

Lemma 4.7. Assume that u, v are nonempty S-words satisfying u ≡
+(1)
R v. Then there

exists s underlying u and v and, for every s in S, we have Es(u) ≡
+(61)
R Es(v). Moreover,

exactly one of the following holds:

(i) we have I(u) = I(v) and T (u) ≡
+(1)
R T (v);

(ii) we have I(u) 6= I(v) and Es(u) = Es(v) for all s underlying u and v.

Proof. The assumption that u ≡
+(1)
R v holds means that there exist a number p > 1 and

a relation of R such that v is obtained from u by applying that relation to its subword
starting at position p. Assume first p > 2. In this case, the initial letter is not changed, i.e.,
we have I(u) = I(v), whereas T (v) is obtained from T (u) by applying a relation of R at

position p−1, and T (u) ≡
+(1)
R T (v) holds. Next, underlying a word w depends on the initial

letter of w only, hence, as u and v have the same initial letter, the letters underlying u
and v coincide. Finally, let s belong to S. Assume first that I(u), which is also I(v),
is N i(s). Then, by definition, we have Es(u) = sCi(s)T (u) and Es(v) = sCi(s)T (v), so that

T (u) ≡
+(1)
R T (v) implies Es(u) ≡

+(1)
R Es(v). Otherwise, we have Es(u) = u and Es(v) = v,

whence Es(u) ≡
+(1)
R Es(v) again. Hence Es(u) ≡

+(1)
R Es(v) holds for every s in this case.

Assume now p = 1. This means that there exists s and w satisfying u = sC(s)w and
v = N(s)w, or vice versa. In this case, we have I(u) = s 6= N(s) = I(v) and, by definition, s
underlies both u and v. Now, assume that s′ is any element of S that underlies u. This means
that we have I(u) = s = N i(s′) for some i > 0, and we then have I(v) = N(s) = N i+1(s′),
so s′ underlies v as well. Then we find

Es′ (u) = s′Ci(s′)T (u) = s′Ci(s′)C(s)w = s′Ci+1(s′)w = Es′(v).

On the other hand, assume that s′ is an element of S that does not underlie u. Then
we have Es′(u) = u. If s′ underlies v, owing to the fact that I(v) is N(I(u)) and N is
injective, the only possibility is s′ = N(s) and, in this case, we have Es′(v) = v. If s′ does
not underlie v, by definition we have Es′(v) = v as well. So, in every such case, we find

Es′(u) = u ≡
+(1)
R v = Es′(v).

The case u = N(s)w, v = sC(s)w is of course similar. Then the proof is complete since

the relation Es(u) ≡
+(61)
R Es(v) has been established for every s in every case. �

Lemma 4.8. Assume that u, v are nonempty S-words satisfying u ≡
+(n)
R v. Then at least

one of the following holds:

- we have I(u) = I(v) and T (u) ≡
+(n)
R T (v);

- there exists s underlying u and v and satisfying Es(u) ≡
+(<n)
R Es(v).

Proof. Let (w0, ... , wn) be an R-derivation from u to v. Two cases are possible. Assume first
that the initial letter never changes in the considered derivation, i.e., I(wk) = I(u) holds for
every k. Then all one step derivations (wk, wk+1) correspond to case (i) in Lemma 4.7. The



12 PATRICK DEHORNOY

latter implies I(wk) = I(wk+1) and T (wk) ≡
+(1)
R T (wk+1) for every k, whence I(u) = I(v)

and T (u) ≡
+(n)
R T (v).

Assume now that the initial letter changes at least once in (w0, ... , wn), say I(wi) 6= I(wi+1).
First, Lemma 4.7 together with Lemma 4.6 implies the existence of s in S that underlies wk

for every k. Next, each one step derivation (wi, wi+1) corresponds to case (ii) in Lemma 4.7.
So, as s underlies wi and wi+1, we have Es(wi) = Es(wi+1). On the other hand, by

Lemma 4.7 again, we have Es(wk) ≡
+(61)
R Es(wk+1) for k 6= i, so, summing up, we obtain

Es(u) ≡
+(<n)
R Es(v) for this particular choice of s. �

We can now complete the argument establishing that the presentation (S, R̂) is complete
for right-reversing. We denote by |w| the length (number of letters) of a word w.

Proof of Proposition 4.4. We show using induction on n > 0 and, for a given value of n, on

max(|u|, |v|), that u ≡
+(n)
R v implies u−1v y

R̂
ε.

Assume first n = 0. Then the assumption implies u = v, in which case u−1v reverses to
the empty word by |u| successive deletions of subwords s−1s.

Assume now n > 1. Then u and v must be nonempty. Assume first that I(u) = I(v) and

T (u) ≡
+(n)
R T (v) hold. By definition, we have

max(|T (u)|, |T (v)|) = max(|u|, |v|)− 1,

so the induction hypothesis implies T (u)−1T (v) y
R̂
ε. On the other hand, as I(u) and I(v)

are equal, we have

u−1v = T (u)−1I(u)−1I(v)T (v) y
(1)

R̂
T (u)−1T (v).

By transitivity of reversing, we deduce u−1v y
R̂
ε.

Assume now that I(u) = I(v) and T (u) ≡
+(n)
R T (v) do not hold. Then, by Lemma 4.3,

there must exist s such that s underlies u and v andEs(u) ≡
+(n′)
R Es(v) holds for some n′ < n.

Then the induction hypothesis implies Es(u)
−1Es(v) yR̂

ε. Write sk for Nk(s). As s under-
lies u and v, there exist i, j satisfying I(u) = si and I(v) = sj. Assume for instance i 6 j.
By definition, we have Es(u) = sCi(s)T (u) and Es(v) = sCj(s)T (v) = sCi(s)Cj−i(si)T (v),
so that, if ℓ is the length of the word sCi(s), the first ℓ steps in any reversing sequence
starting from Es(u)

−1Es(v) must be

Es(u)
−1Es(v) = T (u)−1Ci(s)−1s−1sCi(s)Cj−i(si)T (v)

y
(ℓ)

R̂
T (u)−1Cj−i(si)T (v).

It follows that the relation Es(u)
−1Es(v) yR̂

ε deduced above from the induction hypothesis
implies

(4.3) T (u)−1Cj−i(si)T (v) y
R̂

ε.

Now, let us consider the R̂-reversing of u−1v, i.e., of T (u)−1s−1
i sjT (v). By definition, the

only relation of R̂ of the form si... = sj ... is siC
j−i(si) = sj, so the first step in the reversing

must be T (u)−1s−1
i sjT (v) y

R̂
T (u)−1Cj−i(si)T (v). Concatenating this with (4.3), we

deduce u−1v y
R̂
ε again, which completes the induction. �

With the above completeness at hand, we are now ready for assembling pieces and estab-
lishing the Main Lemma (Proposition 2.6).

Proof of the Main Lemma. Put M = 〈S |R〉+. If M is of right-O-type, any two elements
of M are comparable with respect to left-divisibility, hence they certainly admit a common
right-multiple, namely the larger of them. So (i) trivially implies (ii).
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Conversely, assume that any two elements of M admit a common right-multiple. First,
as M admits a right-triangular presentation, hence a semigroup presentation, 1 is the only
invertible element in M .

Next, M must be left-cancellative. Indeed, the point is to prove that, if s belongs to S
and u, v are S-words satisfying su ≡+

R sv, then u ≡+

R v holds. By Proposition 4.4, the

presentation (S, R̂) is complete for right-reversing. Hence su ≡+

R sv implies (su)−1(sv) y
R̂
ε,

i.e., u−1s−1sv y
R̂

ε. Now, the first step in any reversing sequence from u−1s−1sv is

u−1s−1sv y
R̂
u−1v, so the assumption implies u−1v y

R̂
ε, whence u ≡+

R v.

Finally, let g, h be two elements ofM . Hence, by Lemma 4.3, which is relevant as (S, R̂) is
complete for right-reversing, there exist S-words u, v representing g and h and such that the

R̂-reversing of u−1v is terminating, i.e., there exist S-words u′, v′ satisfying u−1v y
R̂
v′u′−1.

By construction, the family R̂ consists of triangular relations so, by Lemma 3.6, at least one
of the words u′, v′ is empty. This means that at least one of g 4 h or h 4 g holds in M , i.e.,
g and h are comparable with respect to left-divisibility. So M is a monoid of right-O-type,
and (ii) implies (i). �

To conclude this section, we observe in view of future examples that the triangular pre-
sentations defining monoids admitting common right-multiples must be of some simple type.

Lemma 4.9. Assume that (S ;R) is a right-triangular presentation defining a monoid in
which any two elements admit a common right-multiple. Then there exists a (finite or infi-
nite) interval I of Z such that S is {ai | i ∈ I} and R consists of one relation ai−1 = aiC(ai)
for each non-minimal i in I.

Proof. Let s, s′ belong to S. As s and s′ admit a common right-multiple, Lemma 4.3 implies

that the R̂-reversing of s−1s′ terminates, which in turn requires that R̂ contains at least
one relation of the form s... = s′... . Hence the left-graph of (S ;R) consists of a unique
chain, which, by definition of a right-triangular presentation, means that (S ;R) has the
form stated in the lemma. �

5. Quasi-central elements

Owing to the Main Lemma (Proposition 2.6), the point in order to decide whether a
monoid specified by a right-triangular presentation is of right-O-type is to recognize whether
any two elements admit a common right-multiple. We shall establish and use a sufficient
condition that involves the existence of a right-quasi-central element.

