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We report the implementation of a time-dependent density functional theory (TDDFT) method in the adiabatic

limit (TDLDA) of the calculation of x-ray absorption spectroscopy. We show results for various choices for the

exchange-correlation kernel, in particular the absorption spectra at the L2,3 edges of the 3d elements. We equally

present a detailed study of the method’s limitations and range of applicability. We found that TDDFT calculations

should be performed fully relativistically even for nonmagnetic materials. We conclude that an accurate TDDFT

description of x-ray absorption should include the core hole effects. The local (both in space and time) TDDFT

kernels that are currently used in the description of extended systems do not meet this criterion.

DOI: 10.1103/PhysRevB.85.155121 PACS number(s): 78.70.Dm, 31.15.A−

I. INTRODUCTION

X-ray absorption spectroscopy is a very powerful tool
in material science, as it probes the electronic and geo-
metrical structures around the absorbing atom. For such
spectroscopy, the available first-principles descriptions and
calculation methods are rather behind the experiments in terms
of performance and accuracy. Among these, the most common
methods are the density functional theory (DFT) based, one-
body calculations.1–7 Although they describe successfully the
delocalized edges (i.e., K edges), they are less reliable with
partly localized or atomic edges (L23 edges of transition
elements, M45 edges of rare earths). In particular, DFT
techniques fail to describe the many-body effects such as
the multiplet structures8 or the relative L3/L2 intensities
of the absorption spectra of the 3d elements (the so-called
branching ratio anomaly9). Consequently, the breakdown of
the single-particle picture suggests the urge of including some
many-body effects in the description of the x-ray absorption
spectroscopy.

The first attempts to bring calculations beyond the one-
body approximation belong to Zangwill and Soven10 and
Zaanen et al.11 The former treat from first principles the
local-fields effect in the photoabsorption spectra of rare gases,
within linear response and using atomic screening. The latter
use a two Green-function model to explain the branching
ratio anomaly at the L2,3 edges of the early 3d transition
metals. These two pioneering pieces of work open the way for
the modern first-principles calculations of x-ray absorption
in extended systems beyond the one-body approximation:
the multichannel method,12–14 the Bethe Salpeter equation
(BSE)15,16 and the time-dependent density functional theory
(TDDFT) based calculations.17–21 Among these, TDDFT is
particularly convenient in terms of simplicity and calculation
time. In this paper we focus on the application of the TDDFT
to the x-ray absorption frequency range, as we feel that the
existing literature is not conclusive enough on the subject.
We therefore propose our own implementation of the TDDFT
method in the adiabatic approximation (TDLDA), as well as an
extensive study of its range of applicability. Note that results of

non-muffin-tin effects in TDDFT will be published elsewhere
without being explicit on the method. In this paper we describe
the details of the implementation of our TDDFT procedure and
compare it to the other results in the literature.

The structure of this paper is as follows. The second section
is dedicated to the application of the TDDFT to the resonant
case and contains a detailed description of the several choices
of the exchange correlation kernel. The third section describes
the implementation of the TDDFT calculation within the
FDMNES (Finite Differences Method Near Edge Structures)
code.1 The fourth and fifth sections contain the extended
discussion of our results and the conclusion, respectively.

II. TDDFT FOR X-RAY ABSORPTION

In the spirit of Zangwill and Soven,10 Runge and Gross
propose a more general, though related, method to calculate
the absorption cross section: the time-dependent density
functional theory (TDDFT).22 Although the TDDFT has
quickly become popular for the quantum chemistry studies,
its application to condensed-matter studies is more recent.23,24

The sophisticated, often parametrized exchange-correlation
functionals of quantum chemistry lose their special behavior
and are no longer useful in extended systems.25 Therefore
exchange-correlation functionals in condensed-matter studies
are based on the uniform electron gas model, whose limitations
make TDDFT less successful for solids than it is for molecules.
Indeed, for the description of delocalized excitations, TDLDA
reduces to DFT essentially.

Contrary to standard DFT, TDDFT includes the time depen-
dence, a feature that is essential for spectroscopic calculations.
In TDDFT, the coupling of the electromagnetic field to the
sample is treated as a perturbation. Perturbation theory can be
applied in the case of common beam intensities (the third
generation synchrotrons) and one can restrain the TDDFT
to the linear response (LR) regime. Note that perturbation
theory is no longer valid when one deals with laser pulses or
X-FELs, i.e., whose corresponding fields are of the same order
of magnitude with the electric field inside the atom. This work
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only deals with the LR regime, where 10

σ (ω) = −
4πω

c

∑

σσ ′

∫

d3r

∫

d3r ′

×Ô†(ω,�r ′) Imχσσ ′

(ω,�r,�r ′) Ô(ω,�r) (1)

Here ω is the photon energy, σ is the spin index, σ (ω) is the
absorption cross section, χ is the linear-response function, and
Ô is the external field operator. Starting from Eq. (1), we shall
be employing the atomic (Hartree) unit system all through this
paper.

The standard DFT calculations assume χ̂ = χ̂0, i.e., use
the ground-state response function χ0 of the noninteracting
system. The spirit of the LR-TDDFT is to include the many-
body effects within the response function:

χ̂ = χ̂0 + χ̂0K̂χ̂, (2)

where χ is the response function that accounts for the many-
body corrections. Ideally, the integral kernel K should describe
the many-body effects, including the interaction with the
core hole. Nonetheless, as no exact analytical form of the
exchange correlation is available, one has to assume the form
of K . The physics one may describe and the accuracy of the
description are tributary to the choice of this ansatz.

In the TDDFT approach, the many-body effects associated
to the excitation of a core electron are described by an effective
single-particle picture of these excitations. To understand this,
please note that in the following we will be using the Kohn-
Sham orbitals as a basis of the expansion of different quantities
(kernel, response functions). Hence we need a ground-state
DFT calculation to obtain the basis functions for the TDDFT.

