
HAL Id: hal-00687641
https://hal.science/hal-00687641

Submitted on 13 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral diversity measures for Evolutionary Robotics
Stéphane Doncieux, Jean-Baptiste Mouret

To cite this version:
Stéphane Doncieux, Jean-Baptiste Mouret. Behavioral diversity measures for Evolutionary Robotics.
CEC 2010, 2010, Spain. pp.1303-1310, �10.1109/CEC.2010.5586100WCCI�. �hal-00687641�

https://hal.science/hal-00687641
https://hal.archives-ouvertes.fr


Behavioral diversity measures for Evolutionary Robotics
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Computation, 2010 (CEC 2010)

Abstract— In Evolutionary Robotics (ER), explicitly reward-
ing for behavioral diversity recently revealed to generate effi-
cient results without recourse to complex fitness functions. The
principle of such approaches is to explicitly encourage diversity
in the robot behavior space instead of in the space of genotypes
(the space explored by the evolutionary algorithm) or the space
of phenotypes (the space of robot controllers and morphologies).
To implement such approaches, a similarity between behaviors
needs to be evaluated but, up to now, used similarity measures
are problem-specific.

The goal of this work is to explore generic behavioral
similarity measures that only rely on sensori-motor values. With
such a measure, we managed to evolve the topology and the
parameters of neuro-controllers that make a simulated robot
go towards a ball, take it, find a basket, put the ball into
the basket, perform a half-turn, search and take another ball,
put it into the basket, etc. In this experiment, two objectives
were simultaneously optimized with NSGA-II: the number of
collected balls and the generic behavioral diversity objective.
Several generic behavioral measures are compared. To confirm
the interpretation of behavioral diversity objective and in an
attempt to characterize behavioral similarity measures, they
are also compared to human-made behavioral similarity evalu-
ations. They reveal to classify behaviors globally as humans did,
but with no clear correlation between the closeness to human
classification and the efficiency within an evolutionary run.

I. INTRODUCTION

Darwin’s theory of evolution relies on natural selection but

also on diversity of life forms. In Evolutionary Computation

(EC), stochastic search operators, i.e. mutation and cross-

over operators, were introduced to create such a diversity.

However, it has been observed in EC that these two operators

are often insufficient to keep a population diverse enough

to avoid a premature convergence. To tackle this problem,

researchers have suggested to alter the search landscape in

order to explicitely foster diversity. This idea led to fitness

sharing methods [11], which decrease the fitness of similar

individuals. Multi-objective formulations, in which fitness is

not aggregated with diversity, have also proved to be efficient

in improving evolutionary algorithms [7], [4], [18].

These methods rely on a distance between genotypes. Un-

fortunately, this makes them difficult to use in Evolutionary

Robotics (ER) because complex genotypes are often used

for which distances are either computationally infeasible or

almost meaningless. Thus, many works in ER study neural

networks whose topology is evolved: in the worst case,

neural networks are encoded as directed graphs whereas

typical graph distances is a NP-hard problem [5]; in the
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best case, a distance can be written for a specific encoding

but it cannot be translated to other encodings. Besides these

algorithmic considerations, the behavior of a robot results

from the evaluation of a dynamic system made with the robot

and its environment. Two individuals with close genotypes

can exhibit a very different behavior but, conversely, two

individuals with very different genotypes can have exactly

the same behavior. For instance, two robots can be controlled

by different neural networks but act in the same way if the

parts that differ are not connected to the ouputs.

Several papers [12], [18], [19], [15] recently described

an alternative to genotypic distance in ER: computing dis-

tance between behaviors. However, while the authors re-

ported substantial improvements in their ER experiments by

encouraging behavioral diversity using behavior similarity

measures, they employed distances that relied on problem-

specific descriptions of behaviors. For instance, in a maze

navigation experiment, Lehman and Stanley [15] used the

final position of the robot to compare behaviors. As another

example, Mouret and Doncieux [18], evolved controllers for

robots that had to switch some lights in a particular order;

the vector of light states at the end of the experiment was

used as a behavior descriptor. In each of these experiments,

a vector of problem dependent features was used, allowing

to compute a simple Euclidean distance to evaluate how

similar behaviors were. All these measures rely on expert

knowledge; but this knowledge may be unavailable and its

use contradicts one of the main goals of ER: minimizing

human intervention in the design process.

