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A graph G is arbitrarily partitionable (AP for short) if for every partition (n1,ng, ..., n,) of |V(G)| there exists a
partition (V1, Va, ..., V}) of V(G) such that each V; induces a connected subgraph of G with order n;. If, addition-
ally, k of these subgraphs (k < p) each contains an arbitrary vertex of GG prescribed beforehand, then G is arbitrarily
partitionable under k prescriptions (AP+k for short). Every AP+k graph on n vertices is (k + 1)-connected, and
thus has at least [ 217 edges. We show that there exist AP+k graphs on n vertices and [@] edges for every

2
k>1landn > k.

Keywords: arbitrarily partitionable graph, partition under prescriptions, Harary graph

1 Introduction

We denote by V' (G) and E(G) the sets of vertices and edges, respectively, of a graph G. The order (resp.
size) of G is the cardinality of the set V(G) (resp. E(G)). If X is a subset of V(G), then G[X] denotes
the subgraph of G induced by X.

In the late 1970s, the following well-known result was proved.

Theorem 1 (Gy6ri [5] and Lovasz [7], independently). If G is a k-connected graph, then, given a se-
quence (v1,va, . ..,v) of k distinct vertices of G and a sequence (ny,na, ..., n) of k positive integers
adding up to |V(G)|, there exists a partition (V1,Va, ..., Vi) of V(G) such that v; € V;, the subgraph
G|V;] is connected, and |V;| = n; for every i € {1,2,... k}.

In this paper, we consider a more general partition problem resulting from the combination of the notion
of arbitrarily partitionable graphs [1]] with the constraint of prescribing a set of vertices from Theorem T}
Let G be a connected graph of order n. A sequence 7 = (n1, ng, ..., n,) of positive integers is admissible
for G if it performs a partition of n, that is if Y.©_, n; = n. If, additionally, we can partition V' (G) into
p parts (V1,Va, ..., V},) such that each V; induces a connected subgraph of G with order n;, then 7 is
realizable in G, the partition (V1, Vs, ..., V}) being a realization of T in G. If every admissible sequence
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for G is also realizable in G, then G is arbitrarily partitionable (AP for short). The interested reader is
referred to [, 12,16, 8] for a review of some results on AP graphs.

Now suppose that we still want to partition G into an arbitrary number, say p, of connected sub-
graphs G1,Ga, ..., G, of prescribed orders, but in such a way that for each i € {1,2,...,k} with
fixed k € {1,2,...,p}, the subgraph G; contains a vertex v; of G arbitrarily chosen beforehand. To
model this additional requirement, the definition of AP graphs can be strenghtened as follows [3]. A
k-prescription of G is a k-tuple P = (v1,vs,...,v;) of k distinct vertices of G. We say that a se-
quence 7 = (N1, N2, ...,n,) wWith p > k elements is realizable in G under P if there exists a realization
(Vi,Va,...,V,) of T in G such that the vertex v; belongs to V; forevery ¢ € {1,2,..., k}. Notice that we
have adopted the convention that the elements of 7 associated with the prescribed vertices are the first ele-
ments of 7. We say that G is (p, k)-partitionable if every sequence admissible for G consisting of exactly
p elements is realizable in G under every k-prescription. Finally, the graph G is arbitrarily partitionable
under k prescriptions (AP+k for short) if G is (p, k)-partitionable for every p € {k,k +1,...,n}.

According to these definitions, an AP+0 graph is an AP graph. Stated differently, Theorem [I] asserts
that every k-connected graph is (k, k)-partitionable. In the same flavour, note that every k-connected
graph with k& > 2 is trivially (k, k — 1)-partitionable. Hence, when dealing with a k-connected graph, we
only consider sequences with strictly more than k£ elements throughout this paper. It also has to be known
that deciding whether a sequence is realizable in a graph under a prescription is NP-complete in general,
even when the sequence or the prescription has a fixed number of elements [4].

Only a few classes of AP+k graphs are known. For every k£ > 1, the set of complete graphs on at
least k vertices is a trivial class of AP+k graphs, these graphs having the largest possible size. Regarding
graphs with less edges, it was proved in [3] that k' powers of paths (resp. cycles) are AP+(k — 1) (resp.
AP+(2k — 1)) for every k > 1, these results being tight (i.e. we cannot always partition these graphs when
more prescriptions are requested).

In this work, we investigate the least possible size of an AP+k graph. In this scope, we focus on optimal
AP+k graphs, i.e. on AP+k graphs with the least possible number of edges regarding their order and
connectivity. This is done by studying the family of well-known Harary graphs. After having introduced
some notation and preliminary results in Section [2] we prove some more results regarding the partition
of powers of paths or cycles in Section [3] These results are then used to show, in Section 4] that every
(k + 1)-connected Harary graph is an optimal AP+k graph for every k& # 2. We finally deal with 3-
connected Harary graphs in Section[5] In particular, we show that these graphs are not necessarily AP+2.
We however provide another class of optimal AP+2 graphs instead. All these results imply that, for every
k > 1and n > k, every optimal AP+k graph with order n has size [@1

2 Definitions, notation, and preliminary results

A subgraph H of a graph G is a spanning subgraph of G if V(H) = V(G). We also say that G is
spanned by H. Given an integer k > 1, the k*" power of G, denoted by G*, is the graph with the same
vertex set as (G, two vertices of G* being adjacent if they are at distance at most k in G. We denote by
P, (resp. C},) the path (resp. cycle) on n vertices. The vertices of P,, or C,, are consecutively denoted
by v, v1,...,v,—1. Regarding P,, the vertices vy and v,,_1 are its first and last vertices, respectively,
sometimes called its endvertices. We use the same terminology to deal with the vertices of P¥ (resp. C¥)
according to its natural spanning P, (resp. Cy,).
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(a) Hg,s. (b) Hs 10- (c) Hz,7.
Fig. 1: Three examples of Harary graphs.