(a) Notations. In the following we will adapt the TDDFT
formalism to the x-ray absorption frequency range. We proceed
by introducing the notations for the wave functions (spin-
orbit coupling included). The initial, occupied states (index g)
corresponding to the resonant transition are

φg(�r) =
∑

σ

φσ
g (�r) ζσ =

∑

σ

c�σ
g

bg(r) Y�σ
g
(r̂) ζσ , (3)

where �σ
g = (lg,mg + 1

2
− σ,σ ) is the set of quantum numbers

characterizing the initial states and ζσ is the spin eigenfunction.
One can see that each initial state φg(�r) is a sum of the two spin
contributions, weighted by the Clebsch-Gordon coefficients
c�σ

g
. bg(r) is the radial wave function, which in practice only

depends on the edge corresponding to the initial state g. Y (r̂)
stands for the complex spherical harmonics.

In the Dirac formalism, after eliminating the high-energy
solutions, the final-state wave function can be written in its
exact form as26

	f (�r,E) =
∑

σ

∑

�s

a
f

�s
(E) 	s

�σ
(�r,E) ζσ . (4)

When fully relativistic, the eigenfunctions are the sum of two
solutions sharing the same l quantum number but different
m.27,28 s is the index over the solution and by convention we
take it either 1

2
or − 1

2
, i.e., the same values as for the spin pro-

jection σ . �s = (l,m + 1
2

− s,s) and �σ = (l,m + 1
2

− σ,σ )

are sets of quantum numbers describing the final state. a
f

�s
(E)

is the multiple-scattering amplitude of the �σ contribution to

the s component of the final-state wave-function:

	s
�σ

(�r,E) = bs
�σ

(r,E) Y�σ
(r̂), (5)

where bs
�σ

(r,E) is the spin and orbital dependent radial wave
function. Note that in Eq. (4) the summation over �s implies

∑

�s

≡
∑

lms

(6)

with m obeying the constraint −l � m + 1
2

− s � l. A similar
remark can be made on the �σ summation.

(b) Ground-state susceptibility. For a noninteracting system
and in the spherical harmonics representation, the fully
relativistic Adler-Wiser equation24 reads

χ0
σσ ′

(�r,�r ′,ω) =
1

π
lim
ǫ→0

∑

g

∫ ∞

EF

dE

×
∑

f

φσ
g (�r) 	

†
f (�r,E) 	f (�r ′,E) φ

σ ′†
g (�r ′)

ω − (E − Eg) + iǫ
,

(7)

where f are the final states of the same energy E. We stress
the fact that the energies ω and E are expressed into two
different scales: the former describes the photon, whereas the
latter belongs to the photoelectron. Eg is the Kohn-Sham
energy of the g state, i.e., the expectation value of the
effective-single-particle Kohn-Sham Hamiltonian (as given by
DFT local density approximation) for this particular state,

Eg =
〈φg|HLDA|φg〉

〈φg|φg〉
. (8)

The optical theorem29 connects the amplitudes a
f

�s
(E) and

a
f

�′
s
(E) and the multiple-scattering matrix τ�s�′

s
(E) of the

multiple-scattering theory (MST):
∑

f

a
f

�′
s
(E)a

f ∗
�s

(E) = −Imτ�s�′
s
(E). (9)

By exploiting Eqs. (4) and (9), Eq. (7) can be simplified to

χ0
σσ ′

(�r,�r ′,ω)

= −
1

π

∑

gg′

δgg′

∑

�s�′
s

lim
ǫ→0

∫ ∞

EF

dE

×
φσ

g (�r) 	
s†
�σ

(r,E) Imτ�s�′
s
(E) 	s ′

�′
σ
(�r ′,E) φ

σ ′†
g′ (�r ′)

ω − (E − Eg) + iǫ
,

(10)

where we introduced the explicit dependence on the initial
states g. We stress the fact that the Adler-Wiser equation24

normally involves all the occupied and unoccupied (E,f )
states. Nevertheless, in the resonant case, and thus at energies
beyond the optical spectrum, one can assume that the only sig-
nificant contribution is brought in by the levels whose energy
E − Eg is close to the photon energy ω, i.e., the concerned
core levels indexed by g [see Eq. (10)]. Quantitatively, this
is an extremely sound simplification and does not introduce
errors.30 χ0 is diagonal over the initial states g, meaning that
in a one-particle picture the different channels available to the
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electronic transition do not mix. Note that χ0 involves only
ground-state quantities.

In the following we shall exploit the formalism developed
by Schwitalla and Ebert in Ref. 17. We are interested in a
spherical harmonics representation for χ0. Consequently, we
are considering an expansion of the following kind:

χ0
σσ ′

(�r,�r ′,ω)

=
∑

gg′

δgg′ φσ
g (�r) φ

σ ′†
g′ (�r ′)

∑

�s�′
s

χ̃0
σσ ′

gg′,�s�′
s
(ω)

×	
s†
�σ

(�r,ω + Eg) 	s ′

�′
σ
(�r ′,ω + Eg′) (11)

as if we were projecting χ0 on the set formed by the
initial-state wave functions φ and the final-state ones 	.
The energy dependence of 	 is bothersome and needs to be
counterbalanced by considering an energy dependence in the
very form of χ̃0

σσ ′

gg′,�s�′
s
. We suppose that a derivation similar

to Eq. (11) is valid for χ̃ .
(c) Connection with the multiple-scattering amplitude. We

are trying to establish the connection between χ and τ ,
the multiple-scattering amplitude of the MST. Let us inves-
tigate the similarities between the results of the LR theory and
the MST for the absorption cross section. We recall that in the
MST and in the complex spherical harmonics basis26

σ (ω) = −
4πω

c

∫

d3r

∫

d3r ′
∑

σσ ′

∑

gg′

∑

�s�′
s

×O∗(ω,�r) bs
�σ

(r) Y ∗
�σ

(r̂) φσ
g (�r) Imτ�s�′

s

×O∗(ω,�r ′) bs ′

�′
σ
(r ′) Y�′

σ
(r̂ ′) φ

σ ′†
g′ (�r ′). (12)

One can treat the projection of the susceptibility χ̃ and the
multiple-scattering amplitudes τ on equal footing:

χ̃0
σσ ′
g,�s�′

s
≡ τ�s�′

s
. (13)

The equivalence is easy to see if one compares Eq. (12) to
the definition of χ̃0 in Eq. (11). This is a remarkable result
and it was first suggested by Schwitalla and Ebert.17 We stress
that the equivalence no longer holds if τ is issued from a
potential that takes complex values. More particularly, the
Green function describing the scattering process is required
not to have any other solution than the regular one, or otherwise
Eq. (13) breaks down. Let