Definition 5.1. An element ∆ of a monoid M is called right-quasi-central (resp. left-quasi-
central) if there exists an endomorphism φ of M such that, for every g in M , we have

(5.1) g∆ = ∆φ(g) ( resp. φ(g)∆ = ∆g ).

When φ is the identity, we recover the standard notion of a central element, i.e., one
that commutes with every element. Note that a right-quasi-central element such that the
associated endomorphism is an automorphism is necessarily left-quasi-central as well. The
interest of considering quasi-central elements here is given by the following result.

Lemma 5.2. Assume that M is a left-cancellative monoid that is generated by a set S and
admits a right-quasi-central element ∆ such that s 4 ∆ holds for every s in S. Then any
two elements of M admit a common right-multiple.

Proof. Let φ be the (necessarily unique) endomorphism of M witnessing that ∆ is right-
quasi-central. First, (5.1) applied with g = ∆ gives ∆2 = ∆φ(∆), whence φ(∆) = ∆ since
M is left-cancellative.
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Next, we claim that g 4 h implies φ(g) 4 φ(h). Indeed, by definition, g 4 h implies the
existence of h′ satisfying gh′ = h, whence φ(g)φ(h′) = φ(h) since φ is an endomorphism.
This shows that φ(g) 4 φ(h) is satisfied.

Now, we prove using induction on n that g ∈ Sn implies g 4 ∆n. For n = 0, the property
is obvious and, for n = 1, it is one of the assumptions. Assume n > 2 and g ∈ Sn. Write
g = sh with s ∈ S and h ∈ Sn−1. By induction hypothesis, we have h 4 ∆n−1, whence
g = sh 4 s∆n−1. Applying (5.1) n− 1 times, we obtain s∆n−1 = ∆n−1φn−1(s). Next, by
the above remarks, the assumption s 4 ∆ implies φn−1(s) 4 φn−1(∆) = ∆, and we deduce
g 4 ∆n−1φn−1(s) 4 ∆n−1∆ = ∆n.

Finally, if g, h are elements of M , we have g 4 ∆n and h 4 ∆p for some n, p. Then
∆max(n,p) is a common right-multiple of g and h. So any two elements of M admit a
common right-multiple. �

On the other hand, establishing that an element of a presented monoid is eligible for
Lemma 5.2 is easy.

Lemma 5.3. Assume that M is a left-cancellative monoid generated by a set S. Then, for
every ∆ in M , the following are equivalent:

(i) ∆ is right-quasi-central and s 4 ∆ holds for every s in S,
(ii) The relations s 4 ∆ 4 s∆ hold for every s in S.

Proof. Assume (i) and let φ be the witnessing endomorphism. Let s belong to S. By
assumption, s 4 ∆ is true. Let g be the element satisfying sg = ∆. Then (5.1) implies
s∆ = ∆φ(s), whence s∆ = sgφ(s), and ∆ = gφ(s) since M is left-cancellative. We deduce
∆ = sg 4 sgφ(s) = s∆, and (i) implies (ii).

Conversely, assume (ii). We shall define an endomorphism φ witnessing that ∆ is right-
quasi-central in M . First, for s in S, we define φ(s) to be the unique element satisfying

(5.2) s∆ = ∆φ(s),

which exists since, by assumption, ∆ 4 s∆ holds. Now, assume that s1, ... , sn, s
′
1, ... , s

′
p are

elements of S and s1 ···sn = s′1 ···s
′
p holds in M . By applying (5.2) repeatedly, we obtain

∆φ(s1)···φ(sn) = s1 ···sn∆ = s′1 ···s
′
p∆ = ∆φ(s′1)···φ(s

′
p),

whence φ(s1)···φ(sn) = φ(s′1)···φ(s
′
p) since M is left-cancellative. It follows that, for every g

in M\{1}, we can define φ(g) to be the common value of φ(s1)···φ(sn) for all expressions
of g as a product of elements of S. We complete with φ(1) = 1. Then, by construction, φ is
an endomorphism of M and (5.1) is satisfied for every g in M . �

Putting things together, we immediately deduce the expected condition for a presented
monoid to be of right-O-type.

Proposition 5.4. Assume that (S ;R) is a right-triangular presentation and there exists ∆
in 〈S |R〉+ satisfying s 4 ∆ 4 s∆ for every s in S. Then 〈S |R〉+ is a monoid of right-O-type.

Proof. By Lemma 5.3, the element ∆ is right-quasi-central in M so, by Lemma 5.2, any
two elements of M admit a common right-multiple. As the presentation (S ;R) is right-
triangular, it is eligible for the Main Lemma (Proposition 2.6), which implies that 〈S |R〉+

is of right-O-type. �

It is now easy to establish Theorem 1 of the introduction. We state the results in a
slightly more general form avoiding unnecessary symmetries. We begin with point (i).

Proposition 5.5. Assume that (S ;R) is a triangular presentation and there exist ∆ and ∆̃

in 〈S |R〉+ satisfying s 4 ∆ 4 s∆ and ∆̃s <̃ ∆̃ <̃ s for every s in S. Then 〈S |R〉+ is a
monoid of O-type, and 〈S |R〉+\{1} is the positive cone of a left-invariant ordering on 〈S |R〉.
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Proof. Proposition 5.4 applied to (S ;R) and ∆ implies that 〈S |R〉+ is of right-O-type, and,

applied to the opposite presentation (S, R̃) and ∆̃, it implies that 〈S |R〉+ is of left-O-type.
Hence 〈S |R〉+ is of O-type. Then, by Corollary 2.7, the group 〈S |R〉 admits a left-invariant
ordering whose positive cone is 〈S |R〉+\{1}. �

As for point (ii) in Theorem 1, the definition of the topology on the space LO(G) [20]
implies that, if the positive cone of a left-ordering on the group G is generated, as a semi-
group, by a finite set S, then the ordering is an isolated point in the space LO(G) because
this ordering is the only one in which S is positive and the set of all such orderings is open.

As for the solvability of the decision problem of the ordering (which immediately implies
that of the word problem), we shall establish the correctness of Algorithm 5.6 below. The lat-
ter simultaneously appeals to right-reversing as defined in Section 3 and to left-reversing ỹ,
the symmetric procedure that replaces s′s−1 with v−1v′ such that vs′ = v′s is a relation.
The properties of left-reversing are of course symmetric to those of right-reversing: formally,
using w̃ for the mirror-image of w (same letters in reserved order), w ỹR w′ is equivalent

to w̃ y
R̃

w̃′ where, as usual, R̃ refers to the opposite presentation, i.e., the family of all

relations ũ = ṽ for u = v in R. We denote by

̂

R the family obtained by adding to R the

relations Ñ i(s) = C̃i(s)s with i > 2 (the “left-completion” of R, symmetric to R̂). If w is a
signed S-word, we denote by [w] the element of the group 〈S |R〉 represented by w.

Algorithm 5.6 (decision problem of the ordering).
• Data: A finite (or recursive) triangular presentation (S ;R);
• Input: A signed S-word w;
• Procedure:

- Right-R̂-reverse w into vu−1 with u, v in S∗;
- Left-

̂

R-reverse vu−1 into u′−1v′ with u′, v′ in S∗;
• Output:

- For u′ 6= ε and v′ = ε, return “ [w] < 1”;
- For u′ = v′ = ε, return “ [w] = 1”;
- For u′ = ε and v′ 6= ε, return “ [w] > 1”.

Proposition 5.7. Assume that (S ;R) is a triangular presentation and there exist ∆ and ∆̃

in 〈S |R〉+ satisfying s 4 ∆ 4 s∆ and ∆̃s <̃ ∆̃ <̃ s for every s in S. Then Algorithm 5.6
solves the decision problem for the ordering of Proposition 5.5, as well as the word problem
of the group 〈S |R〉.

Proof. Put M = 〈S |R〉+. First, as (S ;R) is finite or, at least, recursive, the relations y
R̂

and ỹ

̂

R are recursive, so Algorithm 5.6 is indeed effective. Next, as the presentation (S, R̂)
is complete for right-reversing and, by Proposition 5.5, any two elements of the monoid M

admit a common right-multiple, every right-R̂-reversing sequence is terminating: for every
signed S-word w, there exist positive S-words u, v satisfying w y

R̂
uv−1. Similarly, as (S,

̂

R)
is complete for left-reversing and any two elements of M admit a common left-multiple,
every

̂

R-reversing sequence is terminating and, therefore, there exist positive S-words u′, v′

satisfying uv−1
ỹ

̂

R u′−1v′. Hence Algorithm 5.6 always terminates. Moreover, by (the
counterpart of) Lemma 3.6, at least one of the words u′, v′ is empty.