As a consequence, having recognized the importance of

behavioral diversity in ER but also the lack of generic be-

havior distances, this paper focuses on defining and compar-

ing problem-independent similarity measures. The questions

addressed by this work can be summarized as follows:

• Does a problem-independent behavioral diversity en-

hance the search as with problem-specific measures?

• How critical is the choice of the behavioral similarity

measure?

• If it is, what makes a behavioral similarity measure more

efficient than another?

The first goal of this paper is to introduce and benchmark

several problem-independant behavior similarity measures.

The focus will be on the evolutionary design of behaviors

for mobile robots. All of the considered measures will rely

on easily available data in this context, i.e. sensori-motor

values. In a second step, the considered similarity measures

will be analyzed to understand why they perform differently.

In the absence of any ground truth for behavior similarity, our

analysis is based on the comparaison between these measures



and measures performed by humans.

II. RELATED WORKS

A. Fitness sharing

Keeping a diverse population requires to balance the effi-

ciency of a solution with its originality within the population.

Initial attempts to take it into account relied on the idea of

lowering the fitness of an individual by an amount equal to

the number of similar individuals in the population [11].

Besides this method that directly modifies the fitness value,

crowding methods aims at adapting the selection scheme to

take into account the similarity between individuals when

choosing which individual to replace [9]. Many over methods

allow to build and maintain different niches, a niche being

defined as a set of similar solutions, generally sharing a

common resource, i.e. a fitness value, see [24] for a review

and comparison of such methods.

The diversity can also be used as a separate selection pres-

sure, just like any other problem-dependent fitness function.

It was shown that this last choice, within a multi-objective

approach, led to better results [7], [4], [1], [19], [18].

Likewise, different ways of evaluating a diversity objective

have been compared and the distance to the whole population

revealed to be more efficient [4].

Few work has focused on the use of behavior instead of

genotype or phenotype to evaluate the similarity between

individuals. This notion appears only when the fitness relies

on the observation of a dynamical process, as for a robot

in interaction with its environment. The behavior is then a

description of this interaction that depends on the environ-

ment, and in particular on the initial conditions, on the robot

features, i.e. on the phenotype, and on time.

[12] used a behavioral distance within a crowding selection

scheme [9] to solve the Tartarus problem—a box pushing

problem in a discrete world—while comparing different

behavior similarity measures.

[19], [18] defined behavioral diversity as the use of a

diversity objective within a multi-objective scheme. In [19],

such an approach revealed to compensate the deceptiveness

of a XOR-AND-XOR boolean function and in [18] this

approach allowed to solve a sequential light-seeking task as

efficiently as with a more directed incremental approach. The

work presented here follows this approach.

B. Similarity measures

Whatever method is employed to foster behavioral diver-

sity, a similarity measure is required. In the typical set-up, for

each generation and for each individual, the distance to the

rest of the population is evaluated. This implies to compute,

for each generation, n2 similarity measures, if n is the size

of the population1. Short behavior observations might be

used to accelerate computations, but these sequences must be

long enough to actually be representative of robots behaviors.

Computational time is then a critical issue. As an example,

consider a population of size 100. For each generation, at

1Actually
n∗(n−1)

2
if the measure is symmetric.
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Fig. 1. Overview of the arena and of the robot. The robot has a square shape
and has nine different sensors. Object and basket presence field of views are
represented on the picture. Four balls are placed in the environment. The
goal of the experiment is to put as many balls as possible into the basket.
The initial positions of the three evaluation experiments used for the fitness
computation are plotted on the figure.

least 4950 comparisons have then to be performed. If the

similarity measure requires 0.01s, the diversity objective

needs 49.5s per generation, i.e. more than 27 hours for 2000

generations.