χ̃0
σσ ′

gg′,�s�′
s
(ω) = −δgg′

∫ ∞

EF

dE

π

Imτ�s�′
s
(E)

ω − (E − Eg) + iǫ

×
Zs ′

g′�′
σ
(E) Zs

g�σ
(E)

Zs ′

g′�′
σ
(ω + Eg′) Zs

g�σ
(ω + Eg)

, (14)

an equivalent form of the equivalence in Eq. (13), where

Zs
g�σ

(E) =

∫ R

0

dr r2 bg(r) bs
�σ

(r,E) (15)

is some energy-dependent function that is supposed to account
for the energy modulations in 	. Note that the Z normalization
procedure in Eq. (14) is reasonable as long as the energy
dependence in Z, and consequently in the radial final-state
wave functions, is weak. We stress the fact that this is the
only approximation introduced by the method and otherwise

the expansion in Eq. (14) would be exact. The necessity of
introducing Eq. (14) is as follows. χ̃0 depends on the photon
energy ω, whereas τ depends on the photoelectron’s energy
E. Equation (14) is the bridge between the two quantities.

(d) Kernel. In the |r,σ 〉 representation Eq. (2) rewrites as

χσσ ′

(�r,�r ′,ω)

= χσσ ′

0 (�r,�r ′,ω) +
∑

σ ′′σ ′′′

∫

d3r ′′

∫

d3r ′′′

×χσσ ′′

0 (�r,�r ′′,ω) Kσ ′′σ ′′′

(�r ′′,�r ′′′) χσ ′′′σ ′

(�r ′′′,�r ′,ω). (16)

To avoid the solving of the integral equation (16), we project
the operatorial Dyson-like equation (2) on the basis introduced
in Eq. (11):

χ̃σσ ′

gg′,�s�′
s
(ω) = χ̃0

σσ ′

gg,�s�′
s
(ω) +

∑

g′′′

∑

σ ′′σ ′′′

∑

�′′
s �

′′′
s

×χ̃0
σσ ′′

gg,�s�′′
s
(ω) K̃σ ′′σ ′′′

gg′′′,�′′
s �

′′′
s

(ω) χ̃σ ′′′σ ′

g′′′g′,�′′′
s �′

s
(ω),

(17)

where we have used χ̃0
σσ ′

gg′,�s�′
s
(ω) = χ̃0

σσ ′

gg′,�s�′
s
(ω) δgg′ . We are

interested in K̃ , the projection of the kernel on the same basis
functions as in Eq. (11). We plug into Eq. (16) the expansions
of type (11) for both χ0 and χ and identify with Eq. (17). One
obtains

K̃σσ ′

gg′,�s�′
s
(ω)

=

∫

d3r

∫

d3r ′ Kσσ ′

(�r,�r ′,ω)φσ†
g (�r) 	s

�σ
(�r,ω + Eg)

×φσ ′

g′ (�r ′) 	
s ′ †
�′

σ
(�r ′,ω + Eg′). (18)

As a technical detail, note the difference with Eq. (11)
in terms of Hermitian conjugate factors. In this sense, the
form of K̃ both in Ref. 17 [Eq. (11)] and in Ref. 21
[Eq. (26)] is not general (but nevertheless correct for kernels
taking real values). In its most general form, the TDDFT kernel
can be split into a classical Coulomb (Hartree) term fH and an
exchange-correlation contribution fxc:

Kσσ ′

(�r,�r ′,ω) = f σσ ′

H (�r,�r ′) + f σσ ′

xc (�r,�r ′,ω), (19)

where fH is local and spin independent:

f σσ ′

H (�r,�r ′) =
1

|�r − �r ′|
. (20)

(e) Dyson equation. TDDFT provides a calculation recipe
to include the many-body interactions, to an extent dictated by
the kernel, into the response function. The renormalization in
Eq. (2) is actually a matrix equation of the form

χ̂ = (1̂ − χ̂0 K̂)−1 χ̂0. (21)

While χ̃0 is diagonal over the initial states g, it is not the
case for the kernel K̃ . Consequently, the many-body response
function χ̃ may mix different initial states. This effect is to be
seen on the spectra if one calculates two edges that are close in
energy (less than ≈50 eV of difference), such as the L2,3 edges
of the 3d elements. In this case, the overlap between the matrix
elements of the real parts of χ̃0s (Fig. 1) causes a transfer of
spectral weight in the imaginary parts of χ̃ . Subsequently,

155121-3
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Reχ0
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FIG. 1. Calculated real and imaginary parts of χ0 for the L2,3

edges of bulk nickel. Reχ0 is similar to f ′, whereas Imχ0 indicates

the absorption peaks before the multiplication with the manifold of

the corresponding initial states.

the branching ratio and the position of peaks are modified. In
the following we shall discuss several approximations for the
exchange-correlation part of the kernel fxc, and the physics
they imply.

(f) Local-fields effect. The local fields (LFs) are due to the
internal polarization of the sample when penetrated by the x
rays. When subjected to the electromagnetic field, the electrons
in the sample rearrange. The local-fields picture is coherent
with the concept of particles and holes: the particle-hole pairs
create an internal electric field opposed to the one of the elec-
tromagnetic wave. Indeed, one can see from Eq. (18) that the
Hartree contribution is synonymous to the exchange Coulomb
interaction of the particle-hole pairs. Furthermore, this identity
is clearly expressed in the Bethe-Salpeter formalism. The
expression in Eq. (18) is the generalization of the Slater
exchange integral G in the atomic multiplet theory.31 Due
to the solid-state environment, the final-state wave functions

	 contain other spherical harmonics besides the l = 2 term,
as in standard Slater integrals. Quantitatively, we found that
the solid-state l �= 2 contributions are negligible.