By construction, w y
R̂
uv−1

ỹ

̂

R u′−1v′ implies [w] = [u′−1v′] in 〈S |R〉. If u′ is nonempty

and v′ is empty, we deduce [w] = [u′−1] ∈ M−1\{1}, whence [w] < 1 for the ordering whose
positive cone is M−1\{1}. If u′ and v′ are empty, we deduce [w] = [ε] = 1. Finally, if u′ is
empty and v′ is nonempty, we obtain [w] = [v′] ∈ M\{1}, whence [w] > 1. So Algorithm 5.6
decides the relation <. As < is a strict linear ordering, the algorithm also solves the word
problem as [w] 6= 1 is equivalent to the disjunction of [w] < 1 and [w] > 1. �
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Thus the proof of Theorem 1 is complete. We add two more observations. The first one
involves monoids that are of right-O-type but not necessarily of O-type. In this case, the
termination of left-reversing is not guaranteed, and the monoid need not be connected with
a left-invariant ordering in the group. However, the group is still a group of right-fractions
for the monoid, and we can solve its word problem by appealing to right-reversing only.

Algorithm 5.8 (word problem).
• Data: A finite (or recursive) right-triangular presentation (S ;R);
• Input: A signed S-word w;
• Procedure:

- Right-R̂-reverse w into vu−1 with u, v in S∗;

- Right-R̂-reverse u−1v into v′u′−1 with u′, v′ in S∗;
• Output:

- For u′ = v′ = ε, return “ [w] = 1”;
- For u′ 6= ε or v′ 6= ε, return “ [w] 6= 1”.

Proposition 5.9. Assume that (S ;R) is a finite (or recursive) right-triangular presentation
and there exists ∆ in 〈S |R〉+ satisfying s 4 ∆ 4 s∆ for every s in S. Then Algorithm 5.8
solves the word problem of the group 〈S |R〉.

Proof. By Proposition 4.4, the presentation (S, R̂) is complete for right-reversing and, by
Proposition 5.5, any two elements of the monoid M admit a common right-multiple, hence

every R̂-reversing sequence is terminating: for every signed S-word w, there exist positive S-
words u, v satisfying w y

R̂
uv−1. Hence Algorithm 5.8, which consists of two concatenated

reversings, always terminates.
Then, by construction, w y

R̂
uv−1 implies [w] = [uv−1] in 〈S |R〉. Hence [w] = 1

holds if and only if we have [uv−1] = 1, or, equivalently, [u] = [v]. By Ores’s theorem,
the monoid 〈S |R〉+ embeds in the group 〈S |R〉, so the latter condition is equivalent to

[u]+ = [v]+, i.e., to u ≡+

R v. As (S, R̂) is complete for right-reversing, the latter condition is
equivalent to u−1v y

R̂
ε, i.e., with the notation of Algorithm 5.8, to u′ = v′ = ε. �

The second observation is a connection with Garside theory [8].

Proposition 5.10. Assume that M is a monoid of right-O-type and ∆ is a right-quasi-
central (resp. simultaneously right- and left-quasi-central) element of M whose left-divisors
generate M . Then ∆ is a right-Garside (resp. Garside) element in M in the sense of [8,
Definitions VI.1.36 and 2.29].

Proof. By assumption, the monoid M is left-cancellative and the left-divisors of ∆ gener-
ate M . As ∆ is right-quasi-central, every right-divisor of ∆ is left-divides ∆ since, as noted
in the proof of Lemma 5.2, ∆ = g′g implies gφ(g′) = ∆. Finally, for every g in M , the
elements g and ∆ admit a greatest common left-divisor (left-gcd), namely the smaller of
them with respect to 4. Hence, by definition, ∆ is a right-Garside element in M .

If ∆ is also left-quasi-central, then, by symmetry, the left-divisors of ∆ must be included
in its right-divisors, and, therefore, the left- and right-divisors of ∆ coincide. Then ∆ is a
Garside element in M . �

It follows that, under the hypotheses of Proposition 5.10, the left-divisors of ∆ in M
form what is called a Garside family [8, Definition I.1.34] and every element of M admits
a distinguished decomposition in terms of these elements. However, as left-divisibility is
a linear ordering here, this decomposition is rather trivial: every element is left-divisible
by some maximal power of ∆, and the normal decompositions all have the simple form
(∆, ... ,∆, g) with g 4 ∆.
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6. Examples

We now apply the approach of Proposition 5.4 to construct examples of monoids of
right-O-type specified by a right-triangular presentation. Owing to Lemma 4.9, we consider
presentations of form

(6.1) (a1, ... , an ; a1 = a2C(a2), ... , an−1 = anC(an))

where C(a2), ... , C(an) are words in the alphabet {a1, ... , an}. Computer experiments are
then easy. On the positive side, Proposition 5.4 leads to the following sufficient condition.

Lemma 6.1. Assume that (S ;R) is a semigroup presentation of the form (9.1), and there
exists m > 1 such that, for 2 6 i 6 n, there exists a positive S-word wi such that

(6.2) a
−m
1 aia

m
1 y

R̂
wi.

Then a
m is right-quasi-central in 〈S |R〉+ and the latter is a monoid of right-O-type.

Proof. By Lemma 5.3, the element am1 is right-quasi-central in 〈S |R〉+. Moreover, by con-
struction, we have an 4 an−1 4 ··· 4 a1 4 a

m
1 , whence ai 4 a

m
1 for every i. By Proposi-

tion 5.4, the monoid 〈S |R〉+ is of right-O-type. �

On the negative side, recognizing that a presentation gives rise to a monoid that is not of
right-O-type seems difficult, since the non-existence of a common right-multiple corresponds
to a non-terminating reversing, which a priori escapes experiment. However, some cases may
be detected using purely syntactic criteria.

Lemma 6.2. Assume that (S ;R) is a triangular presentation.

(i) If a relation of R̂ has the form s = w with |w| > 1 and w finishing with s, then 〈S |R〉+

is not right-cancellative and, therefore, 〈S |R〉+ is not of right-O-type.

(ii) If a relation of R̂ has the form s = w with w beginning with (uv)rus with r > 1,
u nonempty, and v such that v−1s reverses to a word beginning with s, hence in particular if
v is empty or it can be decomposed as u1, ... , um where uks is a prefix of w for every k, then
the elements s and [u]+s have no common right-multiple in 〈S |R〉+ and, therefore, 〈S |R〉+

is not of right-O-type.

Proof. (i) If R contains a relation s = us with u nonempty, s = [u]+s holds in 〈S |R〉+,
whereas 1 = [u]+ fails. So 〈S |R〉+ is not right-cancellative.

(ii) We claim that the right-R̂-reversing of s−1us cannot be terminating, see Figure 3.
Indeed, writing the involved relation s = (uv)rusw1 with v−1s y

R̂
sw2, we find

s−1us y
R̂

w−1
1 s−1(vu)−(r−1)u−1v−1s

y
R̂

w−1
1 s−1(vu)−(r−1)u−1sw2

y
R̂

w−1
1 s−1(vu)−(r−1)(vu)r−1vusw1w2

y
R̂

w−1
1 s−1vusw1w2

y
R̂

w−1
1 w−1

2 · s−1us · w1w2.

We deduce that s−1us y
R̂

(w−1
1 w−1

2 )n · s−1us · (w1w2)
n holds for every n and, therefore, it

is impossible that s−1us leads in finitely many steps to a positive–negative word. Then, by

Lemma 4.3, which is relevant since, by Proposition 4.4, (S, R̂) is complete for right-reversing,
s and [u]+s admit no common right-multiple in 〈S |R〉+. �

For instance, a relation a = babab
3
a
2... is impossible in a right-triangular presentation

for a monoid of right-O-type: indeed, the right-hand side of the relation can be written as
(ba)bab2(ba)a..., which is eligible for Lemma 6.2(ii) with u = ba and v = bab · b, a product
of two words u1, u2 such that uia is a prefix of the right-hand term of the relation.
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s

v

u

(vu)r−1

s

w1

u

(vu)r−1
v u s w1

s w2

s

s

w2

Figure 3. Proof of Lemma 6.2(ii): in a positive number of steps, the word s−1us

reverses to a word that includes it and, therefore, the reversing cannot be terminating.

In this section, we focus on the case of two generators, namely presentations of the form
(a, b ; a = bw) where w is an {a, b}-word. It turns out that Lemmas 6.1 and 6.2 cover almost
all cases, i.e., for almost all presentations that are not a priori discarded by Lemma 6.2,
one can find some power am of the generator a satisfying (6.2), which reduces here to the
unique condition that a−m

ba
m reverses to a positive word.

Fact 6.3. Among the 1,023 presentations (a, b; a = bw) with w an {a, b}-word of length 6 9,
- 157 are eligible for Lemma 6.1, yielding a monoid of right-O-type (28 are of O-type);
- 511 + 343 are eligible for Lemma 6.2(i) or (ii), yielding a monoid not of right-O-type;
- 12 are eligible neither for Lemma 6.1 nor for Lemma 6.2.

See Table 2 for some typical examples. The presentations left aside by Lemmas 6.1, 6.2,

and 6̃.2 can be addressed one by one; it turns out that, in all cases involved in Fact 6.3, either
there exists a quasi-central element that is not a power of a, or, although the relation does
not obey the syntactical conditions of Lemma 6.2, some explicit reversing can be proved to
be non-terminating because of some relation u y

(n) ...u... with n > 0, see Table 3.
Besides systematic experiments, we now describe infinite families of monoids of (right)-

O-type. We begin with a family that includes the torus knot groups (Row 1 in Table 1).