Let £ > 1 and n > k be two integers. The k-connected Harary graph on n vertices, denoted by Hy, ,,,
has a vertex set {vg, v1,...,v,—1} and the following edges:

e if k = 2r is even, then two vertices v; and v; are linked if and only if i —r < 7 <7+ 7}

e if k = 2r + 1is odd and n is even, then H}, ,, is obtained by joining v; and Uitz in Ha, ,, for every
1€ {0,1,...,%—1};

e if k = 2r 4+ 1 and n are odd, then Hy, ,, is obtained from Hs,.,, by first linking v to both CIEY and
vrz1, and then each vertex v; to v [n) forevery i € {1,2,...,[5] — 1}

where the subscripts are taken modulo n. Three examples of Harary graphs are given in Figure|l] When
k is odd, the neighbours of a vertex v; of Hy, ,, which are at distance strictly more than » from v; in the
underlying C', (there are at most two of them) are called the antipodal neighbours of v;. In particular, the
vertex v; has two antipodal neighbours if and only if ¢ = 0, and k and n are both odd. A diagonal edge of
Hj, ,, is an edge linking two vertices each of which is an antipodal neighbour of the other one.

If G is a graph with a natural ordering of its vertices (like powers of paths and cycles, or Harary graphs),
then, for every vertex v of GG, we denote by v™ (resp. v ™) the neighbour of v succeeding (resp. preceding)
v in this ordering. Every power of path P* with underlying path P, = wyv; ...v,_1 is considered to
be depicted in a “usual” way, i.e. from its leftmost vertex vg to its rightmost vertex v,,_;. By uGv we
refer to the graph G[{u,u™, (u™)T, ..., v, v}] for every two vertices u and v of G. Assuming P is a

prescription of G, a prescribed block B of P in G is a set {Uijl 3 Vijyse - - ,Uijl} of consecutive prescribed

v, =vl . We say that B is maximal if neither v, nor v
Lo Je de—1 141 i

vertices, i.e. Vi, = v, Vi, =0 ;

Y1
are prescribed vertices.

One important property of AP graphs is the following.

Observation 2. If a graph G admits a spanning AP (resp. AP+k) subgraph (resp. for some k > 1), then
G is AP (resp. AP+k).

Recall that a graph is traceable if it admits a Hamiltonian path. Since every path is AP, Observation
implies the following result.
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Corollary 3. Every traceable graph is AP.

We now point out the following property of AP+k graphs, from which we deduce a bound on the size
of an optimal AP+k graph.

Observation 4. Let k > 1. Every AP+k graph is (k + 1)-connected. Therefore, an optimal AP+k graph

n(k+1
(2 )]

on n vertices has at least | edges.

Proof: Assume G is a graph with order n. If there exist k vertices vy, va, . . ., v such that G—{vy, ve, . . .,
vk} is not connected, then the sequence (1,1,...,1,n — k) with the value 1 appearing k times cannot
be realized in G under (v1,va,...,vx). Therefore, a necessary condition for G to be AP+k is to be
(k + 1)-connected. The lower bound then follows. O

As mentioned by Corollary |3} paths are AP+0, while it is easy to check that cycles are AP+1. Baudon
et al. generalized these observations to powers of paths and cycles [3]].

Theorem 5 ([3]). The graph P* is AP+(k—1) for every k > 1 and n > k. The graph CF is AP+(2k —1)
forevery k > 1 andn > 2k.

Provided that n > 2k + 2, note that the size of P**1is (k+ 1)(n — (k+ 1)) + Zle i. Then, since
|E(PEY)| > [@W , an optimal AP+k graph on n vertices may have less edges than P**1. On the
contrary, every graph CF is 2k-regular and hence is an edge-minimal 2k-connected graph. According to
Observation 4] it follows that the set of k*" powers of cycles is a set of optimal AP+(2k — 1) graphs for
every k > 1.

3 Partitioning powers of paths and cycles under prescriptions

As pointed out in Theorem recall that k*" powers of paths and cycles are AP+(k — 1) and AP+(2k — 1),
respectively. This result is tight according to Observation[d] in the sense that we cannot always prescribe
more vertices while partitioning these graphs. In this section, we exhibit situations under which these
graphs can be partitioned under more prescriptions than indicated by their connectivity.

The following first result asserts that k" powers of paths can be partitioned under k-prescriptions when
either the first or the last vertex is prescribed.

Lemma 6 ([3]). Let P = (v;,, viy, .- ,vi,) be a k-prescription of P¥ withk > 1,n > kand 0 < iy <
io <...<ip <n—11Ifi; =0o0riy =n—1, then every sequence T = (ny,na, . .. ,np) admissible for
P¥ with p > k elements is realizable in P* under P.

In the next result, we prove that k" powers of paths are also partitionable under k-prescriptions when
the prescribed vertices do not form a prescribed block with size k.

Lemma 7. Let P = (v;,,v;,,...,v;,) be a k-prescription of P¥ with k > 1, n > kand 0 < i; <
ig < ... < ix < n— 1. Ifthe prescribed vertices do not form a prescribed block with size k, then every
sequence T = (N1, Na, . ..,ny) admissible for P¥ with p > k elements is realizable in P* under P.

Proof: Let G = Pff for given values of K > 1land n > k. If s = Z?:kﬂ n; < i1, then a realization of
7in G under P is (V1,Va,...,V,) where (Vit1, Vigo, ..., V,) is a realization of (ng11, nk42,...,np)
in the traceable graph G[{vg,v1,...,vs_1}], and (V1, Vo, ..., V%) is a realization of (n1,ng,...,ng) in
G — {vo,v1,...,vs—1} under P which exists according to Theorem
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Suppose now that s > i1. On the one hand, if n; > iy, then a realization of 7 in G under P is (V; U
V', Va, Vs, ..., V,), where V{ = {vg,v1,...,v;,—1} and (V{’, V2, V3, ..., V,) is a realization of (n; —
11,M2, ... ,np) in G — V{ under P obtained via Lemma@ On the other hand, if ny < 71, thenlet V] be a
subset of {vg, v1, ..., v;, } obtained as follows. First, we set V; = {v;, } and we then repeatedly add to V;
the vertex located at distance 2 on the left of the last vertex added to V; as long as |V7| < n; and v is not
reached. If there is no vertex at distance 2 on the left of the last vertex added to V7 (but V; needs additional
vertices), then we add to V; every remaining vertex from {vo, v1,...,v;,—1} — V4 from left to right until
W1 has size ny. Let X = {vg,v1,...,v;,—1} — V1. Notice that, at the end of the procedure, G[V;] is
connected, G[X] is traceable, and v;, _1 € X. Now, if there exists » € {k + 1,k + 2,...,p} such that
Z;=k+1 n; = | X/, then a realization of 7 in G under P is (Vi, V5, ..., V,) where (Viy1, Vigo, ..., V2)

is a realization of (nj41, nk42,...,ny) in G[X|and (Vo, V3, ..., Vi, Viq1, Viga, ..., V,) is arealization
of (na, M3, ..., Mgy Myt1, Nyg2,y - .., Nyp) iN G — {vo,v1, ..., v; } under {vy,, v, ..., v;, } obtained using
Theorem[3]