Local fields are responsible for the screening of the x-ray
field. The RPA-LF approximation to the TDDFT consists in
imposing f σσ ′

xc (�r,�r ′,ω) = 0. In the language of many-body
physics this is the random-phase approximation (RPA), as one
only considers the exchange (no correlations) between the
particle-hole pairs. Note that TDDFT in the RPA-LF limit is
equivalent to the multichannel result for an unscreened core
hole potential.13,14

(g) Adiabatic local-density approximation. A straightfor-
ward way to add some core-hole contribution to the RPA-LF
description is to adapt the LSDA to the time-dependent
situation. This method is known under the name of adiabatic
local-density approximation (ALDA) or the time-dependent
local (spin)-density approximation (TDLSDA). The adiabatic
approximation excludes the memory effects, and the exchange-
correlation kernel depends uniquely on the density in the
ground state (i.e., at t = 0):

f σσ ′

xc (�rt,�r ′t ′) =
δvxc[n(t),σ ](�r)

δnσ ′ (�r ′,t ′)

∣

∣

∣

∣

n(t=0)

, (22)

where vxc[n] is provided in Refs. 32 and 33. One sees that
f σσ ′

xc generates a potential that is local both in space and in
time, and may mix the spins channels. In extended systems,
the bothersome feature of the TDLSDA exchange-correlation
kernel is its inaccurate long-range behavior, a consequence of
the dependence on the local density.24 Moreover, TDLSDA
cannot predict bound excitons,24 thus it fails to describe
the core hole effects, as will be discussed in the results
section. We stress the attention upon the fact that, with a
view toward accuracy, we implemented the TDLSDA, and
not the TDLDA, kernel. The exchange-correlation potential
given by the TDLSDA in the spin unpolarized case is equal
to the TDLDA one, whereas this is no longer the case of the
exchange-correlation kernels, due to the mixed derivative with
respect to spin in Eq. (22).

The Hartree kernel bears a positive sign, as it comes
from the repulsive electron-electron interaction. On the other
hand, the exchange-correlation kernel fxc has a negative
sign which points to the core hole interaction (attractive).
Consequently, local fields change the spectral weight toward
higher energies, whereas the effect of the exchange-correlation
kernel is opposite.

(h) Restricted adiabatic approximation. The restricted
TDL(S)DA is more or less an interpolation between the
RPA-LF and the TDL(S)DA. The idea is to use the TDLSDA
correlation for the kernel elements that connect identical states,
and the RPA-LF for the rest:

Kσσ ′

(�r,�r ′,ω)|gg′ =
1

|�r − �r ′|
+ δgg′ f σσ ′

xc (�r) δ(�r − �r ′). (23)

This kernel was first introduced by Ankudinov, Nesvizhskii,
and Rehr19 and is supposed to provide a better description
of the core hole. Should fxc describe the core hole, the
latter’s localization determines the spherical symmetry of the
potential. Therefore fxc only couples states with identical
total momentum j . For a detailed discussion please refer
to the Results section. In Ref. 19, the kernel in Eq. (23) is
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called the dynamical TDLDA. We nevertheless prefer another
nomenclature, as no explicit energy dependence appears
in Eq. (23).

(i) Limitations of local kernels. The poles of the response
function indicate the excitation energies in the system. Gener-
ally speaking, χ has more poles than χ0 does. The singularities
of χ0 are related to the single-particle excitations in the
system, whereas the extra ones introduced by χ account for the
multielectron excitations (double, triple, etc., or collective). In
other words, the number of electron-hole pairs is generally
lower than the one of spectral terms, which is a serious
limitation when d electrons are present in the initial state.11

This situation is particularly visible in the case of the second
half of the 3d series, when the electron-hole pair picture breaks
down. At the present moment, there exists no ab initio method
for extended systems to solve this issue.

The approximations we made for the kernel stand within
the limits of the electron-hole pair picture and cannot possibly
add extra peaks to the spectrum, i.e., missing in the one-body
calculation, other than plasmon ones (which belong to the
optical range). To see double excitations, it is mandatory to
have an energy-dependent kernel.34 This limitation concerns
all the present TDDFT calculations for extended systems.

None of the kernels we introduced describes the core hole
explicitly. An explicit treatment of the core hole effect implies
having a kernel that describes the electron-hole interaction
nonlocally, at least in space coordinates (the excitonic effect).
This should be possible provided one built a kernel by
exploiting the BSE formalism,23,35,36 but, since it is a single-
particle-hole approach, it would not contain the multiplet
splittings. Even so, the static inclusion of the core hole effect is
expected to dramatically improve the L2,3 absorption spectra of
the 3d0 and 3d1 elements. We believe that BSE-derived kernels
can be dramatically simplified in the case of x-ray absorption,
where the bound exciton (the core hole is localized inside
the absorbing atom) overwhelms the others. Consequently,
calculation of all electron-hole pairs (as in standard BSE) may
be unnecessary. The issue here is to find an orbital dependent
form of the kernel which accounts for the bound exciton, which
we expect to be some limit of the BSE-derived kernel. This is
beyond the scope of the work presented in this paper.

The importance of the explicit time dependence of the
kernel has been recently underlined in the work of Lee and
co-workers,37 who clearly state that a frequency-dependent
kernel (unlike the ones derived from BSE) and memory effects
are essential for the description of the multiplet splitting.

(j) Spherical harmonics expansion of the kernel. We use the
spherical harmonics development of the Hartree potential,38

1

|�r − �r ′|
=

∑

�0

4π

2l0 + 1

r l0
<

r
l0+1
>

Y ∗
�0

(r̂) Y�0
(r̂ ′), (24)

where �0 = (l0,m0), r< = min(r,r ′) and r> = max(r,r ′). Be-
cause of its inability to treat the singular solution, this TDDFT
method requires the ground-state electronic structure to be
solved by using a real potential. Therefore all the radial
functions are real and we drop the H.c. for the radial functions.
The contributions in Eq. (19) give

K̃σσ ′

gg′,�s�′
s
(ω) = f̃H

σσ ′

gg′,�s�′
s
(ω) + ˜fxc

σσ ′

gg′,�s�′
s
(ω), (25)

where, with the aid of Eq. (24),

f̃H
σσ ′

gg′,�s�′
s
(ω)

= c�σ
g

c�σ
g

′

∑

�0

4π

2l0 + 1
Ŵ�′

σ �0�σ
g

′ Ŵ�σ �0�σ
g

×

(∫ R

0

dr r1−l0bs
�σ

(r,ω + Eg)bg(r)

