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ABSTRACT

A Poisson-Gaussian model accurately describes the noise

present in many imaging systems such as CCD cameras or

fluorescence microscopy. However most existing restoration

strategies rely on approximations of the Poisson-Gaussian

noise statistics. We propose a convex optimization algo-

rithm for the reconstruction of signals degraded by a linear

operator and corrupted with mixed Poisson-Gaussian noise.

The originality of our approach consists of considering the

exact continuous-discrete model corresponding to the data

statistics. After establishing the Lipschitz differentiability of

the Poisson-Gaussian log-likelihood, we derive a primal-dual

iterative scheme for minimizing the associated penalized cri-

terion. The proposed method is applicable to a large choice

of penalty terms. The robustness of our scheme allows us to

handle computational difficulties due to infinite sums arising

from the computation of the gradient of the criterion. The

proposed approach is validated on image restoration exam-

ples.

Index Terms— convex optimization, image restoration,

denoising, deconvolution.

1. INTRODUCTION

Noise in many real imaging systems can be accurately de-

scribed through a mixed Poisson-Gaussian model. For ex-

ample, it is frequently encountered in astronomy [1, 2],

medicine [3] and biology [4]. There has been a growing

interest for denoising problems involving images corrupted

in this fashion [5, 6, 7]. However, the literature involving this

model together with deconvolution and reconstruction prob-

lems remains scarse. Among existing works, Benvenuto et

al. [1] proposed a scaled gradient method and more recently

Gil-Rodrigo et al. [8] developed an alternating minimization

algorithm.

Generally, restoration strategies are grounded on some ap-

proximations of the noise statistics, which may be detrimen-

tal to the quality of the results. The use of approximations
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is motivated by the mathematical difficulties raised by the

Poisson-Gaussian model. Indeed, the corresponding proba-

bility distribution has a discrete-continuous nature, and the

expression of the associated log-likelihood function involves

an infinite sum. For simplification, one usually neglects ei-

ther the Poisson or the Gaussian component, or performs an

approximation of the Poisson-Gaussian model based on vari-

ance stabilization techniques [9, 10].

In this paper, we investigate the properties of the Poisson-

Gaussian negative log-likelihood, showing that it is a con-

vex Lipschitz differentiable function. Since the gradient of

the Poisson-Gaussian log-likelihood requires the computation

of infinite series, we propose utilizing proximal optimization

methods, since their convergence is guaranteed even in the

presence of summable numerical errors. Among recent ap-

proaches, only a few primal-dual splitting algorithms [11, 12]

can cope with the sum of a gradient Lipschitz term and a pos-

sibly non-smooth penalty term. Such a term can model a wide

range of prior information, e.g. criteria promoting sparsity in

a frame, total-variation and more generally hybrid regulariza-

tion functions.

The paper is organized as follows: Section 2 investigates

the Poisson-Gaussian model and introduces the notation used

in this work. Section 3 describes the proposed optimization

framework. Our approach is illustrated via experiments in

Section 4. Finally, some conclusions are drawn in Section 5.

2. DEGRADATION MODEL

Let y ∈ R
Q be a vector of observations related to an original

signal x ∈ [0,+∞)N through the model y = z(x) + w,

where z(x) =
(

zi(x)
)

1≤i≤Q
and w = (wi)1≤i≤Q are real-

izations of mutually independent random vectors Z(x) =
(

Zi(x)
)

1≤i≤Q
and W = (Wi)1≤i≤Q having indepen-

dent components. It is further assumed that, for every

i ∈ {1, . . . , Q},

Zi(x) ∼ Pα([Hx]i) (1)

Wi ∼ N (b, σ2), (2)



where H is a matrix in [0,+∞)Q×N modeling the degrada-

tion process (e.g., a convolution operator), α > 0 is the scal-

ing parameter of Poisson noise and (b, σ) ∈ R× (0,+∞) are

the mean and standard deviation, respectively, of the Gaus-

sian noise component. Hence, y is a realization of a random

vector Y with probability density function

pY (y;x) =

Q
∏

i=1

(

+∞
∑

n=0

e−α[Hx]i(α[Hx]i)
n

n!

e−
1

2σ2 (yi−b−n)
2

√
2πσ2

)