Proposition 6.4. For p, q, r > 1, let G (resp. M) be the group (resp. monoid) defined by

(6.3) (a, b ; a = b(apbr)q).

(i) The element ap+1 is right-quasi-central and M is a monoid of right-O-type.
(ii) For r = 1, the group G is the torus knot group 〈x, y |xp+1 = yq+1〉; the element ap+1

is central, M is of O-type, and M\{1} is the positive cone of an ordering that is isolated
in LO(G).

Proof. (i) We argue in M . Applying (6.3), we first find

a = b(apbr)q = b · a · (ap−1
b
r)(apbr)q−1,

whence, repeating the operation r times and moving the brackets,

a = b
r · a · ((ap−1

b
r)(apbr)q−1)r = b

r(apbr)q · ((ap−1
b
r)(apbr)q−1)r−1.

Let ∆ = a
p+1. Substituting the above value of a at the underlined position, moving the

brackets, and applying the relation once in the contracting direction, we find

b ·∆ = ba
p
a = ba

p · br(apbr)q · ((ap−1
b
r)(apbr)q−1)r−1

= b(apbr)q · apbr((ap−1
b
r)(apbr)q−1)r−1

= a · ap · br((ap−1
b
r)(apbr)q−1)r−1 = ∆ · br((ap−1

b
r)(apbr)q−1)r−1.
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right-O left-O

a = bababab YES YES ∆ = a2 central; (6.3) with p = 1, q = 2, r = 1

a = ba
2
babab YES ∆ = a3 right-quasi-central, φ(a) = a, φ(b) = (babab)3

NO a = ...a(ab)(ab)(ab): Lemma 6̃.2 with u = (ab), v = ε

a = baba
2
bab NO NO a = (ba)(ba)a...: Lemma 6.2 with u = ba and v = ε

a = ba
2
ba

2
bab YES ∆ = a

3 right-quasi-central, φ(a) = a, φ(b) = ba
2(bab)2

NO a = ...a(ab)(ab): Lemma 6̃.2 with u = (ab) and v = ε

a = ba
2
baba

2
b ?? ?? not covered by Lemma 6.1 and 6.2, see Table 3

a = ba
3
babab YES ∆ = a4 right-quasi-central, φ(a) = a, φ(b) = b(ab)8

NO a = ...a(ab)(ab): Lemma 6̃.2 with u = (ab) and v = ε

a = baba
3
bab NO NO a = (ba)(ba)a...: Lemma 6.2 with u = ba and v = ε

a = ba
2
ba

2
ba

2
b YES YES ∆ = a4 central; (6.3) with p = 2, q = 2, r = 1

a = ba
3
ba

2
bab YES ∆ = a5 right-quasi-central, φ(a) = a, φ(b) = ba2baba(ba2bab)2

NO a = ...a(ab)(ab): Lemma 6̃.2 with u = (ab) and v = ε

a = ba
3
baba

2
b YES ∆ = a4 right-quasi-central, φ(a) = a, φ(b) = (baba2b)2ababa2b

NO a = ...a(a2b)ab(a2b): Lemma 6̃.2 with u = (a2b) and v = ab

a = ba
2
ba

3
bab NO a = (ba2)(ba2)a...: Lemma 6.2 with u = ba2 and v = ε

NO a = ...a(ab)(ab): Lemma 6̃.2 with u = (ab) and v = ε

a = ba
4
babab YES ∆ = a5 right-quasi-central, φ(a) = a, φ(b) = (babab)(a2(babab))2

NO a = ...a(ab)(ab)(ab): Lemma 6̃.2 with u = (ab) and v = ε

a = baba
4
bab NO NO a = (ba)(ba)a...: Lemma 6.2 with u = ba and v = ε

Table 2. Examples of two-generator monoids with a triangular presentation, here
all relations of the form a = ba

p
ba

q
ba

r
b with p, q, r > 0 and p + q + r 6 6 (not

repeating symmetric cases): all but one turn out to be eligible either for Lemma 6.1
(there exists a right-quasi-central power of a) or for Lemma 6.2 (the syntactic form
of the relation results in a non-terminating reversing) or its symmetric counterpart,

here denoted by Lemma 6̃.2.

Now, everything is clear. First, we have b 4 a 4 a
p+1 = ∆ in M . Next, as ∆ is a power

of a, it commutes with a. So, by Lemma 5.3, ∆ is right-quasi-central in M , with associated
endomorphism defined by

φ(a) = a, φ(b) = b
r((ap−1

b
r)(apbr)q−1)r−1.

By Proposition 5.4, M is of right-O-type.
(ii) Assume now r = 1, so that (6.3) reduces to a = b(apb)q. Put x = a and y = a

p
b

in G. Then xp+1 = yq+1 holds in G. Conversely, if we define a = x and b = x−py in the
group 〈x, y |xp+1 = yq+1〉, then we obtain a = b(apb)q. An isomorphism between G and the
torus knot group 〈x, y |xp+1 = yq+1〉 follows.

Next, by (i), M is of right-O-type. As the defining relation is symmetric, the opposite

monoid M̃ is also of right-O-type, so M is of left-O-type, hence of O-type. Note that, in
this case, the endomorphism φ is the identity, and ∆, i.e., ap+1, is central. By Lemma 1.3,
M\{1} is the positive cone of an ordering that is isolated in the space LO(G). �

Some of the groups of Proposition 6.4 are well known. For instance, for p = q = r = 1,
the group G is the Klein bottle group 〈a, b | a = bab〉. For p = 2 and q = r = 1, the
group G, i.e., 〈a, b | a = ba

2
b〉, is Artin’s braid group B3. In terms of the standard Artin

generators σi, the elements a and b can be realized as σ1σ2 and σ−1
2 , and the associated

ordering is the isolated ordering described by Dubrovina–Dubrovin in [11] (see also [17]).
The braid group B3 is also obtained for p = r = 1 and q = 2, i.e., for 〈a, b | a = babab〉, with
a and b now realizable as σ1σ2σ1 and σ−1

2 . Note that, when realized as above, the associated
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right-O left-O

a = bab
3
ab YES YES ∆ = (ab)3 = (ba)3 central

a = bab
4
ab YES YES ∆ = (ab2)3 = (b2a)3 central

a = ba
2
baba

2
b YES YES ∆ = (a2b)2 = (ba2)2 right- and left-quasi-central,

φ(a) = a(ba2b)2, φ̃(a) = (ba2b)2a, φ(b) = φ̃(b) = b

a = ba
2
b
3
a
2
b NO NO non-terminating right-reversing: u y

(10) v−1uv

for u = a−2ba2ba and v = ba2b3

a = bab
4
ab

2 YES ∆ = (ab2)2 right-quasi-central, φ(a) = (b2ab4)2ab2, φ(b) = b4ab4

NO a = ...a(b)(b): Lemma 6̃.2 with u = b and v = ε

a = bab
5
ab YES YES ∆ = (ab3)3 = (b3a) central

a = ba
2
bab

2
a
2
b YES ∆ = (a2b)2 right-quasi-central, φ(a) = ab(ba2b)2, φ(b) = (ba2b2)2

NO non-terminating left-reversing: u ỹ
(26) vuv−1

for u = a2b2a2bab3a2ba−1 and v = b

a = ba
2
b
4
a
2
b NO NO non-terminating right-reversing: u y(12) v−1uv

for u = b−1a−2ba2ba and v = b4a2bab4a2b

a = bab
2
ab

3
ab YES ∆ = (ab)2 right-quasi-central, φ(a) = (bab2)2ab, φ(b) = b(b2ab2)2

NO non-terminating left-reversing: u ỹ
(8) vuv−1

for u = ab2aba−1 and v = b

a = bab
5
ab

2 YES ∆ = (ab3)2 right-quasi-central, φ(a) = (b2ab5)3ab3, φ(b) = b4ab5

NO a = ...a(b)(b): Lemma 6̃.2 with u = b and v = ε

a = bab
6
ab YES YES ∆ = (ab4)3 = (b4a)3 central

Table 3. Presentations (a, b; a = bw) with |w| 6 9 that escape Lemmas 6.1, 6.2

and/or 6̃.2 (up to a symmetry): in every case, one can either find a (quasi)-central
element or identify a non-terminating reversing, hence decide whether the associated
monoid is of right- or left-O-type; note that one can have both a 4 φ(a) (for instance
for a = ba

2
baba

2
b) and φ(a) 4 a (for instance for a = bab

4
ab, in which case

a = φ(a) · b6ab2 holds).

submonoids of B3 coincide as, using a in the case p = 2, q = 1 and a
′ in the case p = 1, q = 2,

we find a = a
′
b and a

′ = ba
2. Therefore the associated (isolated) orderings of B3 coincide.

