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ISIR, Université Pierre et Marie Curie-Paris6, CNRS FRE2507, Paris, F-75005
jean-baptiste.mouret@lip6.fr, stephane.doncieux@upmc.fr

Abstract. Evolutionary algorithms have been successfully used to cre-
ate controllers for many animats. However, intuitive fitness functions like
the survival time of the animat, often do not lead to interesting results
because of the bootstrap problem, arguably one of the main challenges
in evolutionary robotics: if all the individuals perform equally poorly,
the evolutionary process cannot start. To overcome this problem, many
authors defined ordered sub-tasks to bootstrap the process, leading to an
incremental evolution scheme. Published methods require a deep knowl-
edge of the underlying structure of the analyzed task, which is often not
available to the experimenter. In this paper, we propose a new incre-
mental scheme based on multi-objective evolution. This process is able
to automatically switch between each sub-task resolution and does not
require to order them. The proposed method has been successfully tested
on the evolution of a neuro-controller for a complex-light seeking simu-
lated robot, involving 8 sub-tasks.

1 Introduction

One of the main goal of animat research is to design controllers so that the
“intelligence” of the animat emerges from its interactions with its environment,
avoiding the biases inducted by human analysis and, hopefully, leading to so-
lutions as smart as the ones found by nature [1]. Evolutionary methods have
been widely used to that aim (see [2] for an overview), succeeding in creating
controllers for complex behaviors like the combination of locomotion, obstacle
avoidance and gradient following in an insect-like robot [3].

However, many early researches in evolutionary robotics showed that re-
warding the efficiency of the final behavior was not enough to obtain working
controllers because of the bootstrap problem: if the objective is so hard that all
the individuals in the first generations perform equally poorly, evolution cannot
start and no functioning controllers can be found. For instance, it has been found
hard to evolve a light-seeking behavior in a complex arena without having before
evolved an obstacle-avoidance reflex [4].

In consequence, researchers emphasized the need to help the evolutionary
process by adding some kind of reward for intermediate steps. More precisely,
we will call an incremental task a task such that:
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– no fitness gradient exists on most part of the search space, i.e. the fitness of
all random individuals for the goal task is minimum;

– the experimenter is able to define some simpler sub-tasks whose completion
is useful to the completion of the whole task.

Evolutionary processes specially designed for such tasks will be referred as incre-

mental evolution. A lot of experiments have been reported to be more efficiently
solved with such approaches than with direct evolution [5, 6, 3, 7].

Despite these successes, published incremental evolution rely on some as-
sumptions that require an accurate knowledge of the problem to solve and can
lead the evolutionary algorithm to a local extremum. Most of them, for instance,
require to precisely order the different sub-tasks or to determine when to switch
from a sub-task to another one. These biases prevent published methods to scale-
up well to more complex or more open tasks; noticeably, most of them have been
tried with only two or three sub-tasks.

In this article, we propose an original view of incremental evolution based
on multi-objective optimization [8], each sub-task defining an objective. Recent
multi-objective evolutionary algorithms can then be employed to efficiently solve
the bootstrap problem while automatically switching between sub-tasks and not
requiring to order the sub-tasks or even to exploit all of them before solving the
goal task. This work is a milestone on the way towards the generation of complex
behaviors by evolutionary algorithms; nevertheless, to focus ourselves on the
evolutionary process, the benchmark task and the genotype have been chosen as
simple as possible. To that aim, we evolved feed-forward neuro-controllers for a
simulated robot that has to avoid obstacles and turn on a target light, a task
that requires to successively switch on at least four different lights in a predefined
order. The task has been designed to be extensible and easily modifiable.

This paper is organized in four parts. In the first part, we briefly review the
literature concerning incremental evolution. Next, we introduce a way to view
incremental evolution as multi-objective optimization. In the third part, we show
how multi-objective evolutionary algorithms can be used on incremental tasks.
The fourth part describes a simulated robotics experiment using the presented
method. A short discussion concludes this paper.

2 Previous work

Papers dealing with incremental evolution can be categorized in four main ap-
proaches: staged evolution, environmental complexification, fitness shaping and
behavioral decomposition.

In staged evolution, the main task is split into ordered sub-tasks, each with
a corresponding fitness function. Individuals are first selected using the first
fitness. Once a convergence criterion has been reached for a stage, for instance
when a “good enough” fitness is obtained by the best individual or when the
best fitness doesn’t change for some generations, the experimenter switches to
the next sub-task. This technique has first been successfully employed by Harvey
[5] to evolve a vision-based target location task. Three stages were used, from
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locating a large immobile target to tracking a moving smaller one. Many other
examples of staged evolution can be found in the literature [3, 9–11, 7, 12].