(3)

In the context of inverse problems, the original signal can be

recovered by minimizing a penalized criterion:

min
x∈RN

(f(x) = g(x) + r(x)) , (4)

where g is the so-called data fidelity term and r is a regular-

ization function incorporating a priori information, so as to

guarantee the stability of the solution w.r.t. the observation

noise. In the Bayesian framework, this allows us to compute

the maximum a posteriori (MAP) estimate [13] of the original

image. In this context, the data fidelity term is defined as the

negative logarithm of pY (y;x):

g(x) = − log(pY (y;x)) (5)

= −
Q
∑

i=1

log

(

+∞
∑

n=0

e−α[Hx]i(α[Hx]i)
n

n!

e−
1

2σ2 (yi−b−n)
2

√
2πσ2

)

and the regularization term r corresponds to the potential of

the chosen prior probability distribution. The gradient of g on

the positive orthant is given by

(

∀x ∈ [0,+∞)N
)

∇g(x) = αH⊤(1−u(αHx)) (6)

where, for every ξ = (ξi)1≤i≤Q ∈ [0,+∞)Q, u(ξ) =
(

s(ξi, yi − b − 1)/s(ξi, yi − b)
)

1≤i≤Q
, and, for every

(ξ, υ) ∈ R
2,

s(ξ, υ) =
+∞
∑

n=0

ξn

n!
e−

1
2σ2 (υ−n)2 . (7)

Based on the previous expressions, the following result can

be proved.

Theorem 1. The function g is convex and µ-Lipschitz differ-

entiable on [0,+∞)N with

µ = α2‖H‖2
(

1− e−
1
σ2

)

max
i∈{1,...,Q}

e
2(yi−b)−1

σ2 . (8)

While a proof of the convexity property is provided in [1],

the Lipschitz differentiability of g is a novel result.

For the optimization methods that are developed in the

next section, it is also important to note that the definition

of the negative log-likelihood can be extended to the whole

space R
N by setting

g(x) = h(x) + ι[0,+∞)N (x), (9)

where

h(x) =

Q
∑

i=1

ϕi(α[Hx]i) (10)

ι[0,+∞)N (x) =

{

0 if x ∈ [0,+∞)N

+∞ otherwise.
(11)

Here, for every i ∈ {1, . . . , Q}, ϕi : R → R is a convex,

twice-differentiable function, whose expression is readily de-

rived from (5) for non-negative values of its arguments, and

which takes a quadratic form on (−∞, 0]. By appropriately

choosing the quadratic form, h is a convex function with a

µ-Lipschitz gradient on R
N .

3. PROPOSED OPTIMIZATION METHOD

3.1. Minimization problem

According to the analysis carried out in Section 2, the objec-

tive function takes the following form

f(x) = h(x) + r0(x) +

M
∑

m=1

rm(Lmx), (12)

where the regularization term has been split in a sum of sim-

pler functions. More precisely, it will be assumed that r0 ∈
Γ0(R

N ) and, for every m ∈ {1, . . . ,M}, rm ∈ Γ0(R
Pm)

and Lm ∈ R
Pm×N .1 Note that (12) covers a large range

of penalization strategies. For instance, a sparsity prior in

an analysis frame with frame operator Lm is introduced by

taking gm equal to λm‖ · ‖1 with λm > 0. Block sparsity

measures [14] can also be easily addressed in the proposed

framework. Another popular example in image restoration

is the total variation penalization [15]. In this case, Pm =

2N , Lm =
[

(∆h)⊤ (∆v)⊤
]⊤

, where ∆
h ∈ R

N×N (resp.

∆
v ∈ R

N×N ) corresponds to a horizontal (resp. vertical)

gradient operator, and, for every x ∈ R
N , rm(Lmx) =

λm
∑N
n=1

(

([∆hx]n)
2 + ([∆vx]n)

2
)1/2

with λm > 0. The

above penalties can be considered individually (M = 1) or

combined in a hybrid manner (M > 1) [16]. Finally, fol-

lowing (9), r0 should be equal to ι[0,+∞)N . However, to take

into account the dynamic range of the expected output image,

it can be more generally chosen equal to ιC , where C is a

closed convex subset of [0,+∞)N .