Comparing sequences of values, may they be binary or

real is a critical issue for numerous applications like genome

study, data search for video or audio data or plagiarism

detection. In all of those applications, algorithms have been

designed to evaluate the similarity between sequences. Once

a discretization has been performed, real value vectors can

also be compared using similarity measures operating on dis-

crete values. These methods will consequently be presented

first before reviewing measures working on real values.

a) Similarity measures for sequences of discrete values:

Evaluating the distance between sequences of discrete values

may be done thanks to an edit distance [16] that measures

the minimum number of operations that have to be done to

transform one sequence into the other. In our context, such

a distance can hardly be used as computing it is in O(m2)
in time [13], if m is the length of the sequences. For the

considered sequence length, it was far too slow to be of use.

Finding common subsequences may be the basis for a

similarity search. Measures tolerant to noise and scaling have

thus been developped [6], but they give only a Boolean

answer relative to a given similarity threshold.

b) Similarity measures for sequences of real values:

As for discrete sequences, a similarity measure has been

developed to find out which sequences are similar to a



particular sequence out of a given set [3]. This method

is designed to be robust to noise, scaling and translation;

these features are interesting for our application, but it only

provides a Boolean answer— similar or not — relying on a

threshold provided beforehand. It can’t then be used directly.

To speed up measures, smaller sequences supposed to be

representative of the initial one can be used. The comparison

may then rely on simple Euclidian distances, even if the ini-

tial sequence is long. [2] suggests to use the first coefficients

of a Fourier transform as a descriptor of sequences, at least

for a preliminary filtering. Likewise, [27] suggests to use the

first components of a Principal Components Analysis in the

case of multivariate sequences and directly compare them.

A more general information distance based on the notion

of Kolmogorov complexity has also been proposed [17]:

Normalized Compression Distance (NCD), in which an ap-

proximation of Kolmogorov complexity is evaluated with the

help of real-world compressors. Such a distance was used in

[12] but it revealed to be too slow for our application.

C. Other related works

Evaluating the novelty of a behavior is also an issue

for developmental robotics [26]. Focusing learning on new

behaviors, or at least behaviors for which the learning

rate is the fastest [23], discovering how to build internal

representations of its own body [14], using embodiment to

structure input spaces [25]: all these tasks require to find

patterns or similarities from high dimensional streams of

robot perceptions and actions.

Nonetheless, developmental robotics is mainly centered on

experiments with a single robot and a long life span—at least

longer than for the robot considered in the present paper.

Moreover, DR compares and finds similarity within a unique

stream of sensor-effector values whereas behavioral diversity

need to compare many different streams of sensor-effector

values. On the long term, such issues may converge, but as

for now, drawing a direct link between diversity in ER and

DR is not straightforward.

III. METHOD

As suggested in [19], [18], [4], [7], we add a diversity

objective to the fitness function in a Pareto-based multi-

objective optimization. Following the conclusions of [4],

the behavioral diversity objective to maximize obd(x) is the

average distance to the rest of the population. Hence the

maximization of the fitness function F (x) is transformed to

the multi-objective maximization:

maximize

{

F (x)
obd(x) = 1

size(P )

∑

y∈P σ(x, y)

where P denotes the current population, x, y two indi-

viduals, σ(x, y) the measure of the similarity of x and y.

σ(x, y) = 0 if x = y and the greater σ(x, y), the more

different they are.

A. Considered similarity measures

The set of sensor and effector data ϑ is defined as follows:

ϑ = [{s(t), e(t)} , t ∈ [0, T ]]

where s(t) is the vector of size ns of the perceptions at

time t, i.e. the values coming from the ns sensors; e(t) is

the vector of size ne of the effector values at time t; T is

the observation length. For simplicity, in the following s(t)
is in [0, 1]ns and e(t) is in [0, 1]ne .

a) Hamming distance: The Hamming distance counts

the number of bits that differ between two binary sequences.