∫ r

0

dr ′r ′2bg′(r ′)

× bs ′

�′
σ
(r ′,ω + Eg′)r ′ l0 +

∫ R

0

dr bg(r)bs
�σ

(r,ω + Eg)

×

∫ R

r

dr ′r ′2−l0bg′ (r ′)bs ′

�′
σ
(r ′,ω + Eg′)

1

r ′ l0+1

)

(26)

and

˜fxc
σσ ′

gg′,�s�′
s
(ω) = c�σ

g
c�σ

g
′

∫ R

0

dr r2f σσ ′

xc (r)

∫ R

0

dr r2

× bs
�σ

(r,ω + Eg)bg(r)bg′(r)bs ′

�′
σ
(r,ω + Eg′)

×
∑

λ

Ŵ�σ �σ
g λ Ŵ�σ

g
′�σ

g λ. (27)

The products of type

Ŵ�1�2�3
=

∫

dr̂ Y ∗
�1

(r̂) Y�2
(r̂) Y�3

(r̂) (28)

intervening in Eq. (26) are real quantities, also known as the
Gaunt coefficients. The series in Eq. (24) can be cut at a
maximum value of l0 = lg + lmax, according to the selection
rules for the Gaunt coefficients. Furthermore, the kernels (26)
and (27) prevent the mixing of odd and even states in terms of
l. In particular this means that for L2,3 edges l = 1 (p) levels
do not contribute to the kernel. The expression in Eq. (27) is
valid for the TDLSDA, whereas the restricted scheme involves
an extra δgg′ factor. The kernel expressions in both Eqs. (27)
and (26) are Hermitian.

(k) Zero spin-orbit coupling limit. In the limit of no
spin-orbit coupling, the solution s becomes redundant.26 In
this case, the solution can be identified to the spin function.
All the equations presented in this paper may be simplified
accordingly. In particular, the equivalence in Eq. (13) becomes

χ̃0
σσ ′
g,lm,l′m′ ≡ τ σσ ′

lm,l′m′ . (29)

III. IMPLEMENTATION

Any TDDFT calculation relies on a ground-state one.
Consequently, the implementation of the TDDFT method
within the FDMNES code is modular. From the user’s point
of view, it is a completely separate module, whose call is
optional (via a keyword). In our implementation, the TDDFT
calculation accompanies, but does not alter, the one-particle
calculation. Besides the usual output files, an extra one
containing the TDDFT-corrected absorption cross section is
generated.

The underlying ground-state calculation, either self-
consistent or not, is equally meant to provide us the Fermi
level, whose knowledge is essential for the calculation of χ0.
The ground-state calculation can be performed either in the

155121-5
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MST or in the finite difference method.1,39 The latter is to be
preferred if the muffin-tin approximation is questionable for
the calculated compound.39

To evaluate χ0(ω) with the aid of Eq. (14) we will be
using Imτ�s�′

s
(E) and Zs ′

g′�′
σ
(E) Zs

g�σ
(E) from the one-particle

calculation. The energy dependence of Imτ points out to some
photoelectron energy E, whereas χ0 depends on the photons’
energy ω. Thus, for a TDDFT calculation where two edges are
involved, it is mandatory to construct an extended energy grid
that will explicitly contain the two edges. This new grid is built
automatically from the initial ones, which were user defined.
We superpose the two initial grids, which we previously shifted
by a quantity corresponding to the energy difference between
the two edges.

To get the values of χ0 on the extended grid, according to
Eq. (14), we need to evaluate integrals of the following kind:

B(ω) =

∫ ∞

EF

dE
A(E)

ω − (E − Eg) + iǫ
. (30)

In practice, the upper limit of the integral is taken some
1000 eV above the last point in the energy grid, instead of
∞. The missing values in A(E) are taken as the extrapolation
of the imaginary part of the atomic structure factor f ′′, with
the corresponding units. The physical reason one needs a
large extension of the grid is that, although ImA(E) are very
localized structures around the edge energies, ReA(E) are
extended. Note that this procedure of calculating the real part
of the susceptibility is proper to our implementation. The other
existing methods (see the implementation details in Refs. 17
and 19) use the Kramers-Kronig relations.

One can evaluate Eq. (30) either by taking the limit ǫ → 0
or by applying a finite broadening. In practice, applying a
broadening in the very form of χ0 or only at the end of
the absorption calculation give similar results. The former
is necessary if one chooses distinct convolution widths at
the two edges, in which case the latter procedure cannot be
used. Note that we obtain a χ0 representation of each edge g,
whose imaginary parts’ unique peaks are similar in form but
shifted in energy (see Fig. 1). The two different peaks have
identical heights, as the difference in the spectral weight of the
absorption peaks is due to the sum on the initial states, a later
step in the calculation.

The main idea behind this particular TDDFT method is that
we can treat χ̃ and τ on equal footing. Once we get χ̃ we reuse
the one-particle implementation in the code that was meant for
τ and calculate the tensors in the usual FDMNES way. This
procedure is extremely convenient, as we get to “recycle” the
ancient structure of FDMNES and keep the powerful feature
of the tensor analysis.

One great advantage of the TDDFT calculation is that it
is not time consuming. Most of the computational time goes
into the matrix inversion in Eq. (21). A remarkable fact is that
the TDDFT calculation time does not scale with the radius of
the cluster. Due to the approximation for resonant regimes in
the Adler-Wiser equation (7), χ0 only takes significant values
inside the absorbing atom. This means that the matrix inversion
in Eq. (21) is limited to the spacial range of the absorber, and
thus the computation time required for the TDDFT method is
nearly independent of the size of the calculation cluster.

In principle, our TDDFT scheme is able to calculate the
absorption cross section (1) beyond the electric dipole approx-
imation. Indeed, should one consider the electric quadrupole
contribution to the field operator Ô in Eq. (12) and given the
equivalence in Eq. (13), the response function will contain the
quadrupolar term.

IV. RESULTS

To test the pertinence of our method, we calculated the
TDDFT corrections for the L2,3 absorption spectra of the bulk
transitional elements. We used large clusters of calculation
(7 Å) and the cutoff level issued from our self-consistent
procedure. The experimental data issue from Refs. 9 and 40.
The former is used as reference by Schwitalla and Ebert17 and
Ankudinov, Nesvizhskii, and Rehr.19 Whenever available, we
prefer the more recent data in Ref. 40, for the reason that it has
better experimental resolution.

