
What drives option prices?

Frédéric Abergel1 and Riadh Zaatour2∗

Chair of Quantitative Finance

Ecole Centrale Paris, Grande Voie des Vignes,

92290 Châtenay-Malabry, France.

Abstract

We rely on high frequency data to explore the joint dynamics of underlying and option markets. In

particular, high frequency data make observable the realized variance process of the underlying, so its effects

on option price dynamics are tested. Empirical results are confronted with the predictions of stochastic

volatility models. The study reveals that while the modeling of stochastic volatility gives more robust

models, the market does not process information on the realized variance to update option prices.
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Introduction

A huge effort has been made to adapt the Black and Scholes model (Black and Scholes, 1973) in order to
explain the observed implied volatility smile phenomenon. Alternative pricing models have been proposed that
correct some biases of Black and Scholes model and relax its restrictive assumptions, leading for instance to
heavy tails and skewness in log returns. Thanks to nice model properties (such as affinity, as, for example,
in Heston Model (Heston, 1993)), and efficient numerical methods (for instance the Fast Fourier Transform
algorithm (Carr and Madan, 1999)), or closed formula for local volatility model (Dupire, 1994), many models
can be perfectly calibrated to a smooth implied volatility surface. Therefore, they can equally well capture the
marginal distributions of the spot, while predicting different dynamical behavior for the underlying as well as
for the smile itself.

Many empirical studies have established the need for multifactor models to capture the smile dynamics.
Stochastic volatility models or jump diffusion models are from this perspective judged to be superior to the
local volatility one a la Dupire. One of the major drawbacks of this model, is that it predicts a flattening of
the forward smile whereas the formers generate a persisting smile, as observed in option markets.

Moreover, among the features that one can add to the Black and Scholes framework (jumps, stochastic volatility,
stochastic interest rates ..), stochastic volatility modeling yields the best dynamical model performance as was
established in (Cao et al., 1997).

Consequently, stochastic volatility modeling is the corner stone of option pricing theory. This modifies
the replication paradigm, as, under stochastic volatility models, perfect replication by dynamic trading
in the stock is no longer possible. Another option has to be introduced to complete the market and the
replication now relies on dynamic trading in both the stock and this option, to the extent that researchers now
speak of a volatility delta. A nice exposition of these ideas can be found in (Wilmott, 2006) and (Rebonato, 2004).

As usual when one deals with option pricing, these stochastic volatility models take an ’implied route’ :
calibrate model parameters in order to replicate the observed market vanilla option prices, then use the model
with these calibrated parameters to price more exotic options.

What interests us in this article is that a stochastic volatility model, besides being an interpolation tool between
liquid vanilla prices and non quoted exotic option prices, presents also a scenario of option price formation
and evolution. According to stochastic volatility models, option prices are the result of the processing, by the
market, of the information on spot and variance stochastic processes. We want to know if the data tells the
same story.

Indeed, the availability of high frequency data, and especially of the hardware and software capabilities allowing
practitioners and researchers to deal with them, enhanced the accuracy of realized variance estimation. One is
now able to build very accurate time series of daily realized variance and even estimate it intra daily, making
it a market observable if not a tradable asset. Econometric literature dealing with this subject is huge. See for
example (Andersen and Benzoni, 2009) and references therein.

A legitimate question is then to reconsider the scenario of option price formation in the light of this newly
available data. Does the scenario presented by stochastic volatility models actually occur in real markets? As
the spot process is revealed, option prices adjust to be consistent with it, but does the same occur with the
variance process that high frequency data allow to reveal? In other words, are option prices adjusted to be
consistent with the realized variance process?

This paper is an attempt to answer these questions. We explore the relationship between realized variance
time series and option prices, or equivalently, implied volatility. The followed strategy is to explore the
joint dynamics of option and underlying markets. The quadratic variation process of the underlying being
observable, we seek, ex-post, its effects on option prices.

The paper is organised as a back and forth between theoretical predictions of stochastic volatility models and
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data observation.

In section 1, we describe the TRTH (Thomson Reuters Tick History) data we use, as well as its processing in
BNP Paribas. We also present the three stock indices that the study deals with, and some characteristics of
their respective markets.

Section 2 presents the stochastic volatility framework and its implications on the dynamics of option prices.

In section 3, we conduct an empirical study of the intraday evolution of option prices. Inspired by the
framework presented in the previous section, we isolate the spot component in option price dynamics and try
to explain the residual by the realized variance. We conclude that the changing intraday underlying variance
does not impact the market view of implied volatility, which can be almost fully explained by the spot dynamics.

In section 4, we compare empirical observations to stochastic volatility predictions, quantified thanks to the
calibration of Heston stochastic volatility model to market data. This reveals a comparable weight given to
the spot component in the option dynamics by the models and data, but a divergence in the projection of
the residual : while the model attributes it to stochastic variance, the data does not confirm that. Moreover,
the intraday study gives a measure of option price dependence on the spot, which we call the effective delta.
This turns out to be a good hedging parameter, well approximated by the Heston total delta, confirming our
method of assessing the spot part in the option price dynamics, and confirming other studies’ results on the
hedging performance of stochastic volatility models, such as (Cao et al., 1997).

In section 5, armed with the confidence gained through the two last sections that a stochastic volatility model
describes well the cinematics we are observing, even if it does not identify the same causes, we generalize
the study to a daily time scale. Even if an option changes from day to day (as its maturity is diminished by
one day), stochastic volatility models give us some more tools to identify a maturity and strike independent
quantity characterizing the option price. We study the influence of daily realized variance on the evolution of
that quantity. The result remains unchanged: while the stochastic volatility framework gives a satisfactory
phenomenological description of option markets, its structural interpretation is not observable in the data. The
market does not process information revealed by realized spot variance to fix option prices. Observation of
the realized variance does not improve our predictive power on option price or implied volatility dynamics, as
compared to the observation of the spot process alone.