It can be used to evaluate behavior similarity with, as inputs,

ϑbin, the binarized version of ϑ, computed as follows:

ϑbin = [ϑbin(t), t ∈ [0, T ]] = [{sbin(t), ebin(t)} , t ∈ [0, T ]]

with sbin(t) = {sbin,0(t), . . . , sbin,ns
(t)},

ebin(t) = {ebin,0(t), . . . , ebin,ns
(t)} and

sbin,i(t) =

{

1 if si(t) > 0.5

0 otherwise

ebin,i(t) =

{

1 if ei(t) > 0.5

0 otherwise

with this definition, the hamming distance is computed as

follows:

σham(ϑ1, ϑ2) =

T
∑

t=0

h(ϑ1,bin(t), ϑ2,bin(t))

h(ϑ1, ϑ2) =

len(ϑ1)
∑

i=0

δ(ϑ1[i], ϑ2[j])

where len(ϑ1) = len(ϑ2) denotes the length of the binary

sequences ϑ1 and ϑ2 and where δ(i, j) is the Kronecker delta:

δ(i, j) =

{

1 if i = j

0 otherwise

b) Measure based on Fourier coefficients: Parseval’s

theorem guarantees that the distance between two sequences

is the same in the frequency or in the temporal domain

[22]. As suggested in [2], the very first coefficients of the

Discrete Fourier transform may carry information descriptive

of the sequence they are associated to. Using it instead

of the complete sequence has the advantage to reduce the

dimensionality: the size of vectors to consider goes from

(ns + ne) ∗ T to (ns + ne) ∗ nF , if nF is the number

of retained coefficients. The measure is then not dependent

on the observation length anymore and simple Euclidean

distances between the resulting vectors can be used.



c) State count: This measure relies on discretizing

available data in order to define perception-action states; the

number of times the robot was in a particular state is then

evaluated. This results in a vector of n integers, n being the

number of such states. States are user-defined. The similarity

measure is defined as the mean distance between the vectors:

σsc(x, y) =
1

n

n
∑

i=1

di(x, y)

di(x, y) is a squared Euclidean distance normalized by the

maximum number of times state sti has been reached by x

and y. This avoids individuals reaching a huge number of

times a particular state to be over-rewarded:

di(x, y) =

{

(ni(x)−ni(y))2

max(ni(x),ni(y))2 if max(ni(x), ni(y)) 6= 0

0 otherwise

ni(x) is the number of times x has spent in a state sti.

States can be defined either from a coarse discretization, i.e.

using ϑbin, for instance, or they can include some expert

knowledge. The two different cases will be considered here.

As this objective has to be maximized by evolution,

individuals that are the only ones to reach a particular state

will be rewarded, as do individuals that reach a state a

different number of times relative to other individuals of the

current population. The normalization increases the reward

granted to individuals that are the first to reach a particular

state, even if it is reached only one time.

d) Trajectory based similarity measure: This measure

consists in discretizing the environment and counting the

number of times spent in each square. It is then similar

to the state count measure, but with position data instead

of perception/action data. This similarity measure should be

considered as a control measure that directly exploits the

knowledge of the trajectory of the robot; it doesn’t exploit

the data coming from sensors and effectors.

Other measures could be defined on the basis of the trajec-

tory, but the focus here was on those exploiting information

easily available: trajectory is easy to get in simulation, but

is more tricky to get on a real robot2.

B. Robotics experimental setup

The choice of the setup stems from several motivations:

• it should be a difficult task from an ER point of view:

– the fitness function must not be too directive; hence,

we chose a sequential task that rewards only the

achievement of the whole sequence;

– the simulation should make a random search as

inefficient as possible;

• the problem should not be on the controller abilities but

rather on the fitness design; we selected then sensors

that are easy to interpret for an evolved neural network;

2a simple integration of the odometry has too much drift, a precise
trajectory evaluation must then rely on a SLAM algorithm or on an external
motion tracking device.

• it should be easy and fast to simulate to facilitate re-

implementations and comparisons.

The chosen task consists in picking up some balls in an

arena and putting them into a basket (fig. 1). The robot is a

two-wheeled robot with the following sensors:

• two wall distance sensors (linear between 0 and 8

times the robot size and then constant, the output is

normalized between 0 and 1, see figure 1);

• two bumpers (1 if it touches a wall, 0 otherwise);

• two ball detection sensors (1 if a ball is in the view field

of the sensor, 0 otherwise);

• two basket detection sensors (1 if the basket is in the

view field of the sensor, 0 otherwise);

• one carry ball sensor (1 if a ball is carried, 0 otherwise).

The effectors are left and right wheel motors and a "catch

ball" motor (if greater than 0.5, pick up a ball if possible, or

keep the carried ball, else throw the carried ball if any).

