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Abstract—In this paper, we present an original fuzzy interpo-
lation method. In contrast to existing approaches, our method is
able to always construct an interpolated fuzzy interval without a
need of a special step dedicated to the “standardization” of non-
viable solutions, which fractures the sense of the interpolation.
In fact, these “standardization” steps imply that, for instance, a
point obtained from the interpolation of the upper limit (right
side) of the fuzzy sets, is used to build the lower limit (left side) of
the interpolated conclusion, breaking the underlying hypothesis
of (linear) graduality. To achieve the direct interpolation, our
method is based on the deviation of the observation from the
expected linearly interpolated solution and constrains of the
constructed solution between extreme cases. We illustrate and
discuss the behavior of our method by comparison to other well-
known fuzzy interpolation methods.

I. INTRODUCTION

Interpolation of fuzzy rules has been intensively studied

since 1991 with a first paper proposing a method [1] (or more

accessible [2]). Since then, many different points of views were

adopted: α-cuts approaches (recent ones proposed in [3], [4],

[5] or [6]), analogy or similarity based approaches ([7], [8],

[9]), logical approaches, among others. The interested reader

can find a quasi exhaustive list of references in [10] and [11].

Some methods suppose that fuzzy data are represented

only by trapezoidal fuzzy intervals, some others are more

general and propose methods applicable to all membership

function. Frameworks were proposed to compare different

existing methods [10], [12], [13], or to unify them [11], [14].

The latter framework is an interesting theoretical approach

enabling to write many methods in a unique way thanks to

an analytic approach, but, unfortunately, it is not easy to

instantiate the different behaviors in concrete situations.

Most methods agree on the position of the interpolated

conclusion. Thus differences arise when dealing with the

challenge of constructing an adequate shape, with the risk of

obtaining a non viable fuzzy set. The reason of the latter, as

shown in this paper, is that the shape of the fuzzy sets can not

be linearly interpolated. Thus, very often a standardization step

dedicated to ensure that the obtained membership is actually a

viable normalized function is proposed. Unfortunately, as we

point out in this paper, these steps break several fundamental

underlying hypotheses, as for instance the graduality one. In

fact, state of the art “standardization” steps always imply that,

for instance, a point obtained from the interpolation of the

upper limit (right side) of the fuzzy sets, is used to build the

lower limit (left side) of the interpolated conclusion, breaking

the underlying hypothesis of (linear) graduality. Moreover, the

fact of “swaping” points in a “standardization” steps also

implies that the associated uncertainty (which was actually

used to identify the concerned points for the interpolation) is

ignored. As consequence, for instance, almost uncertain values

may be used (via the “standardization” step) to build the totally

certain kernel of the interpolated solution.

To achieve a direct estimation of the solution, we perform

a double linear interpolation by, first, linearly interpolating the

expected shape value based on the known rules and secondly,

by linearly interpolating the deviation from that value.

Another major difference of the method described in this

paper compared to the state of the art is that it constrain the

solutions between two know natural boundaries. In the one

extreme, we know that the shape of the solution cannot be

more precise than a certain single value and in the other limit

we assume that the solution has to fall between the know rules.

In other words, our solution takes into account, indirectly, the

spread between the rules to constrain the solution: a novelty.

Our paper is organized as follows. In the next section we

present the notations, before describing our method which is

divided in two phases: the interpolation of the position as

described in Section III and the interpolation of the shape

as described in Section IV. In SectionV, we present some

empirical comparisons with known methods putting in contrast

the differences and common behaviors. Finally, we conclude

and provide some hints about future works.

II. INTERPOLATIVE REASONING AND NOTATIONS

A. Interpolative reasoning general principles

Let us consider two numerical variables X and Y defined on

the universe R of real numbers. Let F denote the set of fuzzy

sets of R. We suppose that we are given fuzzy sets Ai in F,

1 ≤ i ≤ n, such that: A1 � A2... � Ai � Ai+1... � An, for

a given order � on F. We also suppose that we are given fuzzy

sets Bi in F, 1 ≤ i ≤ n, which are also ordered according to �.

The context of study concerns sparse fuzzy rule-based

systems where fuzzy rules are of the type : (Ri): “if X is

Ai then Y is Bi”. The sparsity of the system means that the

premises of the rules do not cover the input space F and there

exist inputs A∗ such that ∃i/Ai � A∗ � Ai+1.