Section 6 summarizes the study.

1 The data

We rely on tick by tick data from TRTH (Thomson Reuters Tick History). The data consists of trade and
quote files timestamped in milliseconds. These files are processed by BNP-Paribas Equities & Derivatives
Quantitative R&D Histo team. Among other things, this processing consists in storing the data in a special
format that saves the necessary disk space, and especially makes data requests very efficient.

For this study, we consider three world indices : Eurostoxx 50, Dax 30 and Kospi 200. These indices have in
common a very liquid derivatives market, and are, by other aspects, very different, as discussed in the sequel.

Kospi 200 options are the most liquid exchange listed derivatives in the world as far as trading volume is
concerned. In 2010, Kospi 200 options traded in Korea accounted for 70% of the index options volume traded
worldwide with more than 3.5 billions contracts1. This is certainly due to the fact that these contracts are
much smaller than those traded on other exchanges. Most traded options on Kospi 200 are those of next month
expiry. Almost all the trading activity takes place on the exchange. The most actively traded options can
register more than 100000 trade events in one day.

1source : World Federation of Exchanges, 2010 Derivatives Markets Survey Report, http://www.world-exchanges.org
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Options on Dax and Eurostoxx are also very actively traded. Their turnover is greater than that of Kospi 200
options, but due to a bigger contract value for Dax and Eurostoxx options on the one hand, and to a greater
number of traded maturities on the other hand, the number of trades for any particular option is much smaller
than in the Kospi 200 case. In fact, next month and quarterly maturities up to 18 months are actively traded.
Even if a non negligible proportion of the trades takes place on the OTC markets, the option order books are
very active and quotes are regularly updated (the time scale here is of the order of the second).

By other aspects, these three markets are very different. For example, Dax index is a total return index,
which means that dividends are reinvested, contrary to both other indices. Additionnaly, while trading activity
on Eurostoxx and Dax derivatives is essentially done by finance professionals, Korean market presents the
curious property that approximately the third of trading activity on Kospi 200 options is done by individual
householders, a fact unique to this market. Moreover, in the KRX market, options are more liquid than futures.
In fact, in 2010, while the number of traded contracts on options exceeded 3.5 billions, the number of traded
futures contracts is below 100 millions. See http://eng.krx.co.kr for details.

Although the three markets are very different, our investigation gives the same results for all of them, allowing
us to interpret these findings as stylized facts of the joint dynamics of option and underlying markets.

2 Theoretical framework

Under the real world probability measure, we assume that stock price dynamics are given by a stochastic
volatility diffusion as in the equations below :

dSt = µStdt+
√

VtStdW
1
t (1)

dVt = νdt+ ζdW 2
t (2)

d < W 1,W 2 >t = ρdt, (3)

where we make the usual (but not at all trivial) assumption that the price Ct of an option on the underlying S

is a smooth function of time, spot and underlying variance, i.e. Ct = C (t, St, Vt). Therefore, the Itô formula
gives us the dynamics of this option price :

dCt =

[
∂C

∂t
+ µSt

∂C

∂S
+

1

2
VtS

2
t

∂2C

∂S2
+ ν

∂C

∂V
+

1

2
ζ2

∂2C

∂V 2
+
√

VtζρSt

∂2C

∂S∂V

]

dt (4)

+
√

VtSt

∂C

∂S
dW 1

t

+ ζ
∂C

∂V
dW 2

t .

Stochastic terms dominate drift terms as their order of magnitude is
√
dt whereas it is dt for the latter.

Additionally, we will work with detrended data and assume that this enable us to ignore the drift term in
the above equation, leaving us with the stochastic part only. So we end with the detrended option price process :

dCt =
√

VtSt

∂C

∂S
dW 1

t + ζ
∂C

∂V
dW 2

t . (5)

Option price is then, as expected, governed by two sources of randomness : the spot, and its stochastic
volatility. Notice however that, as this stochastic volatility is itself correlated with the spot, part of its own
randomness can be attributed to the noise governing the spot price itself. To isolate the pure spot noise one
can write :
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dCt =

(
√

VtSt

∂C

∂S
+ ζρ

∂C

∂V

)

︸ ︷︷ ︸

pure spot risk

dW 1
t + ζ

√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

pure volatility risk

dZt, (6)

where now W 1
t and Zt are independent brownian motions.

Recalling that the detrended spot price is dSt =
√
VtStdW

1
t , we rewrite the above equation in terms of dSt so

as to emphasize the option and spot price dynamics relationship :

dCt =

(
∂C

∂S
+

ζρ√
VtSt

∂C

∂V

)

︸ ︷︷ ︸

Effective delta

dSt + ζ
√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

pure volatility delta

dZt. (7)

The so-called effective delta in the above equation carries the total first order sensitivity of the option price to
spot movements in this framework. This is the classical delta ∂C

∂S
corrected by an ajustment factor accounting

for the correlation between the spot and its volatility. The orthogonal term carries the volatility specific noise,
hence the name pure volatility delta.