Figure 1 shows the arena with the details of the sensor

configuration of the robot.

This setup is difficult from an evolutionary perspective:

• the robot may catch a ball when it moves on it if the

catch effector is above 0.5; as soon as the catch effector

goes below 0.5, the ball is thrown and disappears from

the arena; if the robot touches the basket at this time, it

will be counted as a collected ball and otherwise it just

disappears; it is then difficult for the robot to release a

ball by chance into the basket as it previously has to

learn to keep the ball, reach the basket and then, and

only then, release the ball;

• the robot shape is a square and the collision detection

system avoids the robot to slide along the walls: once

the robot collides with a wall, it has to go backwards or

to turn, if possible, to get out of it; once a ball has been

put into the basket, the robot is then blocked against the

wall and need to learn how to escape from this situation;

• the basket is surrounded by walls to make it more

difficult to find and to make new ball catching longer

and trickier, as the robot first has to go out of the basket

room before being able to see any new ball.

[21] used a similar garbage collecting experiment, but in

a different setup and for a different purpose. The fitness

counted the objects put outside of the arena no matter where

and a small reward was also granted to individuals able to

pick up objects. The pick-up process was more realistic than

our and closely resembling the one of a Khepera robot.

IV. BEHAVIORAL DIVERSITY WITHIN AN EVOLUTIONARY

PROCESS

These first experiments aim at evaluating how the different

similarity measures behave within an evolutionary context.

To test the efficiency of the proposed behavior similarity

measures, several different setups were designed.

A. Setups

1) Control experiments: The first control experiment use

the ball count objective only. It aims at evaluating the

difficulty of the task with a straightforward approach.



The second control experiment use the ball count objective

together with a random objective. This experiment aims at

evaluating the role of the second objective and check if a

random objective also enhances the search.

The third control experiment use the state count measure

including some expert knowledge in the choice of states. It

aims at comparing the proposed generic measures with a

problem-specific one. The states are chosen to be represen-

tative of situations were we know (or at least suppose) what

the robot has to do. Following [10], the states are (the action

supposed to be done in this circumstance is given in paren,

but not used at all in the fitness):

1) no ball carried, no basket around and no ball around

(look for a ball);

2) no ball carried, no basket around, ball nearby (go

towards a ball);

3) ball carried, no basket around (look for the basket);

4) ball carried, basket ahead (go towards the basket);

5) ball carried, basket ahead, bumpers on (release the

ball);

6) no ball carried, basket ahead, bumpers on (go back to

escape from the wall);

7) no ball carried, basket ahead, bumpers off (go away

from the basket room).

By construction, the state count objective will encourage

individuals to reach at least once each of these states, thus

putting individuals in a situation were they can collect balls.

The fourth and last control experiment also uses, as a

behavioral diversity objective, a state count, but that relies on

the trajectory. The arena has been discretized in 24 different

squares measuring 5× 5m2 (arena size is 20× 30m2, robot

length is 0.5m). It aims at comparing sensory-motor values

with another kind of information, i.e. trajectory.

2) Experiments on tested behavior similarities: The Ham-

ming experiment use the Hamming distance on ϑbin to

evaluate behavior similarity. Each sensor or effector data is

then transformed into a single bit binary value.

The Discrete Fourier Transform (DFT) experiment relies

on the Euclidian distance between the two first components

of a DFT, for each separate data stream.

The systematic state count experiment uses the state count

similarity measure with a straightforward definition of states

based on ϑbin. As there are 9 sensors and 3 effectors, this

leads to 4096 different states.

Experiments are thus the following:

• ballcount: 1 objective, ballcount;

• random: 2 obj., ballcount and random;

• state count (inf.): 2 obj., ballcount and behavioral diver-

sity with state count distance on "informed" states;

• trajectory: 2 obj., ballcount and behavioral diversity

with state count distance based on the trajectory.

• hamming: 2 obj., ballcount and behavioral diversity with

Hamming distance;

• DFT (2 comp.): 2 obj., ballcount and behavioral di-

versity with Euclidean distance between the 2 first

coefficients of the Discrete Fourier Transform;

• state count (sys.): 2 obj., ballcount and behavioral di-

versity with state count distance on "systematic" states;

An individual is evaluated in three different contexts

defined by the initial position of the robot (see figure 1).