3.2. Primal-dual splitting algorithm

We are now ready to present our primal-dual splitting algo-

rithm. We first require the notion of proximity operator.

1Γ0(RN ) is the class of lower-semicontinuous, proper, convex functions

from R
N to (−∞,+∞].



Definition 1. Let ψ ∈ Γ0(R
N ). For every x ∈ R

N , the

minimization problem

min
y∈RN

ψ(y) +
1

2
‖x− y‖2 (13)

admits a unique solution, which is denoted by proxψ(x). The

so-defined operator proxψ : R
N → R

N is the proximity op-

erator of ψ.

Numerous convex optimization algorithms are based on

this notion (see [17] for a tutorial). Problem (4) where f
takes the form (12) can be efficiently addressed using prox-

imal splitting algorithms [18, 19, 11, 12]. The solution is ob-

tained iteratively by evaluating the individual proximity oper-

ators of the functions (rm)0≤m≤M , provided that they have

an explicit expression. The main advantage of the primal-

dual splitting algorithm that we employ is that it allows us

to solve (4) for any Lipschitz differentiable function h while

allowing for arbitrary linear operators (Lm)1≤m≤M . This al-

gorithm, proposed recently in [11], is summarized below.

Algorithm 1 Proposed algorithm.

Let γ ∈ (0,+∞). Let (ak)k∈N
and (ck)k∈N

be some se-

quences of elements of RN corresponding to possible er-

rors in the computation of the gradient of h.

Initialization:

Set x0 ∈ R
N , and (∀m ∈ {1, . . . ,M}) vm,0 ∈ R

Pm .

Iterations:

For k = 0, . . .




































y1,k = xk − γ
(

∇h(xk) +
∑M
m=1 L

⊤
mvm,k

)

+ ak

p1,k = proxγr0(y1,k)
For m = 1, . . . ,M












y2,m,k = vm,k + γLmxk
p2,m,k = y2,m,k − γ proxγ−1rm(γ−1y2,m,k)
q2,m,k = p2,m,k + γLmp1,k

vm,k+1 = vm,k − y2,m,k + q2,m,k

q1,k = p1,k − γ
(

∇h(p1,k) +
∑M
m=1 L

⊤
mp2,m,k

)

+ ck

xk+1 = xk − y1,k + q1,k

3.3. Convergence result

The convergence of the proposed primal-dual proximal split-

ting algorithm is guaranteed by the following result deduced

from Theorem 1 and [11, Theorem 4.2]:

Theorem 2. Given the following assumptions:

(i) f is coercive, i.e. lim‖x‖→+∞ f(x) = +∞,

(ii) for every m ∈ {1, . . . ,M}, rm is finite valued,

(iii) γ ∈ [ǫ, (1− ǫ)/β] where ǫ ∈ (0, 1/(β + 1)) and

β = µ+

√

√

√

√

M
∑

m=1

‖Lm‖2,

(iv) (ak)k∈N
and (ck)k∈N

are absolutely summable se-

quences,

then there exists a minimizer x of (12) such that the sequences

(xk)k∈N and (p1,k)k∈N converge to x.

3.4. Implementation issues

Note that Algorithm 1 is robust to numerical errors. This fea-

ture is essential in our problem, as the gradient of the Poisson-

Gaussian negative log-likelihood given by (6) involves infi-

nite sums and cannot be computed exactly. We propose to

perform the sum of (7) between nmin and nmax, to include

only the significant coefficient indices. Using Stirling’s for-

mula leads us to nmin ≃ max(min(ξ, υ)− δ, 0) and nmax ≃
max(ξ, υ) + δ where δ = 3max(σ,

√
ξ).