If such a value of 7 does not exist, then let 7 be such that Z;;iﬂ nj < |X[and >77_, . n; > [X].
Let further n). = | X| — Z;;,i 41> 1y =n, —n,,and v, & P be the nearest neighbour of v;, _; located
on the right of v;,. Such a vertex necessarily exists since the opposite assumption would imply that our

k prescribed vertices are located consecutively along G. Moreover, either v, or v;, is the first vertex
of G — {wo,v1,...,v; }. We then obtain a realization (V1,Va,..., V1,V UV Vi1, Viga, ..., V})

of 7 in G under P, where (V!, Vi1, Vo, ..., Vi) is a realization of (n)., ng41,ng42,...,nr—1) in
G[X]under (v;,—1),and (Va, Vs, ..., Vi, V', Vi1, Vigo, ..., V) is arealization of (ng, ng, ..., ng, n,.,
Mptd, Npg2, -« -5 Np) 0 G{0s 41, Vi 42, - - -, Un—1 }] under (viy, Vi, - - -, V4, , Vg). These two realizations
exist according to Lemma 6] O

We now strengthen Lemma E] by showing that k*" powers of paths are partitionable under (k + 1)-
prescriptions when their endvertices are prescribed.

Lemma 8. Let P = (v;,,vi,,...,0;,,,) be a (k + 1)-prescription of P¥ with k > 1, n > k and
0<i1 <ig <...<igpy1 <n—1Ifiy =0andiyi1 = n—1, then every sequence T = (n1,nz,...,np)
admissible for P¥ with p > k + 1 elements is realizable in P¥ under P.

Proof: We prove this claim by induction on k. For k = 1, the result is obvious. We thus now suppose
that £ > 2 and that the claim holds for every k' < k. Let G = P*. If ny < i, then a realization of T
in G under Pis (V1,Va,...,V,) where Vi = {vg,v1,...,vn,—1} and (Va, V3, ..., V,) is a realization of
(n2,n3,...,np) in G — Vy under (vy,, vi,, ..., vi,,, ). This realization necessarily exists according to
Lemma@ since vy, , is the last vertex of G—-V1.

Suppose now that ny > i5. Observe that {0,1,...,k — 1} — U§:2{ij mod k} is not empty, so let us
denote by r one of its elements. The subset V; of the realization is constructed as follows. It first contains
all the vertices between vg and v;,_1, i.e. {vg,v1,...,0;,—1} C V1. We then add the vertex v, to V7,
where a € {ig + 1,i2 + 2,...,i2 + k — 1} is such that a = r mod k. Finally, as long as |V;| < ni, we
repeatedly add to V; the vertex at distance & on the right from the last vertex added to V7, unless it is equal
to U1, i.€. Vgtk, then vy ok, and so on. According to our choice of r, these vertices are not prescribed
ones and, at any moment of the procedure, the subgraph G' — V is spanned by the (k — 1)*" power of a
path, and the subgraph G[V}] is connected.

On the one hand, if |V1| = n holds after the procedure, then (V3,V5,...,V,) is a realization of 7
under P, where (V3,V3,...,V,) is a realization of (ng,ns,...,n,) in G — V; under the prescription



268 Olivier Baudon, Julien Bensmail, Eric Sopena

(Viy, Vig, - - -, Vi,,, ) Which necessarily exists by the induction hypothesis since v;, and v;, , , are the end-
vertices of G — V7.
On the other hand, if |[V;| < ny holds once the procedure is achieved, then each vertex from V(G) — V4

has a neighbour in V3. Hence, we can obtain a realization (V; U V{,V5,V3,...,V,) of 7 in G under
P, where (Va,Va,...,V,, V/) is a realization of (ng, ns,...,ny,n1 — |Vi|) in G — Vi under the pre-
scription (vy,, Vg, - - - , Vs, ,, ). Once again, such a realization necessarily exists according to the induction
hypothesis. O

We now prove an analogous result concerning cycles to the power of at least 2. Let G = C¥ for
some k > 2 and n > 2k, the sequence 7 = (ng,n1,...,N,—1) be admissible for G, and P =
(Vigs Vigy -« -y Vig,_, ) be a 2k-prescription of G, withp > 2k and 0 < ig < i3 < ... < dg5—1 < n — L.
Forevery j € {0,1,...,2k — 1}, we denote by D; the set {v;;l, (vj;il)ﬂ Vi v, } containing the

consecutive vertices of G lying between v, _

In particular, we have Z?igl dj =n.

, and v;, including v; ;. The size of every D; is denoted d;.

Lemma9. Let P = (vi,,V;,, - - -, Viy,_, ) be a 2k-prescription of C¥ with k > 2, n > 2k and 0 < iy <
11 < ... < ig9g—1 < n — 1. If the prescribed vertices are not organized into two maximal prescribed
blocks with size k, then every sequence T = (ng,n1, . .., np—1) admissible for Ck with p > 2k elements
is realizable in C¥ under P.

Proof: Let k& > 2 be fixed, and G = C¥ for some value of n > 2k. We prove that every partition
T = (no,n1,...,np—1) of n with p > 2k elements is realizable in G under every 2k-prescription P =
(Vigs Vigy v+ yVig,_,) With 0 <'ig < i1 < ... < igp—1 < n — 1 when the prescribed vertices do not form

two maximal prescribed blocks with size k. For every j € {0,1,...,2k — 1}, let ¢; = Z;Zf_l dy and

s; = Z;i;Fl ny, where the indices are counted modulo 2k. In other words, the value g; is the order

of the graph v}’  Gui,, , = G[{i;_1,(ij_1)", ..., ij+x—1}] including the k prescribed vertices v;,,
Vijprs - s Vijop_q» and s; is the amount of vertices needed by the subgraphs containing these prescribed

vertices in a realization of 7 in G under P. Note that there necessarily exists a j such that s; < g; since

having 2321 55 > E?igl(qj + 1) implies k Z?igl ne >k Z?igl d¢ + 2k, which is impossible since
n = ,?igl dg and n > Z?ZBI ng. To prove the claim, we distinguish several cases depending on the

relationship between s;’s and g¢;’s.