The position of the balls and the three initial positions

of the robot are constant to guarantee that the difficulty

of the problem is the same for all and to make behavior

comparisons easier. The evaluation in a particular context

lasts 2000 time steps. The theoretical maximum fitness value

is 12 (4 × 3), but within 2000 time steps, only 3 balls

can be collected; the maximum value is then 9 in practice.

The first 2000 time steps out of the total 6000 are kept for

behavior similarity measures. This is empirically chosen as

a compromise between the ability to discriminate behaviors

and similarity measure computation time. NSGA-II [8] is

used with a population size of 600 and for 2000 generations.

Each experiment is repeated five times. The topology and

the synaptic weights of the neural network controlling the

robot are evolved with a simple direct encoding. The random

generation process creates neural networks with 10 to 20

hidden neurons, 20 to 100 connections, 9 inputs (directly

linked to sensors) and 3 outputs (directly linked to actuators).

Network size is unbounded after the initial generation.

Several mutation operators are used (probability in paren):

• adding a neuron (0.025)

• deleting a neuron (0.025)

• adding a connection (0.15)

• deleting a connection (0.25)

• modifying a connection weight, possible values are:

{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2} (0.2)

No crossover is used. Further details on the neural encod-

ing can be found in [19].

The source code of the experiments is available for

download (http://www.isir.fr/evorob_db). Ex-

periments were implemented in the Sferesv2 framework [20].

B. Results

The mean number of maximum collected balls per run

together with the variability is shown on figure 2. The p-

values of a Mann-Withney test comparing experiment results

is shown on figure 3.

The ballcount experiment does not generate any controller

able to put more than one ball into the basket per context, as

do experiments with a second random objective. No matter

what similarity measure is used, using it always allowed to

generate controllers, at least once out of the 5 runs, that

collect more than one ball per evaluation. The trajectory

experiment had a large variability and is thus not statistically

different (p < 0.05) from every other experiment (except the

random one).

The Hamming experiment generated the most efficient

controllers (statistically different from every other setup

except trajectory, p = 0.167 and state count informed,

p = 0.329). The performance of this measure was similar

in [12] where it almost equalled NCD. It should anyway be

emphasized that most of the employed sensors return binary



values. Only one sensor and the three effectors return real

values. Experiments in other contexts should be performed to

confirm these results. Furthermore, sensor and effector values

are comparable as the initial conditions are always the same;

with changing initial conditions, such a distance might not

be as efficient.

The state count (inf.) is the next most successful exper-

iment, confirming results of [10]. The trajectory, DFT (2

comp.) and state count (sys.) give statistically similar results.
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Fig. 2. Mean of the maximum number of collected balls in the three
contexts used for evaluation and for each setup after 2000 generations (mean
and standard deviation over five different runs).

The maximum value of 9 has been reached, meaning that

individuals have been generated that are able to pick up a

ball, go to the basket room, release the ball in the basket, go

backwards and perform a half-turn, search other balls, collect

one, ... Three balls have been collected at best per evaluation

(out of four), but actually, some of the evolved individuals

revealed to be able to collect the four with some more time.

Coming back to the initial motivations of each control

experiment, the following conclusions can be drawn:

• the problem can’t be solved directly;

• the behavioral diversity measure doesn’t act as a random

objective (and vice versa);

• generic behavioral diversity measures can be as efficient

as an expert-designed behavioral diversity measure;

• sensori-motor values are competitive with trajectory-

based values.

Behavioral diversity objectives can then be both generic

and efficient. Furthermore, all behavioral diversity measures

do not perform the same. There is a huge difference between

the measures, so finding out what makes a similarity measure

more efficient than another is an issue to investigate.

V. BEHAVIOR SIMILARITY MEASURES STUDY

Once it is proved that generic measures can be used, in

front of the huge number of different similarity measures that

can be defined, it is interesting to try to characterize those

measures. The question studied here is then the following:

can we find a way to forecast the efficiency of a behavioral

similarity measure within a behavioral diversity objective?

As the goal of a behavioral similarity measure is to com-

pare behaviors and in the absence of any ground truth, we

now look at how it compares to human-made comparisons.