To summarize, we end with a regression relationship between option and spot price increments :

dCt = βdSt + αdZt. (8)

Obviously, the coefficients of the above regression relationship are time dependent and may be stochastic.
In (Mykland and Zhang, 2008) the authors study the problem of inference of such an instantaneous β in a
generalized one factor framework of implied volatility dynamics and its implication on option hedging. For
our purpose, we assume that the regression coefficients do not vary a lot within one day, which is the time
window that we consider to begin our study. The regression of option and underlying price increments can
then be conducted, quantifying the underlying spot influence on the option price dynamics. The residual of
this regression carries the pure volatility risk, for which we will explore, if any, the relationship with the realized
variance of the underlying. This is done in the next section.

3 Intraday joint dynamics of option and underlying prices

When dealing with statistical time series analysis, a trade off has to be made between the stationarity
assumption on the one hand, which is necessary for the estimation of different quantities of interest such as
correlations, volatilities, regressions and so on.. and the length of the data set on the other hand, as this has
to be sufficiently long in order to assume that the estimators have converged.

This problem is harder when we deal with option price time series. Indeed, an option fundamentally changes
from day to day. For instance, today’s ATM 30-day maturity option becomes a 15-day maturity option in two
weeks, with a non negligible theta effect that may be hard to quantify without many modeling assumptions.
Moreover, the option may no longer be considered ATM due to the spot movements, which completely change
its characteristics. So, comparing option prices spanning several days may be misleading as we are not
talking about the same financial product (unlike a stock price which is generally the same from day to day).
Consequently, some care have to be taken in the study of the joint dynamics of option and underlying prices.

In order to study raw option prices without relying on any modeling hypothesis, we look at intraday dynamics.
In the case of intraday price changes, we can consider that the maturity of the option does not change, and
generally, spot movements leave the option in the same moneyness zone. With high frequency data, we still
have long enough price series to get reliable estimations.
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However, there is another issue with high frequency data, not specific to option prices. Indeed, if we want to
make a regression study of two or more price time series, we begin by sampling them at a given frequency
to synchronize them, and then conduct our regression. In an intraday study with high frequency data,
we are then tempted to sample the data at the highest possible frequency in order to obtain the longest
possible time series and ensure a better convergence rate of our statistical estimators. Unfortunately, the ideal
sampling frequency is not necessarily the greatest possible, because of, among other phenomena, the Epps effect.

3.1 Epps effect

Epps effect (Epps, 1979) is the observed decrease of estimated correlation of price time series as the sampling
frequency increases. It is mainly due to the asynchronicity of trading, as well as discretization effects
(Münnix et al., 2010). It is well documented for stock/stock price time series. We observe the same effect for
the asset and its derivative product.

Table 1 presents an illustration of this effect. We take trades and quotes data for a 22-day maturity call option
on Kospi 200 and the future2 on the same index, both maturing the same day on March 2008. We consider mid
prices for both securities. Estimation of the daily correlation of price returns, sampled at different time interval
lengths, is shown in Table 1.

Sampling period in seconds Estimated correlation 95% Conf interval 99% Conf interval
300 97.10% [95.5% , 98.1%] [94.8% , 98.4%]
180 96.48% [95% , 97.5%] [94.5% , 97.7%]
150 95.83% [94.3% , 96.9%] [93.7% , 97.2%]
120 95.19% [93.7% , 96.3%] [93.1% , 96.6%]
90 93.41% [91.6% , 94.8%] [91% , 95.2%]
60 93.50% [92.1% , 94.6%] [91.6% , 95%]
45 91.56% [90% , 92.8%] [89.5% , 93.2%]
30 90.84% [89.5% , 92%] [89.1% , 92.3%]
20 87.63% [86.2% , 88.9%] [85.7% , 89.3%]
10 80.57% [79.1% , 81.9%] [78.6% , 82.4%]
5 69.94% [68.4% , 71.4%] [67.9% , 71.8%]
2 52.63% [51.3% , 53.9%] [50.9% , 54.3%]

Table 1: Correlation vs Sampling period for a 22-day Call option on Kospi 200 vs the index future.
Confidence intervals construction relies on the Fisher Transformation of the sample correlation coefficient, as

well as a bivariate normality assumption.

As shown by the confidence intervals of Table 1, asymptotic correlation is reached in few minutes for pairs of
index future vs option considered. The order of magnitude of the phenomenon in stock/stock case is of 20 to
30 minutes. This shortening of the time scale can be explained by delta effect of future’s price on option’s
price: this mechanical effect leads to a fairly fast adjustment of option quotes when future prices move.

There exist some techniques to deal with asynchronicity of data in covariance estimation. We can cite
(Hayashi and Yoshida, 2005) who propose an unbiased and consistent estimator of realized covariance of
two diffusions observed asynchronously and in discrete time, that does not require any data pre-processing.
Another variance/covariance estimator using all available data without extra manipulation is proposed
in (Mancino and Malliavin, 2002). Tests of the first estimator with our data give satisfactory results, in

2For all our studies in the sequel of the joint dynamics of option and underlying prices, we take the future price as a proxy
for the underlying index. This is a good proxy for many reasons : the future is tradable and is the main hedging instrument for
options on the index. As we are not interested in trends but in the noise governing the dynamics, we can assume it is the same
for the future and for the spot itself. Even if the future has in general a stochstic interest rate component, this can be ignored
as we consider short maturities, enabling to assume that interest rates are deterministic. In fact, future/index correlations for the
maturities we consider are always greater than 99%.
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accordance with a few minutes data sampling period. As we will need to conduct regression studies (and even
multidimensional regressions), we rely on time series sampling. Doing that with a period of 5 minutes seems
to be a good trade off between the time needed for the Epps effect to disappear, and the need to retain enough
data for our estimators to give reliable results, as we work in an intraday setting. This 5-minute sampling allow
us also to assume that microstructure noise has disappeared.