Casel. s; = g; forsome j € {0,1,...,2k — 1}.
In this situation, a realization of 7 in G under P is deduced as follows. Assume j = 0 with-
out loss of generality, and set Gy = @] ?;01 Dy]. Note that Gy is the k' power of a path. If
’;;é d¢ > k + 1, then Gy is k-connected and thus admits a realization (Vp, Vi,...,Vi_1) of
(ng,n1,...,ng—1) under (v, vi,,...,v; _,) according to Theorem Otherwise, if ZIZ:_Ol dy =
Ek, then (Vo,Vi,...,Vi—1) = ({vig }, {vi, }s - - -, {vi,_, }) is a realization of (ng,ny,...,nk—1) =
(1,1,...,1)in Gg under (v;,, vi, - - -, Vi, _, ). On the other hand, the graph G—UIZ:_O1 Dy is the k"
power of a path whose last vertex is v;,, ,. Therefore, there exists a realization (Vi, Vit1, ..., Vp—1)
of (g, ngs1,...,np—1) under (vs,, Vi, ..., Vi,_,) in this graph by Lemma @ The partition
(Vo,V1,...,Vp_1) is then a realization of 7 in G under P.
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Case 2. We are not in Case 1 and s; > q; for some j € {0,1,...,2k —1}.
In particular, there exists a value of j for which s; > ¢; and s;11 < ¢;41. Suppose j = 0 without
loss of generality.

Case 2.1. There exists aset X = {vj;k_l, (v;;k_l)“', coy gt witha € {ig—1+1,ig_1+2, ..., ix—
1} such that | X| = so.
A realization of 7 in G under P can be obtained as follows. Firstly, let (Vo, Vi,..., Vi_1) be
arealization of (ng,n1,...,nk—1) in G[X] under (v;,,vi,, ..., v;,_, ). Such a realization ex-
ists by Theoremsince G[X] is the k" power of a path. Secondly, let (Vi, Vit1,- .., V,p—1)
be a realization of (ng, 741, ..,np—1) in G — X under (v;,, vi,,,, ..., Vi,,_, ) Which nec-
essarily exists according to Lemma @ since v;,, , is the last vertex of G — X. The partition
(Vo, Vi, ..., Vp_1) is then a realization of 7 in G under P.

Case 2.2. Such a set X does not exist.
In such a situation, we have s > qo + di, — 1, i.e. Z’Z:_& ng > Zif:() d¢ — 1. Besides, since
ng’s and dy’s are strictly greater than 0, we get Z?:o ng > 1+ 25:1 dy. Since s; < qq,
ie. Zif:l ng < Zif:l dy, it follows that there exists a n(, such that 1 < ng < ng and
ng + 2521 ng =14 25:1 dp = [{vie, v, ..., vi, }|. A realization of 7 in G under P
is then obtained as follows. On the one hand, let (Vj, V1, Va,..., Vi) be a realization of
(ng,n1,M2,...,nk)in G[{vio,v;g, .+, U4, t] under (v;,, vy, , . . ., v;, ), which exists according
to Lemma since v;, and v;, are the endvertices of G[{v;,, v}, ..., v;, }]. On the other hand,
let ng = (no — ng) + 1 (note that ng > 1), and let (V§', Vi1, Viega, . .., Vp—1) be a realiza-
tion of (nf), Nk41, Mktas - np—1) in G, (v )T, ... vio ] under (vig, Vi, 1 Vi gs - -5
Vi, )» Which exists according to Lemma@ since G[{v;, (v} )*,... v;,}] is the k" power

of a path with last vertex v;,, and k prescribed vertices are specified. The partition (Vj U

Vo' Vi, Va, ..., V,_1) is then a realization of 7 in G under P since G[Vj] and G[V;'] are

connected and both contain the vertex v;, (which is actually the only vertex appearing in both

these subgraphs).

Case 3. s; < g; forevery j € {0,1,...,2k — 1}.
We distinguish two subcases.

Case 3.1. There are two consecutive prescribed vertices.

Assume v;, = vj;kil without loss of generality, with 79 = 0 and 79,1 =n — 1.

Case 3.1.1. There exists v € {2k, 2k + 1,...,p — 1} such that so + Y ,_o, T = qo-
In this situation, we can deduce a realization of 7 in G under P as follows. Firstly, let

(%7 Vl; DR Vk717 ‘/2]67 ‘/2k+17 ey ‘/7’)
be a realization of
(nO;nla sy M1, M2k, M2k —15 -+ - ;nr)
. k—1 . . . .
in G[U,_, D] under (v,,v;,, ..., v, _,) which exists according to Lemma@ since v;,,

is the first vertex of G [Ulgz_ol Dy], this graph being the k*" power of some path. Secondly,
let

(Vka Vk+l7 ) VQk—l) VT+17 ‘/;’4-27 ceey Vp—l)
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be a realization of

(nka Nk4+1y -3 NM2k—1,Npr41, Mp42, - -« anp—l)
. k—1 . .
in G — {J,—y D¢ under (v, , Vi, - -, Vigy,_, ) Which exists for the same reason as pre-
. . . k—1 .
viously since v;,, , is the last vertex of G — |J,_, D;. The partition (Vo, V1,...,V,_1)

is then a realization of 7 in GG under P.

Case 3.1.2. Such r does not exist.
Let r € {2k, 2k 4+ 1,...,p — 1} be the value for which we have sy + > j_a. s < qo
and sg + ZZI% ng > qo. Such a value exists since sg < ¢o and s < gg. So let further
nl. = qo — (80 + 3.y_sp 1¢) and ! = n, — n’. . Denote by v, the last non-prescribed
vertex of G[J}—, Dy], and by vy, the first non-prescribed vertex of G — J5=) D.

Case 3.1.2.1. The vertices v, and vy, are adjacent in G.