For r > 2, the group G is not isomorphic to the opposite group. The left counterpart

of Lemma 6.2 (“Lemma 6̃.2”) implies that a and ab have no common left-multiple in M .
Hence M is not of left-O-type, and the group G, which is a group of right-fractions for M ,
is not a group of left-fractions for that monoid: the right-fraction aba

−1 is an element of G
that cannot be expressed as a left-fraction. As a consequence, the semigroup M\{1} defines
a partial left-invariant ordering on G only: for instance, the elements b−1

a
−1 and a

−1 are
not comparable as their quotient aba−1 belongs neither to M nor to M−1. Note that, for
p = q = 1, the group G, i.e., 〈a, b | a = bab

r+1〉, is the Baumslag–Solitar group BS(r+1,−1),
whereas the opposite group 〈a, b | a = b

r+1
ab〉 is BS(−1, q + 1).

Besides the above examples, the case p = r = 2, q = 1, i.e., 〈a, b | a = ba
2
b
2〉, is the first

non-classical example in the family. In this case, a3 is a right-quasi-central element that is
not central, and the associated endomorphism is given by φ(a) = a and φ(b) = b

2
ab

2.
We now consider the family of Row 2 in Table 1.

Proposition 6.5. For p, q > 1, let G (resp. M) be the group (resp. monoid) defined by

(6.4) (a, b ; a = b(abp)qab)).

Then G is 〈x, y |xq+2 = y2〉, the element (abp)q+2, which is also (abp−1)2, is central, M is
of O-type, and M\{1} is the positive cone of an ordering that is in LO(G).

Proof. Put x = ab
p and y = bxq+1 in G. Then G is generated by x and y and (6.4) implies

ab
p = b(abp)qabpb, i.e., x = bxq+1

b, whence in turn xq+2 = (bxq+1)2, i.e., xq+2 = y2.
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Conversely, define b = yx−(q+1) and a = xb−p in 〈x, y |xq+2 = y2〉. Then the group is gen-
erated both by x and b, and by a and b, and the relations x = bxq+1

b and a = b(abp)qab are
satisfied. It follows that G admits the presentations 〈x, b |x = bxq+1

b〉 and 〈x, y |xq+2 = y2〉.
Now, in M , let us define ẋ = ab

p and ∆ = ẋq+2 (at this point, we do not know that M
embeds in G, so using x here would be confusing). First, we find

∆ = (abp)q+2 = ab
p−1(b(abp)qab)bp−1 = ab

p−1
ab

p−1 = (abp−1)2.

Next, by the same computation as above, the relation ẋ = bẋq+1
b holds in M . We deduce

b ·∆ = bẋq+1(ẋ) = bẋq+1(bẋq+1
b) = (bẋq+1

b)ẋq+1
b = (ẋ)ẋq+1

b = ∆ · b,

so ∆ commutes with b in M . On the other hand, ∆ commutes with ẋ, i.e., with ab
p. So,

always in M , we have ab
p∆ = ∆ab

p, whence a∆b
p = ∆ab

p as ∆ commutes with b, and
a∆ = ∆a as M is right-cancellative since it admits a left-triangular presentation. So ∆ is
central in M , and Proposition 5.5 gives the expected results. �

Remark 6.6. In the above proof, once noted that G is 〈x, y |xq+2 = y2〉, it is obvious that
xq+2 is central in G. However, this is not a priori sufficient to deduce that ẋq+2 is central
in M as long as M is not known to embed in G. That is why we carefully check that the
expected commutation relations can be established inside M , i.e., without using inverses
except those provided by cancellativity.

We skip the verificationfor the family of Row 3 in Table 1, which is similar, and now
consider Row 4, which is more interesting in that it involves elements that are both right-
and left-quasi-central, but not central for p > 2 since the associated endomorphism is not
the identity. For p = 2, q = 1, the presentation occurs in Row 3 of Table 3.

Proposition 6.7. For p, q > 1, let G (resp. M) be the group (resp. monoid) defined by

(6.5) (a, b ; a = ba
pq
ba

p−1
ba

pq
b).

Then G is 〈x, y |xp = (yxpq−p+1y)2〉, the element (apqb)2 is right-quasi-central with φ(a) =
a
p−1(bapqb)2, φ(b) = b, the monoid M is of O-type and M\{1} is the positive cone of an

ordering that is isolated in LO(G).

Proof. We argue in M . First, we claim that ap and ba
pq
b commute. Indeed, we find

a
p · bapqb = (a)ap−1

ba
pq
b = (bapqbap−1

ba
pq
b)ap−1

ba
pq
b

= ba
pq
ba

p−1(bapqbap−1
ba

pq
b) = ba

pq
ba

p−1(a) = ba
pq
b · ap.

Now put ∆ = (apqb)2. We claim that ∆ = (bapq)2 also holds. Indeed, using the above
commutation relation q times, we find

∆ = (apqb)2 = (ap)q · bapqb = ba
pq
b · (ap)q = (bapq)2.

We immediately deduce

b ·∆ = b(apqbapqb) = (bapqbapq)b = ∆ · b.

On the other hand, using the above commutation relation to push the underlined factor apq

to the left through ba
pq
b and a

p−1, we find

a ·∆ = (a)apqbapqb = (bapqbap−1
ba

pq
b)apqbapqb

= ba
pq
ba

pq
a
p−1

ba
pq
bba

pq
b

= (bapq)2 · ap−1(bapqb)2 = ∆ · ap−1(bapqb)2.

It follows that ∆ is right-quasi-central, with φ(a) = a
p−1(bapqb)2 and φ(b) = b. For p = 1,

we find φ(a) = (bab)2 = a, so ∆ is central, but, for p > 2, we have a
p−2(bapb)2 6= 1 and

φ is not the identity. Owing to the symmetry of the presentation and of the equalities
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∆ = (apqb)2 = (bapq)2, the element ∆ is also left-quasi-central. By Proposition 5.5, the
monoid M is of O-type and the rest follows. Note that, by symmetry, the endomorphism
associated with ∆ as a left-quasi-central element has to be φ−1 so, in particular, φ is an
automorphism of M and we must have φ((bapqa)2ap−1) = a. �

The previous results fail to cover all presentations (a, b ; a = ba
q
ba

p
ba

q
b). Actually, some

cases remain unclear, typically (a, b ; a = ba
4
ba

2
ba

4
b) and (a, b ; a = ba

5
ba

3
ba

5
b).

7. Non-examples

So far, we did not discuss the range of our approach as expressed by the converse of
Question 2.2, namely whether all monoids of (right)-O-type admit (right)-triangular presen-
tations. The positive results of Section 6, which provide a number of monoids of right-O-type
with a right-triangular presentation, might suggest a positive answer. In this section, we
show that this is not the case, and give a simple criterion discarding a number of such
monoids, in particular the n-strand Dubrovina–Dubrovin braid monoids for n > 4.

So our starting point is

Question 7.1. Assume that M is a monoid of right-O-type and S is a generating subfamily
of M . Does M admit a right-triangular presentation in terms of S?

What is significant in a right-triangular presentation is not the fact that it consists of
triangular relations, but the condition that there is at most one letter N(s) and one relation
N(s) = sC(s) for every s: every semigroup presentation can be trivially transformed into a
presentation of the same monoid consisting of triangular relations by introducing, for every
relation u = v, a new letter s and replacing u = v with the triangular relations s = u, s = v.

The following result, which is a special case of a result of [10] for monoids in which any
two elements admit a least common right-multiple, may appear relevant for Question 7.1.

Fact 7.2. Assume that M is a monoid of right-O-type that satisfies Condition (4.2), and S
is any generating subfamily of M . For all s, s′ in S with s 4 s′, choose an S-word w such
that sw represents s′. Let R be the family of all relations sw = s′ so obtained. Then (S ;R)
is a presentation of M .

Proof (sketch). We wish to prove for all S-words u, v that [u]+ = [v]+ is equivalent to u ≡+

R v.
By construction, R consists of relations that are valid in M , hence u ≡+

R v always implies
[u]+ = [v]+, and the problem is the converse implication. Standard arguments show that
(4.2) is equivalent to the existence of a map λ from M to the ordinals such that s 6= 1
implies λ(sg) > λ(g). Then one proves that [u]+ = [v]+ with λ([u]+) = α implies u ≡+

R v
using induction on α. For α = 0, we have λ([u]+) = λ([v]+) = 0, hence [u]+ is minimum
with respect to proper right-divisibility in M , implying [u]+ = [v]+ = 1, whence u = v = ε.
Assume now α > 0. Then u and v cannot be empty. Write u = su0, v = s′v0 with s, s′ in S.
Then, by definition, we have (*) λ([u0]

+) < λ([u]+) and λ([v0]
+) < λ([v]+). Assume first

s′ = s. By assumption, we have [u]+ = [v]+, i.e., s[u0]
+ = s[v0]

+. As M is left-cancellative,
we deduce [u0]

+ = [v0]
+. By (*) and the induction hypothesis, this implies u0 ≡+

R v0,
whence a fortiori u = su0 ≡+

R sv0 = v. Finally, assume s′ 6= s. In M , the elements s
and s′ are comparable for 4, say for instance s 4 s′. Then, by construction, there exists
in R one relation sw = s′ such that s[w]+ = s′ holds in M . We deduce s[u0]

+ = s′[v0]
+ =

s[w]+[v0]
+ = s[wv0]

+, whence [u0]
+ = [wv0]

+ since M is left-cancellative. By (*) and the
induction hypothesis, this implies u0 ≡+

R wv0, whence u = su0 ≡+

R swv0 ≡+

R s′v0 = v. So
the induction is complete. �

The above positive result is misleading. The range of Fact 7.2 is nonempty since it applies
at least to the monoid (N,+), but, as already mentioned, the Noetherianity condition (4.2)
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fails in almost all monoids that admit triangular presentations, and the following example
shows that, when (4.2) fails, we cannot hope for a result similar to Fact 7.2.