The aim of a fuzzy interpolation method is to provide the

conclusion corresponding to the observation A∗ by considering

only the two rules Ri and Ri+1 when Ai � A∗ � Ai+1.

B. Notations and hypotheses

Our approach is based on three fundamental hypothesis.

The first hypothesis lies in the fact that Y has a gradual



behavior with regard to X . The second hypothesis is that there

is a gradual behavior for the space of forms. This hypothesis

translates the intuition that if an observation is smaller (i.e

more precise) than the premisses, then the conclusion should

be smaller than the known conclusions. The third hypothesis

is that the interpolated conclusion has to be between the

conclusions of the adjacent rules. Intuitively, we know that

on the extremes, rules 1 and 2 apply, and thus, if something is

observed in the middle, the conclusion should also be in the

middle.

Moreover, we require that for Ai � Ai+1 the order �

verifies no value of the support (respectively kernel) of Ai+1

is smaller than any value of the support ((respectively kernel)

of Ai and no value of the support (respectively kernel) of Ai

is greater than any value of the support (respectively kernel)

of Ai+1.

In this paper we focus on trapezoidal fuzzy sets. We choose

to describe such a fuzzy set Ai = [ai1, ai2, ai3, ai4], with the

following four parameters. For a visual illustration see Fig. 1:

• its position defined as the center of its kernel:

AP

i
=

ai2 + ai3

2
(1)

• its certain values range characterized by the kernel’s

amplitude left and right from its center, as computed by:

A
L

i
= A

R

i
=

ai3 − ai2

2
(2)

• the extend of the uncertainty on the left and on the right,

defined by:

AL

i
= ai2 − ai1 (3)

AR

i
= ai4 − ai3 (4)

Fig. 1. A trapezoidal fuzzy set Ai = [ai1, ai2, ai3, ai4] has a position AP

i
.

Its kernel’s form is described by its left and right length: A
L

i = A
R

i . AL

i
(and

AR

i
) describe its left (and right) uncertainties. We claim that in an interpolative

reasoning problem it is necessary to know the range of values between the
known rules to constraint the solutio. Thus, we define the global uncertainty

for the kernel on the left A
L

U and on the right A
R

U . Analogously AR

U
defines

the global uncertainty right, ranging from the largest possible value of the left
premise A2 to the largest certain value of the observation A∗.

III. INTERPOLATING THE POSITION

The linear hypothesis for the position states that the position

of the observation A∗ and the premises A1 and A2 are in a

linear relationship with coefficient α and that the interpolated

conclusion B∗ and the conclusions B1 and B2 are also in a

linear relationship with the same coefficient α. Formally, we

have:

AP

∗
= α · AP

1 + (1 − α) · AP

2 (5)

BP

∗
= α · BP

1 + (1 − α) · BP

2 (6)

Now, using these two equations we can easily compute

the position of the interpolated conclusion B∗. First, based

on equation 5, we obtain α:

α =
AP

2 − AP
∗

AP
2 − AP

1

(7)

Second, using that value in equation 5, we obtain the posi-

tion BP
∗

.

IV. INTERPOLATING THE SHAPE

On Fig. 2 we observe that the shape of observation A∗

is not necessarily in a linear relationship with the shapes of

the premises A1 and A2, when considered in the universe

of description X (which coincides with position). One could

argue that this lack of linearity depends upon the way the

shapes are measured, but in fact for any non trivial measure it

is easy to imagine a case breaking the linearity.

In fact, a simple way to achieve this is by, first computing

the expected shape value (linearly) and then building a fuzzy

set observation A∗ (the counterexample), which has a different

shape value. This counterexample exists because the measure

is assumed not trivial.

Moreover, this non linearity applies not only to any general

description of the shape but also to any shape measure based on

a length descriptor. Thus, any α-cut based method will suffer

from this non-linearity. This fundamental limitation has also

been been observed in [15].

One of the direct consequences is that any method attempt-

ing to linearly interpolate the shape (based on the position) will

produce degenerated shapes, as pointed out in [7]. The more

recent methods avoid ill solutions, by using heuristics that

wisely choose among a set of points the ones providing a viable

solution. Unfortunately these heuristics are solely designed

to avoid degenerative solutions, ignoring any interpolative

argumentation.