Let v, = vit forsome g € {k+ 1,k +2,...,2k — 2}. Then we obtain a realization of 7
in G under P as follows. Firstly, let

(‘/07‘/17"'aVk—lv‘/r/a‘/ékH‘/Qk-l-l)'"7‘/;'—1)

L . k-1

be a realization of (ng, n1, ..., ng—1, Ny, Nak, Nak+1, - - -, Ne—1) in G[U,_, De] under
. . . k—1 R

(Vigs Vigs -+ Vip_y» Va), which exists by Lemma since G[J,_, D] is the k' power

of a path whose endvertices are v;, and v;, ,. Secondly, let

1
Vs Vier1s - - Vg, Vi s Vg1, Vs, -+, Vak—1, Vi, Vigay oo+, Vo)
be a realization of
1
(nkank-‘rh sy Mgy My Mg415 g2+« -5 M2k —15 15 425 - - - 7”1)—1)

inG — Ulg:_ol Dy under (vi,, Viyyys -+ Vigs Vb, Vigiys Vigaos - - > Vigy_1)-

This realization exists according to Lemma since G — U’Z;Ol Dy is the k" power of a
path, either v or v;, is the first vertex of G — U?;Ol Dy, and v;,, , is the last vertex of
G — UsZ, Dy. Tt follows that

(V07 ‘/17 sty ‘/7'—1; VT{ U ‘/7{/7 ‘/7’4-17 ‘/7’4-27 R ‘/p—l)

is a realization of 7 in G under P since G[V,! UV,”] is connected thanks to the edge v, vp.

Case 3.1.2.2. The vertices v, and vy, are not adjacent in G.
In this situation, either v;, , or v;, belongs to a prescribed block with size at least .
Then one can relabel the prescribed vertices so that v;, and v;,, , correspond to two
consecutive prescribed vertices from this prescribed block, and use the procedures from
Case 3.1. Since s; < g; for every j € {0,1,...,2k — 1}, note that this time the two
vertices v, and v, (if these vertices are needed) have to be adjacent since otherwise it
would mean that the prescribed vertices form another prescribed block with size at least &,
implying that there are two prescribed blocks with size k, contradicting the assumption
of the lemma.
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Case 3.2. There are no two consecutive prescribed vertices.

Case 3.2.1. There exists a set X of consecutive vertices of G such that X N\ P = {v;,
s Vij ooy v and | X| = s; for some j € {0,1,...,2k — 1}.

In this situation, we obtain a realization of 7 in G under P as follows. Assume j = 0
without loss of generality. Firstly, let (Vo, V1, ..., Vix_1) be arealization of (n;,, n;,, ...,
n;,_,) in G[X] under (viy,Viys---,Vip_,)s Wthh exists by Theorem [I] since G[X] is
the k' power of some path. Secondly, let (Vi, Vii1,... , Vp—1) be a realization of
(Ms kg1, -+, p—1) in G—=X under (vi, , Viy,y- vy Vigy_y) obtained thanks to Lemma
since G — X is the k' power of a path and there are no consecutive prescribed vertices.
Then (Vo, V1, ..., V1) is a realization of 7 in G under P.

Case3.2.2. s; < q; —d; + 1foreveryj € {0,1,...,2k —1}.
Case 3.2.2.1. There are two prescribed vertices v;, and v;, , such that ng + ngy1 >

Vijyrs

dey1 + 1.

Assume ¢ = 2k — 1 without loss of generality. Then there exist two sets of con-
secutive vertices X = {vi,,_,,v;) ,...,v.} and Y = {v}, (v])T,... v}, with
a € {igk_l,igk_l—Fl mod n,...,ig — 1 mod TL}, A

realization of 7 in G under P can be then obtained as in Case 3.1 by doing as if v;,, ,
and v;, were consecutive prescribed vertices (this is straightforward due to the notation
we have adopted herein), but requesting v;,, , and v;, to belong to subgraphs with order
nog—1 — | X|+ 1 and ng — |Y| + 1, respectively. Recall that we are under the assumption
that there are no two consecutive prescribed vertices. For the resulting parts V5, ; and
Vy, the graphs G[V;, _, U X] and G[Vj U Y] are connected, and have order no;_q and
ng, respectively.

Case 3.2.2.2. n; +nj 1 < djy1 + 1foreveryj € {0,1,...,2k —1}.

In particular, ng+ny < dy+1 = [{v;,, v;g, ..+, U3, }|. We cannot have both ng >
and nq; > (%1, since otherwise we would get ng + n; > d; + 1, a contradiction. Let
us thus suppose that ng < [dlg' 17 without loss of generality. Then note that the graph
induced by Vo = {vi, Vig+2, Vig4ds - - - » Vig+2(no—1) ; has order ng and contains v;,, and
the graph G[{vi,, _,, v, ..., v;, } — Vo] is traceable with endvertices vy, , and v;,.

Lett; = [{vi,, v}, ... v} = Sy_ neand t2 = [{vi (vt )T, .. v} = no

From 7, we define three sequences 71, T and 3.

First, let 7, = (nl, No, ..., Nk, Nok, n2k+1, ...,y —1), where 71 is the unique index
in {2k, 2k +1,... 1} such that 3715, g < ty and Y ;L. ne > ti. Now, if
t— S ne > O, then add n;., =t; — Ze o1 7 as the (k +1)™ element of 7;. Note
that the elements of 71 sum up to [{v;,,v;", ..., v, }|.

Letn, =n, —n, .Ifn] >t thenlet = (tg) and set vy = ry and n;, = n” —to.
Otherwise, let 75 be the index in {r1 41,7142, ..., p—1} for which n!/ +Zz “H ne <
ty and n)! + Z;Z L > to. Now let /o = (nrl,nrl+1,nr1+27...,nrrl). Set

[45]

n,, = ta — (n + S 71+1 ng) and n;,, = n,, —n;,, and add n;,, as the second
element of 7 1f n > 0. Once 79 is constructed, note that its elements sum up to

+ +
|{Ui2k,l7 (’Uigk,l) PR 11}|
Finally, assuming n!’ , >0 (otherw1se, remove this element from the sequence), let 73 =
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(bt 1s M2y -y M2k—1, Mtyy Myt 1, Ny g2, - - -5 Tp—1). Note that the elements of 73
sum up to |{vi+ka (Ui-:)Jrv ) U’ZQk—l}|'

Remark that every element of 7 has been associated with one of 7y, 75 and 73, with at
most two non-prescribed elements being split so that the 7;’s sum up exactly to the orders
of some subgraphs of G. In the case where 7 contains a ’big” non-prescribed element,
it is even possible that this element was split into three integers among 71, 7> and 73.
To obtain the realization of 7 in G under P, we realize 7y, 75 and 73 in vertex-disjoint
subgraphs of G, and this in such a way that if an original element of 7 was dispatched
in several of the 7;’s, then the resulting connected subgraphs perform a whole connected
subgraph when unified.