3.2 Regression analysis

As usual in high frequency data, the regression analysis is conducted on price increments of the option and the
future. The regression relationship established in section 2 is well observed in the data. Typical option price
versus future price increment plots look like the Figure 1.
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Figure 1: Evidence of the linear regression relationship of option price
increments and future price increments as observed in the data (here Kospi

200). As expected, the slope is positive for the Call and negative for the Put.

We perform this regression on our universe of options and futures. Every day, the actively traded (for kospi
200) or quoted (for Dax and Eurostoxx) options are considered, as well as the front maturing future. Even
if the three markets considered are very different by multiple aspects -as noticed in the data description- the
results are roughly the same: a very good linear regression relationship (nearly 0 p-values) with a very high
coefficient of determination R2.

3.2.1 R2 of option / future increments regression

The observed coefficient of determination R2 is very high, and is most of the time very close to 1. In Figure
2, we plot as an example the calculated R2 for all the options on Eurostoxx and Dax that we consider. Every
point in the graph is the R2 obtained for a 1-day regression of option price increments on future price increments.

Even if some of the regressions in the Figure 2 reveal a bad quality of fit as shows the small R2 value, further
investigation allows to discard them. Indeed, we inspect individually the days and options giving an R2 which
is less than 0.5. In all these cases, the individual investigation reveals the presence of an outlier that highly
impacts the regression. In Figure 3, such a situation is presented for a Dax option: in this case, at two different
times, errors in the fed best ask quote were responsible for a large move in the option mid price which feeds our
regression analysis. When these outliers are taken away (and they are indeed corrected in the market data),
the R2 takes a very high value, which is clear on the graph.
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Figure 2: Observed R2 of option/future increments regression for
Eurostoxx and Dax.
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Figure 3: Example of a poor R2 case : presence of the two
outliers largely accounts for the bad quality of fit denoted by a

small R2.

As a conclusion, most of option price variance is explained by the underlying variance, but an orthogonal factor
does exist, hence the strictly less than one R2 value. Motivated by the stochastic volatility model intuition, we
seek this orthogonal factor in the realized variance time series.

3.2.2 Multiple linear regression on the future and its realized variance

Recall that the purpose of the regression we are conducting is to relate the option price dynamics to the
underlying dynamics, as well as the variance of underlying dynamics, as suggested by stochastic volatility
models. The second step of our intraday study is then to calculate the intraday realized variance time series.
To estimate these variance time series, we sample the futures price data for the three indices every second, and
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then use the classical variance estimator on different time windows, namely 15, 20 and 25 minutes:

Vt = A×
N∑

i=1

ln(
Si+1

Si

)2, (9)

where A is the adequate annualization factor for each time window.

This gives us three time series of realized variance, one for each time window considered. Motivated by the
above noted considerations on the Epps effect, we then construct 5-minute spaced time series of realized
variance. For example, for variance time series constructed with a 25 minute window, begin at 9:30, take the
future prices between 9:05 and 9:30 sampled every second and calculate the above estimator, obtaining V1,
then move to 9:35, take the future prices between 9:10 and 9:35 sampled every second and compute the same
estimation obtaining V2 and so on and so forth... We pick also the future prices and option prices at the times
of variance calculation to do our regressions.

As an example, in Figure 4, we plot the spot of Eurostoxx against its realized volatility (defined as the square
root of variance, and calculated in a 20 minute window here). Notice the decreasing volatility during the
middle of the day due to the decreasing market activity during lunch time. Notice also the overall negative
correlation of volatility movements and price movements, but near the end of the day, where intense activity
before the closing raises the volatility even if the price goes up.
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Figure 4: This figure ensures the plausibility of the realized
volatility estimated : observe the lunch time effect in the middle

of the day.

We then make a multiple linear regression of option price increments on spot and variance increments. Over-all
R2 of the total regression remains unchanged compared to the one factor regression of the preceding subsection,
as well as the slope of the spot factor. However, the regression hypothesis on the realized variance is clearly
rejected with p-values exceeding 0.5.

Even if Figure 4 advocates the reliability of our realized variance estimator, it can be argued that our high
sampling frequency of future prices used to estimate the realized variance time series induces spurious autocorre-
lations of returns that can be due for example to order splitting, and that inflates the realized variance estimator.
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To avoid such pitfalls, we perform the same analysis with another realized variance estimator that is less sensitive
to the market microstructure noise, namely the Garman-Klass variance estimator (Garman and Klass, 1980):

Vt =
1

2
(ht − lt)

2 − (2ln (2)− 1) (ct − ot)
2
, (10)

where ht, lt are respectively the highest and lowest log-price for the considered time window. And ot
(respectively ct) is the opening (respectively the closing) log-price for this time window.

Using this estimator leads to the same results. The intraday realized variance does not have any effect on the
option price dynamics. Option price variance is almost entirely explained by the underlying price variance. On
some days, their correlation seem to be perfet. Observe for instance Figure 5 graph of a Eurostoxx Put option
vs the future:
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Figure 5: The anticorrelation of intraday put price and future price seems perfect.

These empirical observations are in total contradiction with the intuition behind stochastic volatility models.
In fact, when one sees Figure 5, one wonder if the stochastic volatility is worth modeling at all! Does an R2

of 0.9 let any place for another factor for modeling the option price dynamics? How does this quantitatively
compare to stochastic volatility model predictions?