To overcome the above fundamental reality, we propose

to compute the value of the interpolated conclusion in a two

step interpolation: first linearly interpolate the expected shape

values (between the premises and between the conclusions)

and then linearly interpolate the shape deviation between the

expected shape and a limit case, which follows our fundamen-

tal assumptions. De facto, our two limit cases correspond, in

the one extreme, to zero (assuming that any shape measure is

positive), and in the other extreme, to the shape measure of the

global uncertainty. The latter corresponds to the assumption,



mentioned in Section II-B, that the interpolated conclusion

must be between the known conclusions.

As a result, the solutions are constrained to a reasonable

range, corresponding to the limit cases, in which they linearly

evolve. The shapes of the premises and conclusions influence

only indirectly the solution via the double linear interpolation:

first the linear interpolation of the expected value and second

the linear interpolation of the deviation.

A. Describing the shape of a trapezoidal fuzzy set

The shape of a fuzzy set, and in particular of a trapezoidal

one, can be described in numerous ways. For instance it could

be described by a single value, as the surface (or integral of the

membership function), which summarizes the global spread of

uncertainty. But more refined ways, with several parameters,

can also be imagined. In this paper we choose to describe the

shape of a trapezoidal fuzzy set with the four parameters A
L

i
,

A
R

i
, AL

i
and AR

i
, defined in Section II-B. This description

focuses on the amplitudes, and symmetry, of the kernel and

the support sets.

Since these are all length-descriptors, the double linear in-

terpolation required by the nature of the problem, as described

above, has to be applied. In the following we describe how

this is performed, analogously in the four cases.

B. Interpolating the kernel’s length

In order to interpolate the kernel’s shape, we compute two

double linear interpolations: one for the left lengths A
L

i
and

one for the right ones A
R

i
. Since the calculations are identical,

in the following we only describe the left case.

For the first linear interpolation, we estimate the linearly

expected shapes A
L

E
and B

L

E
using the kernels’ left lengths

of the premises A
L

1 and A
L

2 , and of the conclusions’ B
L

1 and

B
L

2 . As illustrated on Fig. 2 and 3, using simple mathematics

we obtain :

A
L

E
=
(

A
L

1 − A
L

2

)

·

(

AP
2 − AP

∗

AP
2 − AP

1

)

+ A
L

2 (8)

B
L

E
=
(

B
L

1 − B
L

2

)

·

(

BP
2 − BP

∗

BP
2 − BP

1

)

+ B
L

2 (9)

Then, for the second interpolation, we linearly calculate the

deviation of the observed kernel A
L

∗
from the expected kernel

A
L

E
. As we will see below two scenarios appear depending

on the relative magnitude of A
L

∗
with respect to A

L

E
. It is

noteworthy to observe that both scenarios can not be integrated

in a single linear transformation.

1) Smaller-shape deviation: Let us assume that A
L

∗
< A

L

E
.

In this case the observation is more precise than the expected

interpolation. Knowing that any shape measure, and in parti-

cular one based on the length, is always positive (or equals to

0), using the linear hypothesis for the deviation we have:

A
L

∗
= βL · A

L

E
+ (1 − βL) · 0 = βL · A

L

E
(10)

B
L

∗
= βL · B

L

E
+ (1 − βL) · 0 = βL · B

L

E
(11)

Fig. 2. The shape description of observation A∗ is not necessarily in a linear
relationship with the shape descritions of the premises A1 and A2.

Fig. 3. The shape description of the interpolated conclusion B∗ should be
in the same linear deviation from the expected shape value, as is the case for
the premises.

Thus, in order to obtain the interpolated conclusion’s kernel

left length, we use Equation 10 to obtain:

βL =
A

L

∗

A
L

E

(12)

Which is then used in Equation 11 to obtain the length B
L

∗
.

The same exact equations, replacing L by R, can be used for

the right description of the kernels and, thus, obtain B
R

∗
.