In our series of calculations, we included calcium and
scandium, due to their available 3d states, and excluded
zinc, whose 3d levels are full. For all these elements we
compared the single-particle calculations (LSDA) to the
TDDFT ones (RPA-LF, TDLSDA, restricted TDLSDA) for
identical broadening. In order not to artificially alter the
branching ratio we chose a broadening that does not depend on
the energy. We calculate the branching ratio by a simple ratio
of the maxima of the intensities of the L3 and L2 structures,
in a similar way as in Refs. 17 and 19. The TDDFT results we
show are issued from fully relativistic calculations preceded by
a ground-state self-consistent loop.41 All calculations shown
for the magnetic 3d elements (iron, cobalt, nickel) include the
spin polarization.

In Figs. 2–4 we compare LSDA and TDLSDA calculations
to experimental data, for the L2,3 edges of the 3d elements.
TDDFT definitely improves on the one-body calculations, for
the first half of the 3d series, both in terms of branching
ratio and general shape of the spectra. The experimental data
were normalized to match the high-energy spectrum of the
calculations. Neither the LSDA nor the TDLSDA calculations
were normalized, which allows one to observe the eventual
energy shift and the mismatch at high energies. The TDDFT
corrections have little influence for the second half of the 3d

series, and are sometimes worse than the LSDA ones (see the
case of iron and cobalt in Fig. 4).

As a general remark, the TDDFT and the one-body
calculations meet at high energies. When this superposition
is not perfect (see the case of calcium, scandium, and nickel
in Figs. 2 and 4) we suspect the inappropriateness of the local
kernel applied to that particular case. Indeed, the calculated
spectral shape for these materials is not satisfactory, although
in the case of calcium and scandium the branching ratio is
improved by the TDDFT calculation. One expects that the
many-body effects are limited to low energies. Such behavior
is confirmed by the multichannel theory:12 the adiabatic limit
leads to the sudden approximation at high energies.

(l) Various local kernels. One can see (Figs. 5 and 6) that the
various exchange-correlation kernels that we tested (RPA-LF,
TDLSDA, restricted TDLSDA) give quasi-identical results.
This result is in agreement with the findings of Schwitalla and
Ebert17 and turns to be valid equally for TDDFT calculations
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FIG. 2. (Color online) One-body LSDA (dashes) and TDLSDA

calculations (solid) versus experiment (Ref. 9) (dots) for calcium

and scandium at the L2,3 edges. TDLSDA improves on the LSDA

calculations, but not enough to give a satisfactory agreement with the

experiment in terms of general shape of the spectra. Both calculations

seem to underestimate the onset of the L3 edge.

on complex structures (for instance, transition elements oxides,
not shown here). From the physics point of view, this means
that at the L2,3 edges of 3d elements the local-fields effect
is important, whereas the local part of the electron-hole
interaction is negligible. For K edges (not shown here) we
found that both local fields and LDA exchange correlation
are negligible, i.e., TDDFT results are identical to DFT ones.
We understand this as an effect of the reduced overlap between
the core 1s state and the empty p levels. Furthermore, in
TDL(S)DA, to have an effect, we need to mix transitions
belonging to different edges (we checked that interedge
mixing, as occurring at K edges, is indeed negligible). Hence
inclusion of core hole effects (i.e., a nonlocal TDDFT kernel) is
mandatory for improving the description of K edges. We draw
attention to the fact that the quantitative insignificance of fxc is
essentially different different from the optical frequency range,
where the inclusion of the local exchange-correlation kernel
generates an effect that is visible on the spectra. It appears that
in the x-ray range the interaction with the core hole has an
extremely pronounced nonlocal character. Consequently, we
argue that the use of a nonlocal exchange-correlation kernel is
mandatory for accurate TDDFT x-ray absorption calculations.
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FIG. 3. (Color online) One-body LSDA (dashes) and TDLSDA

calculations (solid) versus experiment (Ref. 40) (dots) for titanium,

vanadium, and chromium at the L2,3 edges. Among the 3d transition

metals, for these elements the agreement of the TDDFT calculation

and experimental data is the best one.

For the first half of the 3d series our results are in good
agreement with the ones of Schwitalla and Ebert.17 They
obtain a TDDFT correction that reduces slightly with the
increasing atomic number. In our case, this tendency is stronger
and leads to an almost zero effect in the case of nickel.
Our results can be understood as follows. The quantitative
change in the branching ratio within TDLSDA is directly
proportional to the inverse of the 2p spin-orbit coupling and to
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FIG. 4. (Color online) One-body LSDA (dashes) and TDLSDA

calculations (solid) versus experiment (Ref. 40) for iron, cobalt, and

nickel at the L2,3 edges. Insofar as the branching ration is concerned,

the TDLSDA corrections are negligible for nickel, and worsen the

LSDA results for iron and cobalt.

the generalized Slater exchange integral.13 They both decrease
with the increasing of the atomic number in the 3d series. In
particular, the atomic Slater exchange completely cancels for
the 3d9 configuration,31 thus the TDLSDA calculations on
nickel (3d8) should be close, if not identical, to the LSDA
ones. Generally speaking, TDDFT is a particle-hole theory
and expresses a particular excitation as the linear combination
of single-particle-hole pairs. However, the single excitation
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FIG. 5. (Color online) The L2,3 branching ratios: the TDDFT

corrections improve the LSDA calculations for the first elements

of the 3d series. The different local exchange-correlation kernels

(RPA-LF, TDLSDA, and restricted TDLSDA) give quasi-identical

results. This figure has been made with the data in Table I.

picture breaks down for the late 3d elements, because of the
presence of d electrons in the ground state.11

Our results disagree with the ones of Refs. 19 and 42 upon
the importance of the local exchange-correlation effects. These
authors find a large difference between the branching ratio
calculated in RPA-LF with respect to the TDLSDA one. They
equally find a good match between the restricted TDLSDA
calculated and the experimental branching ratio at the L2,3
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FIG. 6. (Color online) TDDFT calculations of the L2,3 edges

of vanadium. Three distinct local approximations for the exchange-

correlation kernel have been tested: RPA-LF (thick solid), TDLSDA

(thin solid), and restricted TDLSDA (dashes). Calculations were

shifted vertically for visibility. They all yield similar results.
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TABLE I. The L2,3 branching ratio, experimental and calculated. SO stands for spin-orbit calculation.