The three realizations R, R and R3 are obtained as follows.

e Let Ry be a realization of 71 in G[{v;,, v;, ..., v;, }] under (v, vi,, ..., 05, v}),

which exists according to Lemma [8] since v;, and v;, are the endvertices of G[{v;, ,

U;'; ,---,Vi, }] and there are k + 1 prescribed vertices.
e Let Ry be a realization of 7 in G[{Uzk,lv (v£k71)+, -5, } = Vo, which is trace-

able by our choice of Vj. Additionally request the realization to satisfy the prescrip-
tion (v;l , vit kil) when 75 has at least two elements. Such a requirement is allowed
according to Lemma 8]
e Let Rj be a realization of 73 in G[{v}’ , (v;)*, ..., vi,_, }] under (v, ,vi, .,
s +ees Vig,_y > V). The existence of such a realization follows from Lemma@

since G[{v;" , (v;F)T, ..., vigy,_, }] is the k" power of some path whose last vertex

1S Vipp -
The realization of 7 in GG under P is obtained by considering Vj and the parts from R;,
Rs and R3, and unifying those parts whose sizes result from the split of a single element
of 7, if necessary. By our choice of the prescribed vertices, these parts have neighbouring
vertices (this follows from the facts that k£ > 2, and that the prescribed vertices of P are
not consecutive), and thus induce connected subgraphs. This completes the proof.

O

4 Partitioning Harary graphs under prescriptions

Harary graphs are trivially AP according to Corollary [3] We here show that we can always prescribe the
largest possible number of vertices (with respect to their connectivity) while partitioning these graphs,
except for 3-connected Harary graphs. We consider the three kinds of Harary graphs for this purpose.
4.1 Construction 1: k is even

The Harary graph H}, ,, with £ even is isomorphic to Cﬁ/ ? which is AP+(k — 1) according to Theorem
for every k > 2 and n > 2k. We thus derive the following result.

Corollary 10. For every even k > 2 and n > 2k, the Harary graph Hy, ,, is AP+(k — 1).
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4.2 Construction 2: k is odd and n is even

Let £k > 2 and n > 2k + 1 be two integers such that n is even. By construction, the Harary graph
Hjpt1  is spanned by Hay ,, and is thus AP+(2k — 1) according to Corollary However, regarding
the connectivity of Hyy1 5, one could wonder whether Hoy 11 5, is AP+2k.

Before proving that Haj 41, is indeed AP+2k, we first introduce the following lemma which deals with
the traceability of a graph composed by two linked squares of paths.

Lemma 11. If G is a graph such that V(G) = Vy U Vs, the subgraphs G[V1] and G[Va] are both spanned
by the square of a path, and there exists an edge joining one vertex of V1 and one of Vs, then G is traceable.

Proof: Let v1,vs,...,vs and uy,us,...,up denote the consecutive vertices of G[V;] and G[V2], and
ve € V1 and uy, € Vs be two vertices of G such that v,u, € F(G). Consider the following subpaths of G-

- P=wvvy...04-1;

SQ= Ug4+1Uq+3 - - - Vg—1UgUp—2Vp—4 . . . Ugt2 if £ — a is even,
Va+1Va+3 - - - VeUp—1V¢—3 . . . Uqg42 Otherwise;

R— Up2Ub+4 « - - UprUpr —1Ugr —3 .« . Up41 if ¢ —bis cven,
T Ubg2Ubad .- Up_1UpUp _2Up_g - . . Upy1 OtheTwise;

-S= Up—_1Up—2 ... UT.
It is then easy to check that PQu,up RS is a Hamiltonian path of G. O

We are now ready to prove our main result.

Theorem 12. For every k > 2 and even n > 2k + 1, the Harary graph Hoj 1 1, is AP+2k.

Proof: Let £ > 2 and even n > 2k + 1 be fixed, and G = Haj41,,, be the (2k + 1)-connected Harary
graph on n vertices. We prove that every sequence 7 = (ng,n1,...,np—1), admissible for G with
p > 2k + 1 elements, is realizable in G under every 2k-prescription P = (vi,, Uiy, ..., Viy,_,) With
0<iy<i; <...<ig—1 <n— 1. We distinguish two main cases.

Case 1. If the prescribed vertices are not organized into two maximal prescribed blocks with size k, then,
because k£ > 2, we can deduce a realization of 7 in the spanning C,’f of G under P, thanks to
Lemma[9] Such a realization is naturally a realization of 7 in G under P.

Case 2. Suppose now that the prescribed vertices form two maximal prescribed blocks B; and By with
size exactly k£ in G. In this situation, note that G — P only remains connected thanks to some
diagonal edges. Indeed, assume By = {v;,,vi,,...,v;,_, } and Ba = {vi,, Vi, 15+, Vigy_, }
without loss of generality. Then the antipodal neighbours of v; and U;E _, cannot both belong to P:
since n > 2k + 2, if this were the case then these two antipodal neighbours would belong to Bs,
and similarly for all antipodal neighbours of v;,, v;,, . .., v, _, (according to our assumptions on the
maximal prescribed blocks). We would then get that B; has size at least k + 2, a contradiction. Let
us thus denote by v, and v, two antipodal neighbours of G such that v, v, ¢ B1 U Bs. In particular,
we may suppose a € {ig—1+1,ip_1+2,...,i — 1} and b € {igp_1 + 1,921 +2,...,50 — 1}.
Let furtheray = a —ip—1 —1l,a9 =i —a—1,a3 =49 —b—1and ay = b — io_1 — 1 denote
the number of consecutive vertices between B1, B2 and the two vertices v, and v, according to the
natural ordering of G.
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Case 2.1. Z,Onj <a1+a3+kandzsz1n] < ag+as + k.