2) Larger-shape deviation: It may happen that the ob-

servation is less precise than the linearly expected value:

A
L

∗
≥ A

L

E
. In that case Equation 10 do not apply, since we

have a deviation that implies an increase of the shape and

therefore can not be constrained, by a lower boundary, as in

a reduction scenario. In other words, since the length of the

observation is larger than expected, we would like the length

of the conclusion to be also larger than the expected linearly

interpolated conclusion B
L

E
. In addition, the third of hypothesis

mentioned in Section II-B implies that its range can not be

larger that the gap between the rules. In the case of the kernel’s



Fig. 4. The shape description of observation A∗, as for instance here the

left kernel length A
L

∗
, may be larger than the linearly expected value A

L

E . We
propose to constrain the solution by linearly interpolating between the linearly

expected shape and the left kernel uncertainty A
L

U .

left length calculations the uncertainty left between the kernel’s

premises estimated by:

A
L

U
= AP

∗
− a12 (13)

as shown on Fig. 1.

Consequently, assuming a linear hypothesis for the devia-

tion, we obtain:

A
L

∗
= βL · A

L

E
+ (1 − βL) · A

L

U
(14)

B
L

∗
= βL · B

L

E
+ (1 − βL) · B

L

U
(15)

The same way as with the smaller shape reduction, in order to

obtain the conclusion’s kernel-left-length, we use Equation 14

to obtain:

βL =

(

A
L

U
− A

L

∗

A
L

U
− A

L

E

)

(16)

which is then used in Equation 15 to obtain the length B
L

∗
.

Again, by replacing in the equations L by R we know how to

obtain B
R

∗
.

C. Interpolating the left and right uncertainties

At this point we know the interpolated conclusion’s fuzzy

set position (Section III) and its kernel’s shape (Section IV-B).

Now we interpolate, analogously as for the kernel’s lengths,

the left and right uncertainties. We first interpolate the expected

forms, here only for the right uncertainties:

AR

E
=
(

AR

1 − AR

2

)

·

(

a23 − a∗3

a23 − a13

)

+ AR

2 (17)

BR

E
=
(

BR

1 − BR

2

)

·

(

b23 − b∗3
b23 − b13

)

+ BR

2 (18)

where b∗3 = BP
∗

+ B
R

∗
. Notice that we anchor, as for the

kernels, the length description to the point where the interval

starts.

Now, in the same way as for the kernels, we have two

scenarios depending of the the relative value of the expected

length and the observed length.

If AR

∗
< BR

E
, then the double interpolated right uncertainty

is obtained by:

BR

∗
= γR · BR

E
=

(

AR

∗

AR

E

)

· BR

E
(19)

But, if A
L

∗
≥ A

L

E
, , then the double interpolated right

uncertainty is obtained by:

BR

∗
= γR · BR

E
+ (1 − γR) · BR

U
(20)

where

γR =

(

AR

U
− AR

∗

AR

U
− AR

E

)

(21)

V. EMPIRICAL COMPARISONS

In this section, we compare the double-linear fuzzy inter-

polation method (DoLFIn for short) with some well-known

methods: [16] (DP), [10] (BTKY), and [7] (BMR). We con-

sider several scenarios:

• all the shapes are similar

• specific observation

• specific premises or specific conclusions

• extremely unspecific observation

Moreover, to extend our comparison to other state of the art

approaches, we use some examples shared by the following

papers [3] (HS), [4] (CK), [17] (CCL).

Figures Fig. 5 to Fig. 12 should be read as follows. The first

row shows the two premises A1 and A2 and the observation

A∗. The other four rows present the conclusions by each of the

four studied approaches. For the comparison the two known

conclusions B1 and B2 are always the same, and only the

obtained result B∗ changes between the rows.

A. All the shapes are similar

A first interesting scenario arises when the observation is

similar to the premise. In this case, the observation can be

considered as a translation of one of the premises. It is a typical

case of interpolative reasoning.

In Fig. 5 and Fig. 6, it can be seen that the three approaches

BTKY, BMR, and DolFIn propose the exact same conclusion.

The unique method which offers a different solution is the DP,

which is very unspecific and uncertain.

B. Precise observation

A second interesting case arises when the observation is

precise. It is often the case in real-world applications for

decision-making process when no fuzzification of the input

data is processed.