Our goal is to answer three questions:

• is it easy to compare behaviors for a human?

• how far or how close are behavioral similarity measures

to human-made measures?

• is it correlated to the efficiency within evolution?

If the answer to this last question is positive, looking

for the most efficient behavior similarity measure for a

behavioral diversity objective would be greatly simplified as

it would be possible to make predictions on the efficiency

without launching an evolutionary experiment.

Two different setups are considered. In each setup, a set of

controllers is selected and, sequentially, for each behavior, we

present two other behaviors to a human that has to say which

one from the two is the closest to the first behavior. Such a

single comparison defines a test case. Answers of different

human subjects are compared and we next consider only the

cases were all humans agree and see what the behavioral

similarity measures answer in these cases. The two setups

differ by the choice of controllers. In the first setup, we

selected 7 controllers that show an increasing efficiency. In

the second, we chose 10 controllers that show a more random

behavior relative to the task.

A. Setup1

The chosen behaviors of the first setup can be described

as follows:

• no balls collected and the robot ends against the wall;

• one ball is collected, the robot ends against the wall;

• one ball is collected and the robot goes towards the

basket but collides with walls before reaching it;

• one ball is collected and put into the basket with no

further movements;

• two balls are collected and put into the basket;

• three balls are collected and put into the basket;

• three balls are collected and put into the basket and the

robot goes back to pickup the last ball.

This description is not known from the human subjects that

can only look at the behavior after a short introduction to the

problem, but it is relatively easy to deduce from observation,

even for a non-expert. We have considered 35 test cases

involving these behaviors.

B. Results for setup1

25 test cases out of 35 had identical results for all

the 6 human volunteers. Even in this simple context were

behaviors are easy to differentiate and compare, there is then

almost 30% of variation. No advices were given on which

feature to use to perform the comparison. We don’t have any

ground truth for the comparison, but at this stage, we can

conclude that there are several different ways to perform the

comparisons and that they agree on 70% of the data.

We now consider these 70% of data as a ground truth and

have looked at how behavioral similarity measures perform

on these cases. In order to explore the potential relations

between behavior classification efficiency and efficiency of



random ballcount trajectory state count (inf.) state count (sys.) DFT(2 comp.) hamming

random 1.000 0.041 0.018 0.011 0.018 0.010 0.010

ballcount 0.041 1.000 0.101 0.011 0.147 0.028 0.010

trajectory 0.018 0.101 1.000 0.596 0.523 0.595 0.167

state count (inf.) 0.011 0.011 0.596 1.000 0.070 0.043 0.329

state count (sys.) 0.018 0.147 0.523 0.070 1.000 0.662 0.033

DFT (2 comp.) 0.010 0.028 0.595 0.043 0.662 1.000 0.015

hamming 0.010 0.010 0.167 0.329 0.033 0.015 1.000

Fig. 3. p-values for Mann-Whitney statistical tests performed on each pair of experiments. Comparisons relied on the vectors of the max number of balls
put into the basket for each run.

the behavioral diversity objective, figure 4 shows the per-

centage of closeness between human-made measures and a

particular similarity measure relative to the performance in

the evolutionary experiment.
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Fig. 4. Closeness of proposed similarity measures related to human-made
classification in terms of the performance in a behavioral diversity context.
Each dot represents a particular experimental setup. X-axis: average number
of collected balls (results from section IV-B), Y-axis: percentage of similarity
with human-made measures.

The similarity measures behave as human did as they give

the same answer in between 70% and 90% of the cases.

This is comforting for the interpretation of the behavioral

diversity. Anyway, there is no clear dependency between

the performance of the behavioral diversity objective within

evolution and the closeness to human measures.

C. Setup2

This second setup aims at evaluating if the previous

results are confirmed if we try to compare individuals, i.e.

controllers, that appear only during the very first generations.

The behavioral similarity measures efficiency is critical dur-

ing the bootstrap of the process: its efficiency to differentiate

individuals that have different ball count values might not be

that important as the selection will then be possible according

to the ball count objective.

Among the ten considered behaviors, only one has a ball

count of one, all the others do not put any ball into the basket.