4. SIMULATION EXAMPLES

We now demonstrate the practical performance of our method

on image denoising and restoration experiments. The restora-

tion involves the minimization of

f = h+ ιC + λ tv, (14)

where ιC is the indicator function of C = [0, 255]N , tv

denotes the total variation semi-norm as defined in Sec-

tion 3.1 and λ > 0 is the regularization parameter. To reflect

the Poisson-Gaussian noise statistics, we choose the data

fidelity term h to be either derived from the Generalized

Anscombe Transform (GAST) or to be given by the exact

expression in (5). The quality of the results is evaluated in

terms of Mean Absolute Error (MAE). In our experiments,

we use the standard house image of size 256 × 256 from

(sipi.usc.edu/database/). To generate the observed

image y, we degraded the original image with a convolution

operator H , which reduces to identity in the pure denoising

case and corresponds to a truncated Gaussian point spread

function of standard deviation 0.5 and kernel size 7 × 7 in

the case of restoration. The image was further corrupted

with a scaled Poisson noise and a zero-mean additive Gaus-

sian noise. Table 1 presents the results of three experiments,

which differ in the values of the scaling parameter α of the

Poisson noise and the variance σ2 of the Gaussian noise.

Experiment 1 is defined by α = 0.05 and σ2 = 9, Exper-

iment 2 by α = 0.1 and σ2 = 16 and Experiment 3 by

α = 0.4 and σ2 = 50. For each model, parameter λ was ad-

justed to achieve the minimum MAE under all experimental

conditions.

Since our approach can cope with a wide range of data fi-

delity terms, we were able to compare its performance for the

two models. GAST was handled in a manner similar to [20].

One can observe by inspecting the MAE values in Table 1,

that the exact model leads to the best result. The difference is

more significant for low-count images.



Denoising Restoration

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3

Initial image 63.61 43.58 20.51 63.81 43.83 21.25
GAST model 10.84 7.97 5.19 10.98 8.05 5.60
Exact model 8.96 7.28 5.11 8.95 7.44 5.55

Table 1. Obtained MAE for different models.

(a) MAE = 20.51 (b) MAE = 5.11

(c) MAE = 21.25 (d) MAE = 5.55

Fig. 1. (a,c) noisy image, and noisy blurred one, re-

spectively. (b,d) resulting images using the exact Poisson-

Gaussian model for denoising and restoration problems, re-

spectively (α = 0.4, σ2 = 50).

5. CONCLUSION

We have proposed a new variational approach for solving

data recovery problems in the presence of Poisson-Gaussian

noise. Taking advantage of the convexity and Lipschitz-

differentiability properties of the Poisson-Gaussian negative

log-likelihood, an efficient primal-dual proximal algorithm

has been developed. Although the proposed framework was

applied to TV-based image restoration, its versatility allows

us to address a wide range of applications by making use of

various forms of convex penalty functions.
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[12] H. Raguet, J. Fadili, and G. Peyré, “Generalized Forward-Backward splitting,”

Tech. Rep., 2011, http://hal.archives-ouvertes.fr/hal-00613637.

[13] G. Demoment, “Image reconstruction and restoration: Overview of common es-

timation structure and problems,” IEEE Transactions on Acoustics, Speech and

Signal Processing, vol. 37, no. 12, pp. 2024–2036, Dec. 1989.

[14] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty

relations and efficient recovery,” IEEE Transactions on Signal Processing, vol.

58, no. 6, pp. 3042 –3054, Jun. 2010.

[15] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise re-

moval algorithms,” Journal Physica D, vol. 60, pp. 259–268, 1992.

[16] N. Pustelnik, C. Chaux, and J.-C. Pesquet, “Parallel proximal algorithm for image

restoration using hybrid regularization,” IEEE Transactions on Image Processing,

vol. 20, no. 9, pp. 2450 –2462, Sep. 2011.

[17] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal process-

ing,” in Fixed-Point Algorithms for Inverse Problems in Science and Engineer-

ing, H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and

H. Wolkowicz, Eds., pp. 185 – 212. Springer-Verlag, New York, 2010.

[18] P. L. Combettes and J.-C. Pesquet, “A proximal decomposition method for solving

convex variational inverse problems,” Inverse Problems, vol. 24, no. 6, Dec. 2008.

[19] L. M. Briceños Arias and P. L. Combettes, “A monotone + skew splitting model

for composite monotone inclusions in duality,” SIAM Journal on Optimization,

vol. 21, no. 4, pp. 1230–1250, Oct. 2011.

[20] F.-X. Dupe, J.M. Fadili, and J.-L. Starck, “A proximal iteration for deconvolving

Poisson noisy images using sparse representations,” IEEE Transactions on Image

Processing, vol. 18, no. 2, pp. 310 –321, Feb. 2009.