Environmental complexification allows to more continuously change the com-
plexity of the task through the tuning of dedicated parameters. Gomez et al. [6]
thus worked on a prey-capture task parameterized with the prey speed and the
delay before starting the pursuit. Ten ordered sub-tasks were thus defined by
specific values of these parameters and their use proved to lead to more efficient
solutions.

In behavioral decomposition, the robot controller is divided into sub-con-
trollers, each one evolved separately to solve a sub-task. The sub-controllers are
then combined together using a second evolutionary process. This approach led
to controllers for a composite behavior where a Lego robot had to push a movable
light into a designated goal area [13]. A variation of this concept has been recently
used to evolve a position controller for an autonomous helicopter [14].

Fitness shaping is sometimes used to help bootstrapping an evolutionary
process, though it is not often seen as an incremental evolution scheme. The
fitness is defined as an aggregation (a weighted sum or a product) of different
evaluation criteria in order to create a followable fitness gradient. Using this
idea, Nolfi et al. [15] successfully evolved a feed-forward neuro-controller for a
robot to locate, recognize and grasp a target object. The fitness was increased
if the individual was close to the target object, if the target was in front of the
robot, if the robot tried to pick-up the object, if the robot had the object in the
gripper and if the robot released the object outside the area.

3 Incremental evolution as a multi-objective optimization

While the four previously described approaches allowed the evolution of sub-
stantially complex behaviors, they imply an accurate knowledge of the global
task and of the defined sub-tasks. Staged evolution methods, for instance, imply
a manual switch between the sub-tasks. Such an approach can be represented
in the fitness space by a “L” shape (in 2D, figure 1 (a)): the first sub-task Ts is
optimized first, while the second Tg is not and, after the switch, the performance
on the Ts remains constant – it is at least expected not to decrease either because
a good behavior on Ts is required to solve Tg or because Ts controller is frozen
– while the performance on Tg starts to climb. This method requires to choose
when to trigger the switch: if too early, the first sub-task won’t be completely
solved and if too late, generated solutions might be over-specialized and make
optimizing Tg even more difficult (figure 1 (b)). More generally, viewing incre-
mental tasks using this figure suggests that a trade-off can exist between Tg and
Ts. For instance, a controller could use all the available ressources to obtain an
optimal fitness with regard to Ts, leaving nothing left to solve the goal-task.

The order of the sub-tasks is another important bias of current incremen-
tal methods. Let us consider the sub-tasks a typical rodent should manage to
survive:

– walking;
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Fig. 1. (a) Staged evolution: a goal task depends on the minimal completion of a
sub-task. The first sub-task is optimized and, at a given generation, the experimenter
changes the fitness to optimize the final task. (b) Typical fitness space for an incremen-
tal task with one sub-task. (1) the first sub-task is optimized; (2) the minimal fitness
required to try the goal task is reached, therefore it is possible to have a non-minimum
fitness for the goal task; a trade-off can exists between the goal-task and the sub-task,
leading to over-specialized individuals.

– running;
– avoiding obstacles;
– avoiding predators, implying being able to perceive them and to know an

escape strategy;
– eating, implying to be able to explore its environment and locate the food;
– resting, when necessary;
– finding a sexual partner;
– procreating (final goal).

How to successfully learn all these sub-tasks? All of them share complex
dependencies but organizing them in a single incremental learning scheme is a
challenging problem which could have no solution, even for this simplified rodent.

Consequently, a good incremental algorithm should explore all the sub-tasks
and the goal task at the same time, continuing to improve on each tasks at each
moment and trying to switch automatically to other tasks when possible. This
is exactly what multi-objective evolutionary algorithms do if each task is viewed
as an objective.

4 Multi-objective evolutionary algorithms

Recent research in evolutionary computation proposed numerous algorithms to
simultaneously optimize several objectives [8]; most of them rely on the concept
of domination and generate the so-called Pareto Front (figure 2):

Definition 1. A solution x(1) is said to dominate another solution x(2), if both

conditions 1 and 2 are true:
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Fig. 2. Dominated and non-dominated solutions for a problem for which the two ob-
jectives f1 and f2 must be maximized.

1. the solution x(1) is not worse than x(2) with respect to all objectives;

2. the solution x(1) is strictly better than x(2) with respect to at least one ob-

jective.

The non-dominated set of the entire feasible search space is the globally Pareto-
optimal set (Pareto front).

A typical multi-objective algorithm [8] sorts individuals with respect to domi-
nation. Non-dominated individuals may, for instance, be ranked 1, making them
the most suitable for reproduction. Individuals which are only dominated by
non-dominated ones may be ranked 2, and so on.