In Fig. 7 and Fig. 8, it can be seen that the results are

different for the four methods. As previously seen, again DP



Fig. 5. All the shapes are similar (1)

Fig. 6. All the shapes are similar (2)

Fig. 7. Precise observation (1)

offers a very specific solution that can hardly be linked to

the preciseness of the observation. BTKY proposes a non

viable solution. Concerning BMR and DoLFIn, the results

are different depending on the form of the premises and the

conclusions. In a case, Fig. 7, BMR and DoLFIn methods

propose a similar result. On the other case, Fig. 8, the results

are very different: BMR proposes a fuzzy solution where

DoLFIn constructs a precise solution.

The difference between the situations of Fig. 7 and Fig. 8

is that the forms of the premises are smaller than the forms of

the conclusions on the first one, and greater on the second one.

In this case, BMR method does not always provide a specific

conclusion in presence of a specific observation.

In general, for a precise observation we obtain either a

vague solution or no solution at all. While DoLFIn guarantees

a specific conclusion in this case.

C. Precise premises

When premises are precise and the observation is imprecise

and uncertain (see Fig. 9) all the methods except DoLFIn

provide a solutions very imprecise and uncertain, sometimes

going beyond the scope of the conclusions.

DoLFIn method proposes an interesting solution with a

reasonable support size. Moreover, as for the observation and

the premises, the solution respects the requirements imposed

by the order � defined in Section II-B.

D. Extremely unspecific observations

When the observation is in the limit case of an extremely

unspecific but precise interval that covers the whole space be-

tween the premises, see Fig. 10, DoLFIn is the only approach



Fig. 8. Precise observation (2)

Fig. 9. Precise premises

that leads to an unspecific and precise conclusion. In this case,

BTKY does not propose a viable solution, and BMR and DP

construct imprecise solutions.

Fig. 10. Extremely unspecific observations

E. Remarkable examples

In figures Fig. 11 to Fig. 12, we extend our comparison

by using some remarkable examples pointed out and shared

by the following papers [3] (HS), [4] (CK), [17] (CCL). We

invite the reader to refer to those papers for further details.

In Fig. 11, it can been seen that DP produces a very

unspecific solution and BTKY constructs a non viable solution.

The remaining approaches provide similar results with slight

differences. BMR proposes a solution with a very steep right

slope due to the fact that there is a strong transformation from

the right slope of the premises to the observation. The result

by DoLFIn is more fuzzy and with a different location than the

solution by HS and CK. DoLFIn and CCL produce an almost

identical conclusion.

A second remarkable example is presented in Fig. 12. Here

again, it can been seen that DP produces a very unspecific

conclusion. BTKY constructs a non viable solution. This time

all the remaining approaches1 (BMR, DoLFIn, CCL, and CK)

produce a very similar result.

In general DoLFIn is able to provide a reasonable solu-

tion to all the remarquable examples identified by the above

mentioned authors.

1The comparison with HS is not available because this example is not treated
in [3].



Fig. 11. Remarkable example (1)

Fig. 12. Remarkable example (2)

F. Discussion

It can be seen in the presented comparison that for each of

the scenarios, a group of methods (not always the same ones)

provides adequate solutions.

DP proposes always a solution which is very unspecific and

imprecise. BTKY generates conclusions often very pertinent

but suffers of a problem of viability. BMR is very robust

and can handle a large set of particular cases without having

a problem of viability thanks to its standardization step [7].

However, the constructed solution can have a fuzzy conclusion

with a precise observation, or a conclusion which is out of the

scope of the known conclusions.

The proposed DoLFIn method has none of the mentioned

drawbacks and proposes a pertinent and viable solution in all

the studied cases without the use of a standardization step.

VI. CONCLUSION

Our method is based on the deviation to the expected

linearly interpolated solution and constrains the constructed

solution between extreme cases. We discovered that from

the fundamental assumptions, mathematically, two scenarios

appear: one where the form is expected to diminish but

constrained to be positive and a second where the form is

expected to grow but is constrained by the two known rules.

The presented study suggests that DoLFIn produces always

a pertinent solution for a large set of diverse situations. Its

pertinence is reinforced by the fact that each time the solution

coincides with at least the result of another method.

An extensive and detailed comparison with a larger set of

examples and methods coded in the FRI toolbox [18], is under

development. We believe that its conclusion will not reveal any

major differences with the conclusions of the presented paper.

Future works will focus on the extension of the presented

method to general shaped fuzzy sets and to the more complex

multi-premise rules interpolation problem.
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