Example 7.3. Let M be the Klein bottle monoid 〈a, b | a = bab〉+. Then M is of right-
O-type, and it is generated by a and b. Now, in M , we have a = b

2
ab

2, so, if Fact 7.2
were valid here, (a, b ; a = b

2
ab

2) would be an alternative presentation of M . This is not
the case: by Lemma 6.2 applied with u = b and v = ε, monoid 〈a, b | a = b

2
ab

2〉+ is not of
right-O-type and, therefore, it is not isomorphic to M .

Actually, we shall establish a rather general negative answer to Question 7.1 in the case
of generating families with at least three elements.

Definition 7.4. Assume that M is a monoid and S is included in M . An element s of S is
called preponderant in S if g 4 hs holds for all g, h in the submonoid generated by S\{s}.

Proposition 7.5. Assume that M is a monoid of right-O-type and S is a generating sub-
family of M that contains a preponderant element and has at least three elements. Then M
admits no right-triangular presentation in terms of S.

Proof. We assume that M admits a right-triangular presentation (S ;R) and shall derive a
contradiction by exhibiting two elements of M that cannot admit a common right-multiple.

As M is of right-O-type, owing to Lemma 4.9, we can enumerate S as {ai | i ∈ I} so that
all relations in R have the form ai−1 = aiC(ai). Assume that ai is preponderant in S. Then
i must be minimal in I as aj ≺ ai holds for every j 6= i. So we may assume I = {1, 2, ...}
(finite or infinite), and that a1 is preponderant in S.

As a1 is preponderant in S, it may occur in no word C(ai) with i > 3 for, otherwise,
writing C(ai) = ua1v with no a1 in u, applying the definition of preponderance with g = a

2
i−1

and h = [aiu]
+ would lead to the contradiction

ai−1 ≺ a
2
i−1 4 [aiua1]

+ 4 [aiC(ai)]
+ = ai−1.

On the other hand, a1 must occur in C(a2) for, otherwise, we would obtain similarly the
contradiction [a2C(a2)]

+ ≺ [a2C(a2)a2]
+ 4 a1 = [a2C(a2)]

+. Write a2C(a2) = u0a1v0 with
no a1 in u0.

Claim. Assume that w is an S-word that is ≡+

R-equivalent to a word beginning with a1. Then
w contains at least one letter a1 and, if u is the initial fragment of w that goes up to the
first letter a1, there exists r > 0 satisfying u ≡+

R ur
0.

We prove the claim using induction on the combinatorial distance n of w to a word
beginning with a1, i.e., on the length of an R-derivation from w to such a word. For n = 0,
i.e., if w begins with a1, the word u is empty, and we have u = ε = u0

0. Assume n > 0. Let
w′ be a word obtained from w by applying one relation of R that lies at distance n− 1 from
a word beginning with a1. By induction hypothesis, w′ contains at least one letter a1, and
we have w′ = u′

a1v
′ with no a1 in u′ and u′ ≡+

R ur′

0 for some r′. We consider the various
ways w can be obtained from w′. First, if one relation of R is applied inside v′, we have
w = u′

a1v with v ≡+

R v′ and the result is clear with u = u′ and r = r′. Next, assume that
the distinguished letter a1 is involved. By hypothesis, N(a1) is not defined, so there is no
relation s = a1C(a1) in R. On the other hand, u′ contains no a1 and, therefore, a1 occurs
in no relation s = ... for s occurring in u′. So the only ways a1 may be involved is either
a1 being replaced with a2C(a2), or a2C(a2) (which contains at least one a1) being replaced
with a1. In the first case, we obtain u = u′u0a1v0v

′, which shows that w contains a letter a1
and gives u = u′u0, whence u ≡+

R ur′+1
0 , the expected result with r = r′ + 1. In the second

case, there must exist decompositions u′ = uu0 and v′ = v0v so that we have w′ = uu0a1v0v
and w = ua1v. Again w contains a1, and we find now uu0 ≡

+

R u′ ≡+

R ur′

0 , whence u ≡+

R ur−1
0

because, by assumption, M is right-cancellative. This is again the expected result, this time
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with r = r′ − 1. Finally, it remains the case when one relation of R is applied inside u′. In
this case, we obtain w = ua1v

′ with u ≡+

R u′, whence u ≡+

R u′ ≡+

R ur′

0 , and the result is clear
with r = r′. So the proof of the claim is complete.

We shall now easily obtain a contradiction. Indeed, by construction, the word u0 begins
with the letter a2, so a2 4 [u0]

+ holds. By assumption, a2 and a3 are distinct, so C(a3)
is nonempty, and we obtain 1 ≺ a3 ≺ a3[C(a3)]

+ = a2 4 [u0]
+, so that a3 = [ur

0]
+ fails

for every r. Then the above claim implies that no S-word beginning with a3a1 may be
≡+

R-equivalent to an S-word beginning with a1. In other words, the elements a1 and a3a1

cannot admit a common right-multiple in M , contrary to the assumption that M is of
right-O-type. �

Proposition 7.5 prevents a number of monoids of right-O-type from admitting a right-
triangular presentation.

Corollary 7.6. Assume that M is a monoid of right-O-type that is generated by a, b, c with
a ≻ b ≻ c and b, c satisfying some relation b = cv with no a in v. Then, unless M is
generated by b and c, there is no way to complete b = cv with a relation a = bu so as to
obtain a presentation of M .

Proof. For a contradiction, assume that (a, b, c; a = bu, b = cv) is a presentation of M . If
there is no a in u, the assumption that a = bu is valid in M implies that a belongs to the
submonoid generated by b and c, so M must be generated by b and c.

Assume now that there is at least one a in u. As a does not occur in b = cv, a word
containing a cannot be equivalent to a word not containing a. This implies that a is prepon-
derant in {a, b, c}. Indeed, assume that g, h belong to the submonoid of M generated by b

and c. By the above remark, hag′ = g is impossible, hence so is ha 4 g. As, by assumption,
M is of right-O-type, we deduce g 4 ha. Then Proposition 7.5 gives the result. �

So, for instance, no right-triangular presentation made of b = cbc (Klein bottle relation)
or b = cb

2
c (Dubrovina–Dubrovin braid relation) plus a relation of the form a = b... may

define a monoid of right-O-type. In the case of braids, we obtain the following general result.

Corollary 7.7. Let B⊕
n be the submonoid of the braid group Bn generated by s1 = σ1 ···σn−1,

s2 = (σ2 ···σn−1)
−1, s3 = σ3 ···σn−1, ..., sn−1 = σ

(−1)n

n−1 . Then B⊕
n is a monoid of O-type that

admits no right-triangular presentation in terms of s1, ... , sn−1 for n > 4.

Proof. ThatB⊕
n is ofO-type was established by Dubrovina–Dubrovin in [11]. Now, as a braid

that admits an expression containing at least one σ1 and no σ−1
1 cannot admit an expression

with no σ±1
1 [9], the generator s1 is preponderant in {s1, ... , sn−1}. Proposition 7.5 implies

that B⊕
n admits no triangular presentation in terms of s1, ... , sn−1 for n > 4. �

One can indeed convert the standard presentation of the braid group Bn into a presen-
tation in terms of the generators s1, ... , sn−1 of Corollary 7.7. For instance, writing a, b, ...
for s1, s2, ..., one can check that B⊕

4 admits the presentation

(7.1) (a, b, c ; a = b
2
a
2
baba

2
b
2, b = cb

2
c, abc = cab),

a triangular presentation augmented with a third, additional relation. But the triangular
presentation made of the first two relations in (7.1) is not a presentation of B⊕

4 , nor of any
monoid of O-type either.

8. More examples

In view of the negative results of Section 7, we might now wonder whether triangular pre-
sentations can be relevant at all in the case of more than two generators. Actually they can,
and computer experiments again provide a number of right-triangular presentations defining
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right-O left-O

a = bab b = caaaaac YES YES ∆ = a10 central

a = bab b = caaabac YES YES ∆ = a4 central

a = bab b = caaacac YES ∆ = a6 right-quasi-central, φ(a) = a, φ(b) = b,

φ(c) = cacab((ac)2ab)2((ac)2ab(ac)2)2

NO a = ...a(ac)(ac): Lemma 6̃.2 with u = ca, v = ε

a = bab b = cababac YES YES ∆ = a6 central

a = bab b = cabacac YES ∆ = a2 right-quasi-central, φ(a) = a, φ(b) = b, φ(c) = c(ac)3

NO b = ...b(ac)(ac): Lemma 6̃.2 with u = ca, v = ε

a = bab b = cacacac YES YES ∆ = a2 central

Table 4. Three-generator monoids with a triangular presentation: examples with
a = bab plus a relation of the form b = cas1as2ac with s1, s2 in {a, b, c}.

monoids of (right)-O-type. We shall focus below on triangular presentations consisting of
the Klein bottle relation a = bab completed with another relation b = cw. Qualitative
results are similar in the general case. As in the case of two generators, it turns out that
Lemmas 6.1 and 6.2 cover a lot of presentations.