Ca Sc Ti

Method SO no SO SO no SO SO no SO

LSDA 1.33 1.31 1.42 1.42 1.34 1.34

RPA-LF 0.96 1.16 1.00 1.21 0.86 0.72

TDLSDA 0.99 1.23 1.05 1.30 0.90 0.83

Restricted TDLSDA 0.96 1.17 1.00 1.25 0.85 0.76

Experiment 0.76a 0.77b 0.83b

V Cr Mn

Method SO no SO SO no SO SO no SO

LSDA 1.57 1.58 1.55 1.55 1.64 1.55

RPA-LF 1.07 1.26 1.10 1.21 1.24 1.29

TDLSDA 1.11 1.29 1.13 1.22 1.26 1.32

Restricted TDLSDA 1.07 1.25 1.10 1.19 1.25 1.30

Experiment 0.98b 1.15b 1.82a

Fe Co Ni

Method SO no SO SO no SO SO no SO

LSDA 1.60 1.76 1.63 1.71 1.49 1.39

RPA-LF 1.38 1.40 1.47 1.49 1.44 1.32

TDLSDA 1.41 1.39 1.49 1.43 1.45 1.35

Restricted TDLSDA 1.36 1.38 1.46 1.44 1.44 1.34

Experiment 2.11b 2.33b 2.37b

aIssue from experimental data taken from Ref. 9.
bIssue from experimental data taken from Ref. 40.

branching ratio for the late 3d elements. Our calculations lead
us to different conclusions, as explained above.

(m) Relativistic effects. We performed two different sets
of calculations, with and without the spin-orbit coupling on
the 3d states (see Tables I and II). We found an intrinsic
effect within TDDFT, due to relativity. In this work, when we
contrast relativistic and nonrelativistic calculations we refer
to considering or not the spin-orbit coupling effect on the d

states (for the 2p it is considered anyway). Hence relativistic
TDDFT means that we use a four quantum number basis for
the expansion of the kernel and response functions in Eqs. (10),
(11), and (18). Even if for the first elements of the series the
spin-orbit coupling makes no difference in terms of the one
body calculations, as the orbital moment is quenched, this is no
longer the case for the TDDFT ones (see Fig. 7). The difference
comes from the crossed spin RPA-LF kernel matrix elements.
This is intrinsically relativistic, in the sense that even for zero
3d spin-orbit coupling the contribution of χ↑↓ to the absorption
cross section is significant. Should one perform scalar TDDFT,
the result is similar to the one obtained by retaining only
the RPA-LF kernel elements diagonal in spin (Fig. 7). Hence
scalar TDDFT erases most of the effect of the spin crossing.
The importance of the latter has equally been detected in
multichannel calculations.43 Therefore TDDFT calculations
should be performed in the fully relativistic framework for all

TABLE II. The values (in eV) of the convolution parameter Ŵ one

has used to calculate the branching ratio in Table I.

Ca Sc Ti V Cr Mn Fe Co Ni

1.29 1.36 1.43 1.50 1.56 1.63 0.60 0.80 0.60

materials, regardless of the atomic weight or spin polarization.
This is a remarkable effect and, to our knowledge, it is for the
first time it has been seen (for core excitations, at least). Note
that in this sense our implementation is equivalent to the one
in Ref. 17 but, to our understanding, is more powerful than the

0

5

 10

 15

 450  455  460  465  470  475  480

X
A

N
E

S
 (

M
b

a
rn

)

Energy (eV)

Ti

experiment
diagonal

scalar
full relativistic

FIG. 7. (Color online) TDDFT calculations of the L2,3 edges

of titanium: scalar (thin solid) and relativistic (thick solid). The

difference between the two spectra seems to come mainly from the

spin nondiagonal Coulomb kernel matrix elements (calculation in

dashes). Experimental data (dots) were taken from Ref. 9.
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scalar one introduced in Ref. 19. In practice, to save calculation
time, whenever we deal with 3d elements, we perform a
scalar (no spin-orbit coupling) ground-state calculation that
we inject into the relativistic TDDFT calculation. We checked,
analytically and numerically, that we get the same results as
if we had used a relativistic ground state as a prior step to the
TDDFT procedure.

(n) Mixing of representations. In the one-body approxima-
tion χ may not couple two � states that belong to distinct
point-group representations. Once the mixing of transitions
is tuned on, this statement is no longer valid. For instance,
for octahedral compounds, the structures in the one-body
spectrum are assigned to the t2g and eg orbitals in the density
of states. Should one describe some many-body effects like
the local fields, one no longer measures the density of states.
In this sense, one could understand that the spectral structures
correspond to a mixing of the eg and t2g character. This does
not mean that RPA-LF lowers the point symmetry around
the absorbing atom, but that the particle-hole channel mixing
induces a similar superposition of the final states.

As a quantitative example we refer to the titanium L2,3

edges in FeTiO3. The titanium’s environment is a distorted
octahedron whose point group is C3. Therefore, in terms of
complex spherical harmonics, the d orbitals belong either to
the E (m = ±1, ±2) or to the totally symmetric representation
A(m = 0). In Fig. 8 we show the contribution to the RPA-LF
spectra of each irreducible representation. Note that contrary
to the one-body approximation, the total absorption spectrum
issued from the TDDFT calculation is different from the
sum of A-A and E-E contribution. Consequently, there is a
nonvanishing contribution corresponding to the A-E and E-A
cross terms. As expected, the sum of all contributions yields
the total RPA-LF signal. Note that in this calculation only the
d orbitals are of interest. Indeed, we found that the s (l = 0)
RPA-LF kernel contribution to A is negligible, whereas the p

(l = 1) terms are forbidden by the selection rule on the kernel
elements, as stated previously.