This time, we have considered 120 different test cases. To

facilitate and accelerate the comparisons, rather than the

video of the behavior, we have shown only the trajectory with

the "carrying-ball" information included. As before, in each

case, the volunteers have to say, for a particular behavior,

which one out of two other behaviors is the closest. In

this setup, it revealed much more difficult to perform such

comparisons. We have thus made a third choice possible:

"impossible to decide with enough confidence".

D. Results for setup2

The first observation is that people confidence in their

ability to compare behaviors is very variable. It goes from

76% to 96% with a mean of 88%. As before, we have

considered the set of comparisons on which all humans

agree. Out of 120 different test cases, only 57, i.e. 47.5%,

gathered the same answers. This confirms that the difficulty

is not the same as before, as agreements were obtained

on 70% of the comparisons in setup1. It also confirms

that similarity may differ a lot depending on the priority

given to observed features of the behaviors. The closeness

of behavioral similarity measures relative to this 47.5% of

data, now considered as ground truth, is plotted on figure 4.

The trajectory based measure has a poor result (63.2%),

but this is not surprising as the trajectory discretization is

very coarse and most trajectories remain in the same area. If

we except this value, the similarity measures give on average

answers that are similar to the ground truth set in 86% cases

(between 70.2 and 93%). This further confirms that such

behavior similarity measures globally behave as expected.

If we except the trajectory outlier, we can observe a positive

correlation between the similarity to human measures and

the performance of the evolutionary run.

E. Conclusion

In both setups, the behavior similarity measures give

answers that are reasonably close to those of humans. The

hypothesis that such measures really behave as a behavioral

similarity measure is thus confirmed. These results do not

allow to conclude concerning the links between the closeness

to a human classification and the performance in a behav-

ioral diversity approach. Characterizing efficient similarity

measures, beyond a minimal behavior classification ability,

thus remains an open question.

VI. DISCUSSION

The chosen task can be solved by a succession of reactive

behaviors. Contrary to incremental approaches, the fitness

rewards the whole sequence of behaviors, when it is suc-

cessful only, and not the intermediate behaviors. Applying it

to problems requiring abilities that go beyond simple reactive

controllers—memory or learning, for instance—should be



investigated, as a useful evaluation of behavioral similarity

might be more difficult to build in these cases.

Testing on other problems is also critical for another issue:

do the measures perform globally the same on every prob-

lem? If not, the genericity of behavioral diversity approaches

will be questioned and the expert knowledge on the problem

at hand would just be replaced by another kind of expertise.

It is interesting to notice that Hamming distance also gave

very good results in Gomez’s work [12] in a different setup.

Experiments were repeated a low number of times: five

times only. It stems from the evolutionary run length. A

single run lasted up to four days (the average is around

two days) on a 2.4GHz PC. The total evaluation time of the

presented experiments is then near 70 days of computation

(7 experiments repeated 5 times, each lasting 2 days on

average). More runs have to be launched to further confirms

the tendencies observed here.

VII. CONCLUSION

Results show that behavioral diversity approaches can be

defined on the basis of simple behavior similarity measures

relying on sensor-effector values. Using a behavioral diver-

sity objective with whatever tested similarity measure gave

globally better results than not using such an objective.

Among the tested measures, the Hamming distance on a

roughly discretized vector of sensor and effector values gave

better results, but more runs have to be performed to con-

firm this. Anyway the behavioral diversity using Hamming

distance generated near optimal individuals, able to repeat the

following sequence: pick up a ball, find the basket, release

the ball in the basket, go back picking another ball, until

almost all balls are put into the basket, whereas without

the diversity objective, individual to collect one ball only

at best have been observed. Sequential behaviors were thus

generated on the basis of the desired effect only—besides the

behavioral diversity objective, the only other objective was a

simple count of the balls released in the basket—and without

recourse to any fitness shaping or incremental approach.

Behavioral similarity measures revealed to compare fa-

vorably to measures made by humans, thus confirming the

interpretation of behavioral diversity objectives. Although

behavioral similarity measures gave very different results

when used to evaluate the behavioral diversity objective,

there didn’t seem to be a clear correlation between the

closeness to human classification and the performance of

behavioral diversity experiment, at least not in every case.
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