4 Stochastic volatility model predictions

4.1 implied R
2

We recalled in section 2 that the option price dynamics in the stochastic volatility framework are driven by
two factors: one coming from the stock and the second being what we identified as a pure volatility risk, namely:

dCt =

(
√

VtSt

∂C

∂S
+ ζρ

∂C

∂σ

)

︸ ︷︷ ︸

A

dW 1
t + ζ

√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

B

dZt. (11)
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Empirical investigation reveals a very high weight of the spot price in the option price dynamics, which explains
the very high observed R2. But what do stochastic volatility models quantitatively predict? Do they equally
spread option price variance over the underlying and its variance, or do they project the risk on one factor
preferably to the other?

To answer this question, we have to quantify the weights (A and B) in Equation (11) relatively to each other.
These weights depend on unobservable quantities, such as the volatility of variance ζ or the underlying/variance
correlation ρ. Fortunately, these quantities are not altered by an absolutely continuous change of probability.
So, the calibration of a pricing model specified under the risk neutral measure should make them observable,
giving us orders of magnitude for the weights governing the spot process and the pure variance process in the
option price evolution, and allowing us to compare model predictions to the data.

In order to design a benchmark, we choose to calibrate Heston model to the observed option prices. Under the
risk neutral measure, this model writes

dSt = rStdt+
√

VtStdW
1
t (12)

dVt = κ (θ − Vt) dt+ ζ
√

VtdW
2
t (13)

d < W 1,W 2 >t = ρdt. (14)

This choice is naturally explained by the analytical tractability of Heston model. Indeed, the model being affine,
its charcteristic function is known in closed form and the pricing by FFT as described in (Carr and Madan,
1999) is straightforward, allowing a fast calibration, pricing and greeks calculation.

To design the calibration set, we rely on historical data for rate curves (EUR and KRW), and collect liquid
option mid prices for our three indices. This leaves us with the next month maturity options for the Kospi
2003, and with maturities less than 18 months for the Dax and Eurostoxx. At the end of every trading day of
our three indices (precisely half an hour before the close), mid-prices of actively traded options are observed for
every traded maturity. Put-Call parity relation enables us to determine the forward price of each index. These
markets being very liquid, this is a reliable method to calculate the forward. Indeed, the values of the forward
we find by applying the relation to different option strikes generally differ by less than 0.05%, this difference
being explained by asynchronicity of price contributions and market microstructure noise. We then take the
median forward given by the Put-Call parity relation applied to near the money strikes.

We define our objective function as the sum of squared differences between model and market prices as in
(Cao et al., 1997), and conduct the minimisation procedure thanks to (Lourakis, Jul. 2004).

In Table 2, we give mean calibration results and their standard deviations for the three indices for the period of
March to April 2011. Globally, orders of magnitude of the parameters correspond to what is generally reported
in the literature, see for example values in (Gatheral, 2006). The only strange value concerns the κ of Kospi
200: as we have only one smile, the speed of mean reversion is really huge.

3liquidity is concentrated in contracts with the nearest expiration in the Kospi 200 options market. This can be explained
by the huge proportion of individual investors, which is due to many reasons like the small size of the contracts and individ-
uals’ appetite and enthusiasm for trading. An analysis done in 2001 but still relevant by many aspects, can be found here :
http://www.futuresindustry.org/fi-magazine-home.asp?a=994
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Index σ0 κ θ ζ ρ

Eurostoxx 0.2255 1.8893 0.0778 0.5739 -0.9072
(0.0289) (0.6072) (0.0066) (0.1653) (0.0847)

Dax 0.2027 1.9887 0.0677 0.68311 -0.7698
(0.0274) (0.6128) (0.0402) (0.2164) (0.0455)

Kospi 200 0.1737 9.5877 0.1990 0.9892 -0.5813
(0.0303) (6.7695) (1.0397) (0.3067) (0.0854)

Table 2: Mean and standard deviation of the calibrated Heston
parameters on the set of actively contributed options for the

months of March and April 2011.

Recall that our aim is to have orders of magnitude of the weights in Equation (11) relative to each other, so
after the calibration of the models, we have to calculate the derivatives of the price with respect to the spot
and to the volatility, to obtain the quantities A and B of Equation (11). These quantities are easily calculated
within the Heston model by the same Fourier transform method leading to the option price, where some
algebra is applied to calculate derivatives of the characteristic function with respect to the spot and to the
volatility. Notice that even a calculation by finite differences is fast enough. The values obtained for A and B

enable us to calculate the ratio A2

A2+B2 which is the ratio of the variance carried by the underlying dynamics to

the total variance of option price increments. It is then the R2 of a regression of option prices on spot prices
implied by our stochastic volatility model.

Figure 6 shows a plot of this implied R2. To our surprise, the results are not far from the really observed ones:
the implied R2 in a stochastic volatility framework is still very high (around 0.9). Individual investigation of
poor values reveal poorly calibrated options by the model and can be safely ignored. The result is therefore
in accordance with the empirical finding. Stochastic volatility model attributes the major part of option price
variance to the underlying price movements, in accordance with observation in the data. Option price variance
due to the underlying volatility dynamics is far smaller in these models. To push the investigation further,
we see in the next section if the model predicts the same slope as seen in the data in the option/underlying
regression relationship.