The mixing of representations is stronger in the fully
relativistic case (the upper panel of Fig. 8) than in the scalar one
(middle panel), due to the χ↑↓ contribution that is ignored by
the latter. Once again, one can see the necessity of performing
fully relativistic TDDFT calculations. Indeed, the correct
estimation of the cross term leads to a satisfactory agreement
with the experiment44 (the lower panel of Fig. 8). All
calculations were performed on clusters containing 66 atoms
and the convolution widths used are 0.5 and 1 eV, at the L3

and L2 edge, respectively.
(o) TDDFT on excited atoms. All the TDDFT calculations

described above have been performed on an underlying
ground-state calculation. We also tried to insert the final-state
rule in this preliminary calculation. We described a cluster
with a fully screened core hole, and calculated χ̂0 accordingly.
Quantitatively, this procedure turned up to worsen the agree-
ment with the experiment, meaning that a fully screened core
is a bad ground-state solution for our TDDFT calculation.
Consequently we chose not to pursue this direction. Such
a procedure is not rigorously justified, as the Adler-Wiser
equations (7) require the wave functions 	� to be calculated
in the ground state. Nevertheless, it is known that in solid
state the core hole is strongly screened.11 We therefore tried
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FIG. 8. (Color online) Symmetry analysis of the RPA-LF calcu-

lation at the titanium L2,3 edges in FeTiO3. The d states belong to

either the A or E irreducible representations. The core hole causes

the emergence of a A-E cross term (solid line), which is absent in the

ground-state calculation. This effect is underestimated by the scalar

calculation (middle panel). Once again, relativistic effects are crucial

in order to obtain the quantitative estimation of the cross terms as well

as a satisfactory agreement with the experimental data (Ref. 44). In

the lower panel we confront the LSDA calculations (dashes) and the

fully relativistic RPA-LF ones (solid) to the experimental data (dots).

to take into account this effect by performing a self-consistent
calculation with the core hole. This issue remains open.

(p) Cluster size. We checked that our TDDFT procedure
had no intrinsic artifacts due to the size of the calculation
cluster, provided it contained at least one atomic shell around
the absorbing atom. As we explained previously, the effect of
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the TDDFT is localized around the absorbing atom. Therefore,
when increasing the cluster’s radius, the form of the TDDFT
spectrum follows accurately the band modulations of the
LSDA one (see Fig. 9). It follows that most of the change
brought in by the TDDFT is independent of the size of
the cluster. The difference between the LSDA and TDDFT
calculations of absorption in vanadium is roughly the same,
whether one deals with a single atom or with a cluster.

(q) TDDFT and the mixing of transition channels. We found
that performing a TDDFT calculation with a local kernel,
at a single edge, as the K edge of the 3d elements, yields
practically the same values as its LSDA correspondent. It
follows that TDLSDA can only account for the local fields
or exchange-correlation effects through the mechanism of the
mixing of transitions, which occurs when one solves (in a
single calculation) some adjacent edges, like the L2,3 edges of
the 3d elements. Although in principle the TDDFT correction
should also affect the isolated edges (for instance, the K-edge
prepeaks), we never managed to have a quantitative effect.
We believe this is a consequence of the local approximation
on the exchange-correlation kernel, as explained in a previous
paragraph.

V. CONCLUSIONS

We presented a detailed study of adiabatic TDDFT methods
applied to x-ray absorption at the L2,3 edges. We have shown
that the TDDFT with local kernels improves on the LSDA
calculations for the first half of the 3d series, and especially for
titanium, vanadium, and chromium. This is no longer the case
for the second half, indicating that an essential ingredient is still

missing from our TDDFT scheme. We believe that same as for
the optical region, at x-ray frequencies the inclusion of the core
hole is essential in order to get a satisfactory agreement with
the experimental data. It has been argued23 that the TDLSDA
should give satisfactory results for core spectroscopy. Our
results invalidate this statement, therefore a nonlocal (and
eventually frequency-dependent) exchange-correlation kernel
is necessary for the TDDFT calculation of core spectroscopy.

Our conclusion is in reasonable agreement with the work
of Schwitalla and Ebert17 and Ankudinov, Nesvizhskii, and
Rehr19 on local-fields effects. On the other hand, some of our
results contradict the findings of the latter,19 who achieved
a good agreement with the experimental values of the L2,3

branching ratios for the late 3d elements, all by employing
a local kernel (the restricted TDLSDA). Contrary to the
conclusion in Ref. 19, our calculations indicate that all the
local exchange-correlation kernels we employed (RPA-LF,
TDLSDA, restricted TDLSDA) yield similar results.

To our knowledge, it is the first time that the importance
of the fully relativistic TDDFT treatment of 3d elements has
been stated. Peculiar effects arise upon the spin crossing in
the response function χ , that would be disregarded in a scalar
TDDFT calculation.

Our method is in principle equivalent to the TDDFT
quantum chemistry calculations.20,45,46 Nonetheless, our use
of the Dyson equation, as opposed to the Casida formulation in
quantum chemistry, renders our calculation more appropriate
to extended crystals. Indeed, quantum chemistry calculations
seem limited to small cluster sizes (a few atoms) provided
relativistic effects are included into the description.

There are clear shortcomings of the TDDFT calculations on
extended systems, at the present moment. The most stringent
ones concern the validity of TDDFT for open-shell systems,
the prediction of excitonic lines and multiplet splitting, or the
correct position of E2−E2 structures at K edges. It remains
unclear to what extent the limitations of the underlying DFT-
LDA ground-state calculation affect the performance of the
TDDFT calculation. Insofar as the latter is concerned, the
exchange-correlation kernel accounting for all the many-body
effects (including multiplets) has not been derived yet.

The x-ray absorption community lacks a convenient calcu-
lation tool that is able to account for the core hole. This has
been achieved by BSE calculations15,16 but at a rather high
computational cost, mainly because of the use of four-point
quantities. We strongly believe that TDDFT is a good candidate
for such task, and considerably less computer demanding as
it deals with two point quantities. One of the perspectives of
this work includes the implementation of a kernel supposed
to describe the excitonic effects, in the simplified situation
where the core hole is localized, which is the case of x-ray
absorption spectroscopy. Second, we wish to test the way
in which our TDDFT procedure couples to the LSDA + U

ground-state calculations. The calculation of the L2,3 edges of
correlated materials is expected to benefit from this duo.
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