Fact 8.1. Among the 1,090 presentations (a, b, c ; a = bab, b = cw) with |w| 6 6,
- 48 are eligible for Lemma 6.1, yileding a monoid of right-O-type (42 are of O-type);
- 193 + 726 are eligible for Lemma 6.2(i) or (ii), yielding a monoid not of right-O-type;

See Table 4 for some examples. It is natural that more presentations (123 in the context
of Fact 8.1) escape Lemmas 6.1 and 6.2 than in the case of two generators because there
exist analogs of Lemma 6.2 simultaneously involving two or more letters and leading to
non-terminating reversings. We shall not go into detail here, and refer to Table 5, which
displays the examples with shortest length.

As in Section 6, we conclude with the description of some infinite families. We skip those
corresponding to Rows 5 to 7 in Table 1 (in the case of Row 6, the element apqb2 is quasi-
central for p > 2 with φ(a) = a

p−1
ba

p−2
b
3, φ(b) = b, and φ(c) = c), but consider the family

of Row 8, which extends the torus knot groups of Row 1 and Proposition 6.4. Actually, we
establish a general result for all “multi-toric” groups.

Proposition 8.2. Let G be a group defined by a presentation of the form

(8.1) (x1, x2, ... , xℓ ;x
m2+1
1 = xn2+1

2 , xm3+1
2 = xn3+1

3 , ... , xmℓ+1
ℓ−1 = xnℓ+1

ℓ ).

Then G is orderable and there exists an isolated point in the space LO(G).

Proof. Owing to Proposition 5.5, it is sufficient to prove that admits a triangular presenta-
tion (S ;R) such that there exists a central element ∆ in the monoid 〈S |R〉+.

Starting from x1, ... , xℓ, we inductively define elements a1, ... , aℓ of G by

(8.2) x1 = a1, x2 = xm2

1 a2, x3 = xm3

2 xm2

1 a3, ..., xℓ = xmℓ

ℓ−1 ···x
m3

2 xm2

1 aℓ.

Inductively, (8.2) implies for each i an equality xi = Wi(a1, ... , ai), where Wi is some expres-
sion in a1, ... , ai, namely W1(a1) = a1 and Wi(a1, ... , ai) = Fm2

◦ ···◦Fmi
(a1) for i > 2, where

Fm is the alphabetical homomorphism that maps ak to a
m
1 ak+1 for each k. For instance, we

find W2(a1, a2) = αm2
(a1) = a

m2

1 a2, and

W3(a1, a2, a3) = Fm2
(Fm3

(a1)) = Fm2
(am3

1 a2) = (am2

1 a2)
m3

a
m2

1 a3,

etc. Now we compute
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xmi+1
i−1 = xmi

i−1xi−1 = xmi

i−1x
mi−1

i−2 ···xm2

1 ai−1,

xni+1
i = xix

ni

i = xmi

i−1 ···x
m2

1 aix
ni

i = xmi

i−1x
mi−1

i−2 ···xm2

1 aiWi(a1, ... , ai)
ni .

For every i, the relation xmi+1
i−1 = xni+1

i is valid in G, hence so is ai−1 = aiWi(a1, ... , ai)
ni .

Conversely, let (S,R) be defined by

(8.3) S = {a1, ... , aℓ}, R = {ai−1 = aiWi(a1, ... , ai)
ni | i = 2, ... , ℓ}.

In the group 〈S |R〉, (8.2) defines elements x1, ... , xℓ, and the above computation shows
that these elements satisfy the relations xmi+1

i−1 = xni+1
i for every i. One deduces that the

groups G and 〈S |R〉 are isomorphic, i.e., that (S ;R) is a presentation of G.
Let M be the monoid 〈S |R〉+. We shall now show the existence of a central element

in M . Let m be a common multiple of m2 + 1, ... ,mℓ + 1 (or, simply, a number such that
m(n2 + 1)···(ni + 1) is a multiple of (m2 + 1)···(mi+1 + 1) for each i). Then, it is almost
obvious that xm

1 is central in G. As already noted in Remark 6.6, this is not enough to
directly claim that xm

1 is central in M .
Now, (8.2) non-ambiguously defines elements ẋ1, ... , ẋℓ inM (no inverse occurs), and, once

again but now inM , the above computation shows that these elements satisfy, inM , the rela-
tions ẋmi+1

i−1 = ẋni+1
i . Then, by construction, the chosen power am1 commutes with ẋ1, ... , ẋℓ

in M and, as M is cancellative since the presentation is triangular, hence complete for right-
and left-reversing, this implies that am1 commutes with a1, ... , aℓ, hence it is central in M .

Now, we are done: the presentation (S ;R) is triangular, and, by construction, some
power of a1 is central in the monoid 〈S |R〉+, i.e., in M . Then Proposition 5.5 gives the
expected results about the ordering of G associated with M . �

right-O left-O

a = bab b = caac YES YES ∆ = (a2c)2 right-quasi-central, φ(a) = ab2, φ(b) = b, φ(c) = c

a = bab b = cacc NO non-terminating reversing: u y
(4) v−1uv

for u = a−1cab and v = b2

NO a = ...a(c)(c): Lemma 6̃.2 with u = c, v = ε

a = bab b = caabc YES YES ∆ = a2b2 right- and left-quasi-central, φ(a) = ab4, φ̃(a) = b4a,

φ(b) = φ̃(b) = b, φ(c) = φ̃(c) = c

a = bab b = caacc YES ∆ = (a2c2)2 right-quasi-central, φ(a) = abac2abc2a2c2,

φ(b) = abac4a2c2, φ(c) = abac4

NO a = ...a(c)(c): Lemma 6̃.2 with u = c, v = ε

a = bab b = cabcc NO non-terminating reversing: u y
(8) v−1uv

for u = c−1b−1c2ab2 and v = c2

NO b = ...b(c)(c): Lemma 6̃.2 with u = c, v = ε

a = bab b = cacbc NO non-terminating reversing: u y
(8) v−1uv

for u = b−1cbcab and v = (bc)2

NO a = ...a(c)b(c): Lemma 6̃.2 with u = c, v = b

a = bab b = caccc NO non-terminating reversing: u y
(8) v−1uv

for u = b−1c3ab and v = bc3abc3

NO a = ...a(c)(c): Lemma 6̃.2 with u = c, v = ε

Table 5. The nine presentations of the form (a, b, c; a = bab, b = cw) with |w| 6 4
that are not covered by Lemma 6.1 or Lemma 6.2: all cases have be successfully
addressed. In the right-O-type cases, the right-quasi-central element turns out to be
[w2]+ where the relation is b = cw but this need not be true in general.
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Example 8.3. If we assume m2 = n2 = ··· = mℓ = nℓ = p, the group G admits the
presentation (x1, ... , xℓ ;x

p+1
1 = xp+1

2 = ··· = xp+1
ℓ ), and the result applies with ∆ = xp+1

1 .
The positive cone of the associated isolated ordering is then defined by the presentation (8.3),
whose relations, in the current case, take the form (as usual, we write a, b, ... for a1, a2, ...)

a = b(apb)p, b = c((apb)papc)p, c = d(((apb)papc)p(apb)papd)p, etc.

See Table 1 for other particular cases.

9. Further questions

Apart from the generic question of better understanding all the above mentioned monoids
of O-type as well as the associated ordered groups, we mention a few more specific problems.

Existence of a quasi-central element. The striking point in Facts 6.3 and 8.1 is that
all identified monoids of right-O-type involve a right-quasi-central element.

Question 9.1. Does every monoid of right-O-type with a finite right-triangular presenta-
tion necessarily admit a right-quasi-central element whose left-divisors generate the monoid
(hence a right-Garside element)?

(The precision about divisors generating the monoid is necessary in Proposition 5.5: in
every case, 1 is a central element.) As the involved right-quasi-central elements seem to be
of several different types (often a power of the largest generator, but not always), and as
so are the various possible obstructions to being of right-O-type, a general answer seems
not obvious. Note that a given monoid admits in general many right-Garside elements:
unless in a Noetherian case, there need not exist a smallest such element. For instance,
in the case of the Klein bottle monoid 〈a, b | a = bab〉+, the element a

2 is right-Garside
(hence right-quasi-central), but so are all elements a2bi with i > 1, which are smaller w.r.t.
left-divisibility.

Candidates for a negative answer to Question 9.1 could be the monoid

〈a, b | a = ba
4
ba

2
ba

4
b〉+ (or, equivalently, 〈a, b, c | a = ba

2
b, b = ca

4
c〉+),

for which neither a quasi-central element nor a non-terminating reversing was found so far.