0 500 1000 1500 2000 2500 3000

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Implied R² : EUROSTOXX

Options

Im
p

li
e

d
 R

−
s
q

u
a

re
d

0 1000 2000 3000 4000 5000 6000 7000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Implied R² : DAX

Options

Im
p

li
e

d
 R

−
s
q

u
a

re
d

Figure 6: implied R2 corresponding to the ratio of the variance explained by
the spot process to the total variance of the option price process in a

stochastic volatility framework, where we calibrate a Heston model to the
data to calculate values of the different parameters in equation (11).
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4.2 Regression slope versus model delta

Slopes of the regressions in Section 3 are always less than 1 in absolute value and, as expected, positive for
Calls and negative for Puts. Recall that these slopes represent the total spot sensitivity of the option in our
stochastic volatility framework, and were interpreted as being the effective delta of the option in the regression
analysis. If our intuition is correct, these slopes give a model free hedge ratio of the option allowing to hedge
all the spot dependence. A legitimate question is then if this model-free delta is a robust hedge ratio, and how
does it compare to the Heston model total delta, namely :

∆Heston =

(
∂C

∂S
+

ζρ√
VtSt

∂C

∂V

)

(15)

4.2.1 Hedging performance of the regression slope

In order to quantify the robustness of this model-free hedge ratio, we perform the following experiment :

• For every index, we collect the options that have been actively traded for at least 20 days since their
inception. Even if we do not require these days to be consecutive, it is actually the case in practice, as the
option is actively traded when it is relatively near the money, and virtually disappears when it is deeply
IN our OUT of the money, or actually disappears when it matures, which are the two retained cases for
closing the position as explained later. That leaves us with 975 options on Kospi 200, 527 options on
Eurostoxx, 748 options on Dax, for the period between January 2007 and April 2011.

• For every option, we consider that the trader takes a short position on the first day of data availability.
The retained price C0 is the median of best BID quotes of the last 15 minutes of the trading day sampled
every second. At the same time, the trader performs the regression dCt = βdSt + dZt of option price
increments on future price increments during the trading day and uses the calculated effective delta to
enter a future position (on the front maturing future). The retained price of the futures is the median
mid price of the last 15 minutes of the trading day sampled every second. As the spread on future prices
for such liquid indices is very tight, working with mid price instead of bid or ask price depending on the
sign of the position simplifies the study without impacting the results. As no cash is needed to enter the
futures position, the cash position at inception of the portfolio consists in C0. Notice also that we take
median prices instead of mean prices as taking the median automatically gets rid of outliers and errors in
the data.

• At the end of every trading day, the cash position earns the risk free rate, that we calculate based on
historical Euribor rate curves for Eurostoxx and Dax, and Koribor rate curves for the Kospi 200. The
trader reperforms the regression and updates the delta position, earning ∆t−1 × (St − St−1) that he adds
to his cash position.

• Close the option position if the option goes out the forward moneyness region [0.85, 1.15] as it will no
longer be actively traded, or on the eve of the maturity day, by buying back the option. The retained price
CT for the option is the median of best ASK quotes of the last 15 minutes of the trading day sampled
every second. Closing the option at the eve of its maturity day avoids us to enter in the subtleties of the
regulations of the last trading day of options and futures. That simplifies the analysis without impacting
the conclusions.

• For each option, we obtain then a final PnL, that we transform into a dimensionless number, by scaling
it by the initial investment, i.e. relative pnL = PnL

C0

. This will make comparison between different options
and even between indices easier and allow aggregation of data.

In Table 3, we report means and standard deviations of calculated relative PnL for the three indices under
consideration. The three of them are positive, gaining around 20% of the initial investment. This confirms
that the effective delta is indeed a good hedging ratio. The strictly positive sign of the final PnL in
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the three cases is not at all surprising : banks take margins! Notice that these margins seem to be greater
in Kospi 200 option market. This can be explained by the great number of non professional agents in this market.

Index mean relative PnL std dev
KOSPI 200 0.2489727 0.4992516

EUROSTOXX 50 0.2057907 0.3349121
DAX 30 0.2141580 0.2456583

Table 3: Means and standard deviations of the relative PnL of the model-free hedging strategy.

For completeness, we also plot in Figure 7 the density of relative realized PnL of this model-free hedging strategy.
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Figure 7: Density of the relative PnL of a model-free-delta-hedged option position.

We conclude that this model-free hedge ratio is robust enough. We compare it in the sequel to other hedge
ratios obtained by pricing models.

4.2.2 model free vs model deltas

The regression analysis of the option price dynamics revealed the option “realized delta”. We stated in section
4.2.1 that this is indeed a robust model-free hedge ratio. In this section, we compare this hedge ratio to other
model-based deltas. We obtain typically figures looking like Figure 8 :

Candidate hedge ratios are listed below:

• Nd1 is the delta obtained by simply inverting the Black Scholes formula to obtain the implied volatility
Σ of the option, and then calculating the Black and Scholes delta: ∆ = N(d1) where N is the standard

normal cumulative distribution function, and d1 =
ln( S

K )+(r+Σ2)T
Σ
√
T

.

• Local vol is the delta obtained for a local volatility model a la Dupire that we calibrate to the observed
Dax implied volatility surface.

• BS Delta is the total Black Scholes delta, which takes into account the implied volatility smile: ∆ =
∂C
∂S

+ V ega∂Σ
∂S

.

• Heston is the local minimum variance hedge ratio in the Heston model : ∆ = ∂C
∂S

+ ζρ
σS

∂C
∂σ

.

• Realized is the regression coefficient of option price increments on future price increments as in section
4.2.1.
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Figure 8: Comparison of different delta measures on one month Dax options.

Observe that Local vol delta and BS Delta are close to each other, as both of them take into account the
smile without adding a dynamical part (dependence of the smile itself on the spot). Heston model yields the
closest results to the model-independent effective delta, which proved to be a robust hedge ratio in the study
of section 4.2.1. This is conform to the findings of (Cao et al., 1997) that modeling stochastic volatility yields
the best dynamical model behavior, i.e. the best hedge performance.