Such an algorithm will first try all sub-tasks and the goal-task simultaneously.
If the task is incremental, only a small subset of corresponding fitnesses should
be different from the minimum. As the fitness on other tasks will be almost
equal, the most simple sub-tasks only differentiate individuals and will then be
the support of selection. They will be automatically considered as the first sub-
tasks to solve. Once individuals are able to test their skills on other sub-tasks or
on the goal-task, the algorithm will automatically sort individuals using theses
objectives, maintaining the complete set of optimal trade-offs, from the best
individuals for each sub-task to the best one for the goal-task.

The aggregation of objectives, as used by Nolfi et al. [15], is a simple way to
perform a multi-objective optimization. However, at least three aspects differen-
tiate their approach to the one presented here:

– depending on the shape of the Pareto front, some optimal trade-offs cannot
be found using an aggregation approach [8];

– weights have to be chosen using a time-consuming and often not theoretically
justified trial-and-error approach;

– best individuals on sub-tasks are not kept, making impossible the simultane-
ous exploration of different paths potentially leading to more efficient results;
for instance, an aggregation approach can be trapped in area (3) of figure 1
or lead to over-specialized individuals;



VI

(a) (b)

Fig. 3. (a) Overview of the benchmark task. Seven colored lights and two obstacles are
placed in a arena delimited by four walls. Each light is mounted on a button switch
which turns on some other lights, the light circuit (unknown to the algorithm) being
represented by arrows. The goal-task is to turn on the sixth light. (b) The simulated
robot is equiped with two bumpers and six pairs of binary light sensors, each one
sensing a different light. The controller is a multi-layer perceptron with 14 inputs, 14
hidden nodes and 2 outputs (the speed of the motors).

5 Example: a complex light-seeking robot

5.1 Light-seeking robot

To benchmark the proposed approach on a typical incremental task, we designed
a variant of the light-seeking task which involves eight sub-tasks with complex
dependencies. A simulated wheeled robot is placed in an arena with some ob-
stacles and seven different colored lights (figure 3(a)). Each light is mounted on
a button switch which, when pressed, turns on one or more lights in the arena.
Once a light is on, it remains in the same state during the whole experiment.
The main goal is to turn on a particular light. The connection between lights
and switches, a simple explicit dependency between tasks, is to be discovered by
the evolutionary algorithm. The only knowledge used to bootstrap the process
is that turning on a light should help to turn on the goal-light. As we consider
separately each light, turning on a particular light is considered a particular
sub-task1. To benchmark future incremental algorithms, the task can be easily
complexified by adding lights or changing the dependencies between lights.

The underlying structure of this incremental task is depicted on figure 3
(a). The first light turns on two other lights, creating two paths to accomplish
the goal-task. A part of the population may choose to learn to turn on lights
{0, 1, 2, 3, 6} and another one may learn sequence {0, 4, 5, 6}. This task can there-
fore be learned in different ways. Moreover, all robots have to avoid obstacles.
Despite the simplicity of this problem and of the different sub-tasks, it involves
at least five sub-tasks (avoiding obstacles, turn on the good lights of the path
having the least number of sub-tasks), making it one of the most complex com-
posite tasks explored with incremental evolution at this time.

1 This corresponds to seven sub-tasks, the eighth being obstacle avoidance.
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The simulated robot (figure 3(b)) is equiped with two bumpers, to avoid
obstacles, and six pairs of light-sensors, each one sensing a different light color.
Light sensors have a 90 degrees field of view and a binary output (1 if the light is
in the field of view, 0 otherwise). Robots are controlled by a simple feed-forward
neural network with 14 inputs, 2 outputs and 14 hidden nodes. Neurons use the
following activation function, based on tanh(x), to easily allow the inhibition of
a neuron in the case of negative inputs:

f(x) =

{

tanh(x) if x > 0
0 otherwise

Cross-over is not used and a Gaussian mutation is applied to weights.
Runs of a direct evolution algorithm designed to minimize the number of

time-steps to turn-on the last light, did not find any working controller, all indi-
viduals obtaining the minimum fitness. An incremental method seems therefore
required to bootstrap the process.

To use the proposed approach, eight objectives are defined. The first one
evaluates the obstacle avoidance skills by rewarding how much the robot moves
during the whole experiment, thus punishing robots blocked by obstacles2:

F0 =
1

T

t=T
∑

t=0

√

(

x(t) − x(t − 1)
)2

+
(

y(t) − y(t − 1)
)2

where T is the length of an experiment and (x(t), y(t)) the position of the robot
at time-step t. The six remaining objectives are defined as the number of time-
steps since the beginning of the experiment before pressing each switch button.
To avoid over-learning, each objective is the minimal score for three experiments
in which the robot starts from different positions:

Fi = min
n=1,2,3

−ϕ(n, i)

T

where i = 1, 2, ..., 7 is the identifier of the light and ϕ(n, i) denotes the number
of time-steps spent before turning on light i, for experiment n.