Existence of a triangular presentation. We saw in Section 7 that there exist monoids
of right-O-type that admit no right-triangular presentation. However, the argument of
Proposition 7.5 requires the existence of at least three generators.

Question 9.2. Does every two-generator monoid of right-O-type admit a right-triangular
presentation?

IfM is a monoid of right-O-type generated by two elements a, b with a ≻ b, some triangu-
lar relation a = bw must be satisfied in M . However, as observed in Example 7.3, the choice
of w is not unique and, more generally, nothing excludes that other, possibly non-triangular
relations connect a and b in M : in the Klein bottle monoid, the relation a = b(bab2) holds,
but so does for instance the relation ab = bab

2, which is not a consequence of the former.
Question 9.2 asks in particular whether there exists a preferred choice for the above word w.

Symmetry of presentation. In the case of two generators, all identified monoids ofO-type
admit presentations in which the right-hand term of the relation is a palindrome, i.e., is
invariant under reversing the order of letters.

Question 9.3. Is every two-generator triangular presentation defining a monoid of O-type
necessarily palindromic?
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In the case of three generators and more, non-palindromic presentations may define
monoids of O-type with a central element: for instance, (a, b, c ; a = bab, b = ca

p
bc), which

is not palindromic, defines for p odd a monoid of O-type in which a
2p is central. The same

result holds for p even, now with a
p
b
2 quasi-central, but the case is less convincing as the pre-

sentation is then equivalent to the palindromic presentation (a, b, c ; a = bab, b = c(ba)pbc).
On the other hand, although the latter presentation is palindromic, it gives rise to a quasi-
central element only, with φ(a) = ab

4. A similar phenomenon occurs with the palindromic
presentation (a, b, c ; a = bcacb, b = cabac), where a2 is quasi-central with φ(b) = (ca)2b.

Returning to the case of two generators, we can also raise the converse of Question 9.3.

Question 9.4. Does every two-generator triangular presentation not discarded by Lemma 6.2
and its counterpart necessarily define a monoid of O-type?

Already mentioned for Question 9.1, (a, b ; a = ba
4
ba

2
ba

4
b) seems critical.

Remark 9.5. All the examples mentioned so far are weakly symmetric in that the left- and
right-graphs of the considered presentations coincide: all relations have the form s′ = s...s.
This is not necessary. For instance, the monoid 〈a, b, c | a = bac, b = cba〉+ is of O-type,
with (ab)3 central, but we have c 4 b 4 a and b <̃ a <̃ c, i.e., the left and the right ordering
of the generators is not the same. The above monoid M turns out to be the 3-strand braid
monoid B⊕

3 . Indeed, M can be realized inside B⊕
3 by putting a = s21s

3
2 (= σ2σ1σ

−1
2 ), b = s1s2

(= σ1), c = s2 (= σ−1
2 ), whereas B⊕

3 can be realized inside M by putting s1 = cb
2
a and

s2 = c. Thus the associated ordering on B3 is, once again, the Dubrovina–Dubrovin order.

Complexity of reversing. The existence of a right-quasi-central element implies the ex-
istence of common right-multiples, hence, in the context of a presentation that is complete
for right-reversing, the termination of every right-reversing. However, the argument gives
no complexity upper bound, at least no polynomial bound.

Example 9.6. Consider the presentation (a, b ; a = bab
r+1) of the Baumslag-Solitar group

BS(r + 1,−1). For every n, the equality ba
n = ab

(r+1)n holds in 〈a, b | a = bab
r+1〉+ and

the signed word a
−n

ba
n reverses to the word b

(r+1)n , whose length is exponential in n.
As every reversing step adds at most r letters, the number of steps needed to reverse the
length 2n + 1 word a

−n
ba

n must be exponential in n (in this case, the exact number is
((r + 1)n + rn− 1)/r).

A similar exponential complexity may occur whenever there exists a right-quasi-central el-
ement such that the associated endomorphism duplicates some letter. It turns out that, in all
involved examples, the opposite presentation does not define a monoid of right-O-type: typ-
ically, the opposite of (a, b ; a = bab

r+1) is the Baumslag–Solitar presentation BS(−1, r+1),
i.e., (a, b ; a = b

r+1
ab), which defines a monoid that, by Lemma 6.2, is not of right-O-type.

Similarly, in the case of (a, b, c ; a = bacb, b = cac), the element a
2 is right-quasi-central

with φ(c) = (cb)2, leading to an exponential complexity for reversing, but, again, the op-
posite presentation defines a monoid that is not of right-O-type as one finds u y

(12) v−1uv
for u = b

−1
c
2
ab and v = c

2. By contrast, such behaviours could not be found for monoids
of O-type.

Question 9.7. If a triangular presentation defines a monoid of O-type, does the associated
reversing necessarily have a polynomial (quadratic) complexity?

Note that the existence of a quasi-central element that is not central need not imply
an exponential complexity. For instance, for the presentation (a, b ; a = ba

2
baba

2
b) of

Proposition 6.7 with ∆ = (a2b)2, we have φ(a) = a(ba2b)2, and the shortest expression
of φ(a) is longer by 8 letters than that of a. However, φ(a2) = a

2 holds in the monoid, and
the right-reversing of ∆−n

a∆n leads to a word of length linear in n (precisely 8n+ 9) in a
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quadratic number of steps (8n2 + 14n + 6), supporting the conjecture that the associated
reversing has a quadratic complexity in every case.

Isolated points in the space of left-orderings, case of a direct limit. Theorem 1, as
well as Propositions 5.4–5.5, are valid both in the case of a finite and infinite presentation,
thus leading to orderable groups with an explicitly presented positive cone. But the argument
showing that the involved ordering is isolated in its space of orderings is valid only when
the presentation is finite. However, as observed by C.Rivas [19], a non-finitely generated
monoid may give rise to an isolated ordering, so it makes sense to raise

Question 9.8. If (S,R) is an infinite triangular presentation defining a monoid of O-type,
may the associated ordering be isolated in the space LO(〈S |R〉)?

In the direction of a positive answer, it would be natural to address Question 9.8 in the
context when the considered monoid is a direct limit of finitely generated monoids. The
properties of subword reversing make this situation easy to recognize.

Proposition 9.9. Assume that (S ;R) is an infinite triangular presentation

(9.1) (a1, a2, ... ; a1 = a2w2a2, a2 = a3w3a3, ...)

with wi in {a1, ... , ai}∗ and, putting Sn = {a1, ... , an} and Rn = {ai−1 = aiwiai | i 6 n},
that the monoid 〈Sn |Rn〉+ is of O-type for every n (or, at least, for unboundedly many n).
Then 〈S |R〉+ is a direct limit of the monoids 〈Sn |Rn〉+, it is of O-type, and 〈S |R〉+\{1} is
the positive cone of a left-invariant ordering on the group 〈S |R〉.

Proof. Assume n < m. Owing to the assumption about wi, the presentations (Sn ;Rn)
and (Sm ;Rm) are well defined and, by definition, they are right-triangular, so that, by

Proposition 4.4, (Sn ; R̂n) and (Sm ; R̂m) are complete for right-reversing. Now assume
that u, v are Sn-words. Then u and v represent the same element in 〈Sn |Rn〉

+ (resp. in

〈Sm |Rm〉+) if and only if u−1v is R̂n-reversible (resp. R̂m-reversible) to the empty word. By
definition of reversing, the relations in Rm \Rn are never involved in the reversing of u−1v,
so the latter two relations are both equivalent to u−1v being R-reversible to ε. It follows
that the identity on Sn induces an embedding of 〈Sn |Rn〉+ into 〈Sm |Rm〉+. So 〈Sn |Rn〉+

identifies with the submonoid of 〈Sm |Rm〉+ generated by Sn and 〈S |R〉+ is then the direct
limit, here the union, of all monoids 〈Sn |Rn〉+.

It follows that 〈S |R〉+ is of O-type. Indeed, a direct limit of monoids of right-O-type is of
right-O-type: any two elements of the limit belong to some monoid of the considered direct
system, hence are comparable with respect to left-divisibility in that monoid, and therefore
in the limit. �

The interest of Proposition 9.9 is to provide local conditions for recognizing a monoid of
O-type: in order to show that the monoid 〈S |R〉+ is, say, of right-O-type, it is sufficient
to exhibit for every n an element ∆n that is right-quasi-central in 〈Sn |Rn〉+, which is less
demanding than exhibiting a unique element ∆ that is right-quasi-central in the whole
of 〈S |R〉+. A typical example is the group

(9.2) 〈x1, x2... |x
2
1 = xq

2, x
2
2 = xq

3, ...〉

considered in Proposition 8.2. For q = 2, the element ∆ = x2
1 is central in 〈S |R〉+, and

Theorem 1 implies that 〈S |R〉+ is of O-type. By contrast, for q odd, the element ∆n = x2n−2

1

is central in 〈Sn |Rn〉+, but not in in 〈Sn+1 |Rn+1〉+. It follows that 〈Sn |Rn〉+ is of O-type
for every n, and 〈S |R〉+ is of O-type by Proposition 9.9, but, in this case, no power of x1

is central in 〈S |R〉+. It seems that the infinite “multi-toric” groups (9.2) are natural first
candidates for addressing Question 9.8.
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