Notice however that practitioners, when using local volatility or Black Scholes volatility, generally add a
dynamical term in the smile, letting the volatility surface move as the spot moves. In this case, implied
volatility surface is parametrized as Σ = Σ (S,m) where m is the moneyness, say m = K

S
.

The first dependence in S isolates the dynamics of the implied volatility, whereas the second reflects the me-
chanical volatility change when the spot moves, changing the moneyness of the option. We then have :

dΣ =
∂Σ

∂S
dS +

∂Σ

∂m
dm (16)

where ∂Σ
∂m

is the skew of the smile, and dm = ∂m
∂S

dS = − K
S2 dS.

So finally :

C = C
(

S,Σ
(
S,m (S)

))

(17)

And the total delta writes :

dC

dS
= ∆BS −VegaBS × Skew

K

S2
︸ ︷︷ ︸

static correction

+ VegaBS ×
∂Σ

∂S
︸ ︷︷ ︸

dynamic correction

(18)

Comparison, at the end of the trading day, of the total delta with the effective delta calculated by regression
can give an idea of the quality of the dynamical correction. We will return to these considerations in the sequel.

We conclude from this section that stochastic volatility models do well in capturing dynamical option price
properties. This answers positively the question raised in the previous section of whether this feature is worth
modeling. The answer is fortunately yes, and the implied R2 study as well as the delta study of this section
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reinforce the well established results of empirical research dealing with robust dynamical model performances
of stochastic volatility models.

However, stochastic volatility models tell a different story of option price formation and evolution than that
found in the data in section . In the model, the underlying stochastic variance is a factor driving option prices,
which could not be observed in the data.

A criticism that can be made to the study in section is that of time scales. In fact, small time scales considered
can result in a noisy, or non convergent realized volatility estimator. Larger time scales, however, will result in
a fewer data points within a trading day, making any intraday statistical study worthless.

Recall that one problem when dealing with options is that the nature of a given option changes from day to day.
Its maturity as well as its moneyness are not the same, and hence, so are its dynamical properties. In order to be
able to enlarge the time scale of the study, we must rely on a maturity- and moneyness-independent quantities,
enabling us to treat it as being the same financial quantity from day to day. This will be done in the next section.

5 Several day analysis : implied volatility perspective

The previous section made us more confident in the stochastic volatility paradigm as a reduced form description
of the option price dynamics. With this regained confidence in this framework, we push its analysis further in
order to come with a quantity that characterizes option price dynamics, without depending on a maturity nor
a moneyness measure.

Recall that in Heston model the instantaneous variance writes

dVt = κ (V∞ − Vt) dt+ ζ
√

VtdWt, (19)

and the expected instantaneous variance in this model obeys a simple first order ODE, whose solution is

E [VT ] = V∞ + (V0 − V∞) e−κT . (20)

The expected total variance from time 0 to time T, which in a deterministic time dependent volatility model
would be the Black Scholes implied variance, as established for example in (Lee, 2005) is :

E

[

1

T

∫ T

0

Vtdt

]

= V∞ + (V0 − V∞)
1− e−κT

κT
. (21)

This functional form can then be applied to fit the term structure of the implied volatility. Implied volatility
expansions as in (Lewis, 2000), give us a second order polynomial form of the smile as a function of the
moneyness. We then apply these functional form as well as the term structure parametrization to fit option
smiles.

We end with

ΣK,T = ΣATM + Smile× ln

(
K

S

)

+ Curve × ln

(
K

S

)2

(22)

ΣATM =

√

V∞ + (V0 − V∞)
1− e−κT

κT
(23)

Notice that in practice, some care is taken to avoid volatility explosions on the wings and the polynomial
parametrization is tweaked for very high and low strikes in order to obey non arbitrage conditions established
in (Lee, 2004).

This is a very pleasant parametrization of the smile that results from stochastic volatility dynamics. Not only
does it describe the smile in a simple polynomial form, but also the presence of three parameters is coherent
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with empirical studies of dynamical behavior of volatility surfaces. Indeed, (Cont and da Fonseca, 2002) find
that daily variations of implied volatility surfaces can be satisfactorily explained by three factors. The first of
them presents the overall shift in the volatility surface, and accounts for more than 90% of the variability. This
can be read in the quantity V0 of the suggested parametrization. Indeed, V0 characterizes the overall level of
the smile surface. Moreover, this is a maturity and moneyness independent quantity. It is therefore a good
candidate for our study.

In (Durrleman, 2008), the author establishes the convergence of at the money implied volatility to the spot
(continuous part) volatility in a general model with a Brownian component and a jump component of finite
variation. In our continuous diffusion setting, this gives a nice financial interpretation of V0 which is the
zero-maturity limit of at the money implied variance, and then, according to (Durrleman, 2008), the spot
variance.

We then translate the question on the dynamics of option prices in terms of this quantity : what drives V0

dynamics? More precisely, we expect to see a spot component in the dynamics of V0, and we will seek for
a stochastic volatility component as done previously with raw prices. Independence of V0 with respect to
maturity and moneyness will enable us to aggregate several day data in our observation. We will not be
constrained to estimate realized volatility in small time windows, circumventing the problem raised about the
time scale of the study of section 4.2.2.

The first task is to isolate the spot component in the V0 dynamics.

5.1 Spot dependence

V0 is defined in a Heston stochastic volatility setting as the limit of at the money implied variance for short
maturities. As such, it is equivalent to the spot instantaneous variance according to (Durrleman, 2008). It is
naturally a stochastic quantity.