In this s1tuat10n we can find two subsets X and Y of consecutive vertices of G such that
|X‘ = Zj o s |Y| Z?i;l nj, {Uiovviu s ’Uik—l} cC X, {Uik’vikJrl’ ) Uiqu} -
Y, and va, vy € X UY. Since G[X] and G[Y] are both isomorphic to the k" power
of a path, by Theorem [I| we know that we can deduce two realizations (Vp, V1,..., Vi_1)
and (Vi,, Vi1, ..., Vag—1) of (ng,n1,...,ng—1) and (ng, ngy1, ..., Nak—1), respectively, in
G[X] and G[Y], respectively, under (v;,, v;,, ..., i, —1) and (Vi , Vi, y s - - - 5 Vig,_, ) TESPEC-
tively. Now, since k > 2, the graph G — (X UY") is traceable according to Lemmaand thus
admits a realization (Vag, Vog41, ..., Vp—1) of (nog, nog41, . . ., np—1). Finally, the partition
(Vo,Vi,...,Vp_1) is arealization of 7 in G under P.

Case 2.2. Zf;é n; > ay + az + k without loss of generality.
Note that we have Z?ial n; > min{a, + a2 + 2k + 1, a3 + a4 + 2k + 1}, since otherwise

k—1 2k—1 2k—1
a1+a3+2k+1§2nj+2n3—2nj a1+a2+a3+a4)+2k+1
j=0 j=k

which implies a; + a3 < ag + a4, a contradiction. Then we consider two new cases.

Case 2.2.1. Zziolnj >ay+ag+2k+ 1.

Under this assumption, we can find two subsets of consecutive vertices X, Y C V(G)
such that {vi, viy, ..., vy} © X, {vi, Vigyrs o Vig_ } C Y, |X| = Z;:é nj,
Y| = 225 kl n;, and the last vertex of G[X] is the vertex preceding the first vertex of
G[Y]. By Theorem' we know that we can deduce realizations (Vp, Vi,...,Vi—1) and
Vi, Vies1s -+, Vag—1) of (ng, n1, ... ,ng—1) and (ng, ng41, . - . , Nak—1), respectively, in
G[X] and G[Y], respectively, under (vio, Viyye-w, U, ) and (vik s Vigeiqs oo Vigy_y )» TE-
spectively. Finally, since the graph G — (X UY") is isomorphic to the k' power of a path,
there exists a realization (Vag, Vag41, - - -, Vp) of the remaining sequence (nog, Nok41, - - -
np—1) init. We get that (Vo, Vi, ..., V,,—1) is a realization of 7 in G under P.

Case2.2.2. Y7° 'nj > as +as + 2k + 1.

In this case, we proceed similarly as in Case 2.2.1, but the last vertex of G[Y] has to be

the vertex preceding the first vertex of G[X].
O

4.3 Construction 3: k and n are odd

Since two Harary graphs Hoyy1 ,, and Hagy1,, With k > 2, and n > 2k + 1 and n’ > 2k + 1 being
even and odd, respectively, are both spanned by C¥, Case 1 from the proof of Theorem . also holds
directly regarding Harary graphs with odd connectivity and order. Despite Haj 1, and Hap1 5/ slightly
differ by their diagonal edges, it is easy to realize that if the assumptions of Case 2 from the proof of
Theorem|[I2]are fulfilled, that proof can be adapted for considering Harary graphs of odd connectivity and
order.

Theorem 13. For every k > 2 and odd n > 2k + 1, the Harary graph Hay 11 ,, is AP+2F.
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5 On the existence of optimal AP+2 graphs

Recall that Theorems [T2] and [T3] exclude 3-connected Harary graphs, mainly because some of their sub-
graphs do not satisfy the traceability property exhibited in Lemma [TT] Therefore, our proof cannot be
used to prove that 3-connected Harary graphs are AP+2.

Besides, it turns out that 3-connected Harary graphs are not all AP+2 anyway. A straight argument
for that claim follows from the fact that an unbalanced bipartite graph G = (AU B, E), i.e. such that
|A| # |B|, with even order does not admit a perfect matching.

Lemma 14. If a bipartite graph G = (A U B, E) has even (resp. odd) order, then, assuming G has
enough vertices, the graph G cannot be AP+k for every even (resp. odd) k > 2 (resp. k > 1).

Proof: We prove the claim for bipartite graphs with even order, but the proof is analogous for bipartite
graphs with odd order. Let k& > 2 be even and fixed. For such a value of k, we can find two subsets
X CAandY C Bsuchthat XNY =0, |X|+|Y|=k,and |[A— X|# |[B—Y|. Let A’ = A— X and
B’ = B—X. Thenssince |A’| + |B’| is even and |A’| # | B’|, the graph G[A’ U B’] cannot admit a perfect
matching. It follows that the sequence (1,1,...,1,2,2,...,2), with the value 1 appearing k times, is not
realizable in G under (v, va, ..., vg), Where {v1,va,..., 0} = X UY. O

Corollary 15. For every n =2 mod 4, the Harary graph Hs ,, is not AP+2.

Proof: This follows from Lemma |[14|since every such Harary graph is a balanced bipartite graph. [

In order to prove that there actually exist optimal AP+2 graphs on n vertices and (37”] edges for every
n > 4, we introduce another class of 3-connected graphs. Let n > 4. The graph Pr,, is constructed as
follows.

e If n is even, then Pr,, is obtained from the cycle C),, whose vertices are successively denoted by

u,w%, w%, . ,w}1;2,v,w%;2 , w2n_27 o ,w%, by adding to it the edge wv, and the edge wzlwz2

5 1

foreveryi € {1,2,..., "T’Q}

e If n is odd, then Pr,, is obtained by first removing the edges wiw? and w,_;w?_; from Pr,_1,
2

2
and then adding to it a new vertex o and the edges ow{, ow?, ow!_;, and ow?_;.
2 2

Two examples of such graphs are drawn in Figure 2] For every n > 4, the graph Pr,, is an edge-
minimal 3-connected graph since it has size [37"] To prove that Pr graphs are AP+2, we consider the
following sufficient condition for a graph to be AP+2. Recall that a graph G is Hamiltonian-connected if
G admits a Hamiltonian path with endvertices u and v for every two vertices u and v of G.