We launched 10 evolutionary runs, with a population of 150 individuals and
the multi-objective evolutionary algorithm ε-MOEA [16]. 60 new individuals
were generated at each generation.

5.2 Results

About 300 generations are needed to obtain efficient neuro-controllers able to
reach the sixth light. The best individuals found by evolution are those that
used the shortest path, i.e. {0, 4, 5, 6}. They can be found by looking at the best
individuals on the “light 6” criterion. Figure 4(a) depicts a typical trajectory

2 In the simplified simulation we used, a robot touching an obstacle is systematically
stopped until it goes backward.
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(a) (b)

Fig. 4. (a) Typical trajectory of an evolved simulated robot. Lights 0, 4, 5 and 6
are successfully turned on. (b) Best fitness obtained for each fitness with regards to
generation. Lights 0, 1 and 4 are first optimized; they are followed by light 5 (gen. 50),
2 (gen. 70), 3 (gen. 130) and 6 (gen 200).

followed by an evolved robot which uses its sensors to avoid obstacles and to
locate the successive lights. When the last light has been turned on, it draws an
infinite circle around it.

Figure 4(b) shows the best fitness obtained on each sub-task with regards to
the generation number. The successive steps followed by the evolutionary process
are visible: good controllers are obtained in the first generations for lights 0, 1
and 4; a controller able to reach the fifth light is found around generation 50
and the sixth at generation 230. This switch between sub-tasks was automatic
and allowed the process to continue to optimize the first objectives.

Fig. 5. Typical patterns observed in fitness space. (a) light 4 (y axis) versus light 0
(x-axis); (c) light 5 versus light 0. (c) light 0 versus obstacle avoidance.

Figure 5 shows the explored search space projected on two dimensions. An-
alyzing these representations may help in finding the dependencies between the
criteria, but their interpretation must be careful as they also include historical
aspects of the search process3. The triangular shape of light 4 versus light 0
criterion (figure 5 (a)) shows the linear dependency of this criterion on light 0 –
it is an example of part (2) of figure 1(b). Equivalent figures with light n relative
to its predecessor in the path representing the whole task (figure 3(a)) show a

3 Actually, these sets are only subsets of the whole search space.
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similar structure, although it may be shifted or scaled down. The “L” shape of
the graph of light 5 relative to light 0 (figure 5 (b)) may be interpreted in differ-
ent ways. At first glance, it may indicate that a fitness above −0.3 is mandatory
before the search can begin on these criteria. But another interpretation may be
that the search on these criteria may have started late, at a time when the only
remaining individuals were behaving very well on light 0. Anyway, this clearly
shows that the search on this criteria has automatically started when some con-
ditions were met and the main point is that we did not tell the algorithm when
to start or even what these conditions were. Graph of light criteria relative to
obstacle avoidance show a more or less densely populated square (figure 5 (c))
indicating that the two objectives are relatively independent.

6 Discussion and conclusion

In this paper, we proposed an original method to solve the bootstrap problem
observed in evolutionary robotics. It removes some important biases present in
the previously published methods by requiring less knowledge from the experi-
menter and less constrains the search. The sub-tasks does not have to be ordered
and actually different orders are automatically explored by the evolutionary pro-
cess. Moreover, the system behaves as an automatic switch between the stages
while not stopping to improve already explored sub-tasks.

This method relies on a multi-objective view of incremental evolution which
could lead to powerful future algorithms by exploiting the particular shape of
the fitness space. One of the difficulties for the proposed method to scale up is
the high number of objectives involved. Current multi-objective algorithms are
designed to handle a few objectives (typically up to four) and are not as efficient
in presence of more objectives. However, the particular shape of the fitness space
suggests that the number of dimensions could be reduced during the evolutionary
process, for instance using principal component analysis methods. This kind of
dimension reduction could allow to neglect the evaluation of sub-tasks during
some generations and possibly to reduce the computational cost induced by the
simultaneous evaluation of the sub-tasks. Indeed, in the light-seeking task, an
agent is observed during a certain amount of time and some fitness functions are
derived. Consequently, adding new sub-tasks does not require new evaluations;
but some other problems may require sub-tasks to be evaluated in different
contexts, thus adding a significant computational cost.

The cross-over operator, not used in this work, could benefit from the pro-
posed method and should be investigated in future work. Since the process
maintains specialists in each sub-task, the cross-over operator could allow the
evolutionary process to combine sub-parts of each specialist to create more effi-
cient individuals. Such investigations probably requires a modular encoding for
neural-networks, as ModNet[17]. Increasing the complexity of the neural-network
during evolution also seems to be a key element. All this pleads for considering
both selection algorithms and controller encodings as a whole in future work on
incremental evolution.
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