In the Heston model framework, (Gatheral, 2006) gives a formula for the conditional expectation of the
instantaneous variance :

E [Vt|xT ] ≈ V̂T + ρζ
xT

WT

∫ T

0

V̂se
−λ(T−s)ds, (24)

where :

xt = ln
St

K
(25)

WT = V∞T + (V0 − V∞)
1− e−κT

κ
(26)

λ = κ− 1

2
ρζ (27)

V̂s =
(

V0 − V∞

κ

λ

)

e−λs + V∞

κ

λ
. (28)

The interesting conclusion of these equations is that when V0 is calibrated for K = S0, it evolves linearly with
respect to x = ln S

S0

≈ S
S0

− 1, when S is not far from S0.

In order to check in the data if this linear approximation is plausible, we fit every five minutes our parametrized
implied volatility model to option mid quotes, then we plot the so obtained pairs (S, V0). The Figure 9 shows
a typical kind of graph, here obtained for EUROSTOXX. Modeling linearly the response of V0 to the spot
movements is clearly a good approximation. Unsurprisingly, the slope of the regression is negative, reflecting
the leverage effect of spot movements in implied volatility dynamics. That was clear in the equations above,
as the slope is proportional to the spot/volatility correlation ρ of Heston model, which is usually a negative
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Figure 9: Graph of intradaily calibrated V0 versus spot (for Eurostoxx,
on April 12th 2011) : Evidence of the linear relationship as a good

approximation.

parameter (as found in our estimations).

Therefore :

V0 = V 0
0 + β × ln

S

S0
where V 0

0 = V0 (S0)

Thus, the fixed strike volatility parametrization (near the money, to avoid arbitrage problems on the wings)
becomes :

ΣK,T = ΣATM (S) + Smile× ln

(
K

S

)

+ Curve × ln

(
K

S

)2

(29)

ΣATM (S) =

√

V∞ +

(

V 0
0 + β × ln

S

S0
− V∞

)
1− e−κT

κT
. (30)

Notice also that now, the option delta writes

∆ =
dC

dS
(31)

=
∂C

∂S
+

∂C

∂Σ

∂Σ

∂S
(32)

= ∆BS +VegaBS ×
(
∂ΣATM (S)

∂S
− Smile

S
− Curve × 2

S
× ln

(
K

S

))

, (33)

where VegaBS × ∂ΣATM (S)
∂S

accounts for the before mentioned dynamical correction of the delta.

5.2 Pure volatility effect on V0

In order to isolate the spot effect in V0, we have to come with an estimate of β.

β is itself stochastic and depends on market conditions. A careful look at the implied volatility parametrization
reached so far tells us that a zero β indicates a pure sticky delta regime. We can also calculate a value β (S)
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for which the smile would be sticky strike4. For our parametrization this can not be fully achieved and these
are rather good news, as a fully sticky strike smile is arbitrable as established in (Daglish et al., 2007). So fi-
nally β characterizes the regime of volatility which depend on market conditions, as described in (Derman, 1999).

An exhaustive analysis is then conducted :

• The smile is calibrated to a market snapshot every 5 minutes, giving as series of V0

• The β process is given by a daily β estimation.

All this preparation enable us to study the spot orthogonal component of V0. Recall that our purpose is to
seek if realized volatility has an effect on the dynamics of options prices that we capture here thanks to V0.

In order to seek this effect, we calculate the daily realized volatility. We estimate it thanks to the quadratic
variation estimator as in section 4.2.2. We then estimate the following regression :

V close
0 − V

open
0 − Slope× ∆S

S
︸ ︷︷ ︸

spot effect

= α× (realizedV ol − V
open
0 )

︸ ︷︷ ︸

orthogonal movement

On the right left hand side of the above equation is the daily evolution of V0 from which we substracted the
spot effect as explained by the β. In the right hand side, the algebraic quantity (realizedV ol − V

open
0 ) captures

the realized volatility effect. It is written as a difference between actually realized volatility, and V0 at the
open of the market. The intuition behind that is that V0 being an implied volatility, it is the guess of market
agents of future realized volatility. We are therefore asking the question if market agents, at the end of the day,
update their new volatility guess (V close

0 ) based on the volatility that was actually realized, raising it when
realized volatility raises, and decreasing it in the opposed case.

Figure 10 and in Figure 11 are scatter plots illustrating this regression relationship. The graphics do not exhibit
a clear linear dependence. Even if we plotted a regression line, its slope is very close to 0.
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Figure 10: Effect of Realized Volatility on V0 dynamics for the DAX.

4it is the value of β for which ∂Σ(K,T )
∂S

= 0
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Figure 11: Effect of Realized Volatility on V0 dynamics for the EUROSTOXX.

The criticism made to the intraday study that realized variance estimator may not have converged cannot be
made here, as we estimate realized variance on the hole day. There is no dependence of option prices on realized
quadratic variation in the data. All is in the spot, and even if a second factor is needed to capture dynamical
properties of option prices, the realized quadratic variation does not help to predict it.

6 Conclusion

As a conclusion, we see that while there is a great temptation to see the stochastic volatility models as
structural ones, deducing option prices and their dynamics from fundamental market quantities which are
the spot and its instantaneous variance, with the latter made observable thanks to the availability of high
frequency data and estimation models, the reality of the options markets completely denies that.

Stochastic volatility models are just reduced form models. They meet a lot of success in the description of the
overall market behavior, but do not give the structural mechanism governing option price formation and its
evolution.
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