Lemma 16. If a graph G is Hamiltonian-connected, then G is AP+2.

Proof: The statement follows from Lemma [§] since every path P, can be partitioned under every 2-
prescription (u, v) as long as v and v are the endvertices of P,. O

Before showing that G = Pr,, is Hamiltonian-connected for every n > 4, we first introduce some
notation. Let ¢ = "T’2 (resp. ¢ = ”T"D’) if n is even (resp. odd). Given two integers x and y in
{1,2,...,q} (resp. {2,3,...,q — 1}) such that < y, we denote by ngy(G) and P, (G) the following
paths of G.
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1 1 bt
wy wy w3

w] w) wi w}
| [ l>7L
; ; - ; 0
w? w3 w3 w?
(a) Prio. (b) Prg.

Fig. 2: Two examples of Pr graphs.
{ wiwlifz =y,

wgw;Px\er(G) otherwise.

1,2 5
N _ [ wwy ifrz =y,
ey (@) { w;wZPxﬂlyy(G) otherwise.

The paths P_,}y (G) and P¥,(G) of G are defined analogously from right to left when = > y. For
every a € {1,2}, we additionally define P;';~(G) (resp. Pgy~(G)) for x < y (resp. x > y) to be
the path wiwg, ;... wy (resp. wgwg ;... wy) of G . For convenience, let us assume that Px/ﬂJ(G) =
P (G) = P27 (G) = 0 (resp. Ppy,(G) = P£,(G) = P (G) = ) whenever z or y does not
belong to the interval above or when x > y (resp. = < y). According to our terminology, note e.g. that
uPllﬁ’f (Prlg)vaw’f (Prio) and uPﬁ(Prlg)v are Hamiltonian paths of Pryg.

We are now ready to prove that every Pr,, graph is Hamiltonian-connected, and thus AP+2 according
to Lemma[T6

Theorem 17. For every n > 4, the graph Pr,, is Hamiltonian-connected.

Proof: Let G = Pr,, and ¢ = "T’Q if n is even, or ¢ = "7’3 otherwise. Table(resp. Table exhibits,
given two distinct vertices s and ¢ of G, a Hamiltonian path P of G whose endvertices are s and ¢ when
n is even (resp. n is odd). In Table|I| (resp. Table |Z|) it is assumed that 1 < ¢ < g when j is not defined
(resp. 1 < i < gq),and 0 < ¢ < j < g otherwise (resp. 1 < i < j < q). Every Hamiltonian path which
does not appear in these two tables can be deduced from another Hamiltonian path using the symmetries

of G. O

Corollary 18. For every n > 4, the graph Pr,, is AP+2.
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[ s [t ] P
uw v uPﬁ(G)v
1 UP1/;71(G) QPZiTq(G)UP;’;_(G) ifi — 1iseven
1 - uplz\'{—l(G) 2P12+?(A,(G)qulf(G) otherwise
w! | w! P, jﬁl(G)P ’ii(G)P,-§1,1(G)UUP(;7\j(G) if ¢ — jis even
i J PZ15—>1(G)P]2 TZ(G)PEIJ(G)U’UP(‘L/]»(G) otherwise
1 2 P11}_>1(G)P2 T (G)P\l 1(G)uvP(;’/j(G) if ¢ — jis even
Wi wWj Pl ~ (G 2,4 Ny N .
i g— 1 ( )Pj—l i(G)Pi_l_l(G)UUqu(G) otherwise

Tab. 1: Proof that Pr,, is Hamiltonian-connected for every even n > 4.
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[ s [t ] P
0 u oPl’ﬁ(G)vPZ(_(G)u
1 owgvw; P\1 2w%uwl if g is even
¢ i ow lep/ wiuw;] otherwise
qVWq g1 pWiuwy
1 ow%uw%Pzifl(G) QPZQJ:q(G)qulj_ (@) if i is even
¢ Wi ow%uw%PQ\,_l(G) QPZ_TQ(G)UPL% (G) otherwise
i q,i
u v quq_)(G)oPll’q_)(G)v
u | wi uquQ”f_(G)qul”f_(G)
u | w, uvP2 <_(Ci)oPll’q_>(C¥)
0 | uP; i~ (G)PE (G)ow? vw;P;{ 1.i(G) if g — i is even
! uPl2 (G)PE L (G)ow! vwqu\l ;(G) otherwise
wi | w? wluvpl (_(G)P;;(G)ow%
wi | w, Pf?l(G)P; L1 (G uvwiow}
wi | wl wlowluvP1 <_(G)]322q_>(G)
P2 (G)P 2;?1(G)P\1 »(G)wiuwiow? fuwflqu/1 ;(G)if i and ¢ — j are even
ot | w P%gl(G)sz;zi(G)Pizl)Q(G)w%uwfow vwle]/1 ;(G)ifiisodd and g — j is even
’ PGP (G P2 o(Gwiuwiow, Uwqu\l ;(G)ifiisevenand g — j is odd
Pil’éjl(G)PijIi(G)Pil »(G)wiuwiow] vwgP(;\l ;(G)if iand g — j are odd
Pil’gfl(G)szii(G)Pl\L (G)wiuwiow, vwgPl;\l ;(G)if i and g — j are even
wl | w? P{;fl(G)Pf’_ti(G)PELQ(G)wluw%ow Uwqu\l ;(G)ifiis odd and ¢ — j is even
! i’}jl(G)Pf:’i G)P;}LQ(G)wluwlow vwlP{lyj (G) ifiisevenand ¢ — j is odd
P;;fﬂG)Pf;TAG)P[}l o (G wjuwiow? vwéPq/LJ( )if i and n — j are odd

Tab. 2: Proof that Pr,, is Hamiltonian-connected for every odd n > 5.
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6 Conclusion

We summarize Corollaries [I0]and [I8]and Theorems[12]and[I3]in this concluding theorem.
n(k+1) -l

Theorem 19. Forevery k > 1 andn > k, there exists an optimal AP+k graph on n vertices and [ ==

edges.

This result does not tell much about the number of optimal AP+k graphs on n vertices for some fixed
values of k and n. However, this number is upper bounded by the number of edge-minimal (k + 1)-
connected graphs with order n according to Observation
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