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A graph G is arbitrarily partitionable (AP for short) if for every partition (n1, ng, ..., np) of |[V(G)| there exists a
partition (V1, Va, ..., V;,) of V(G) such that each V; induces a connected subgraph of G with order n;. If, additionally,
k of these subgraphs (k < p) each contains an arbitrary vertex of G prescribed beforehand, then G is arbitrarily
partitionable under k prescriptions (AP+k for short). Every AP+k graph on n vertices is (k + 1)-connected, and
thus has at least (@l edges. We show that there exist AP+k graphs on n vertices and f@] edges for every

k>1landn > k.

Keywords: arbitrarily partitionable graph, partition under prescriptions, Harary graph

1 Introduction

We denote by V (G) and E(G) the sets of vertices and edges, respectively, of a graph G. The order (resp.
size) of G is the cardinality of the set V(G) (resp. E(G)). If X is a subset of V(G), then G[X] denotes
the subgraph of G induced by X.

In the late 1970s, the following well-known result was proved.

Theorem 1 (Gy&ri [5] and Lovasz [[7]], independently). If G is a k-connected graph, then, given a se-
quence (v1,va, ...,vx) of k distinct vertices of G and a sequence (ny,na, ...,ni) of k positive integers
adding up to |V (G)|, there exists a partition (V1, Vs, ..., Vi) of V(QG) such that v; € V;, the subgraph
G[V;] is connected, and |V;| = n; for every i € {1,2,...,k}.

In this paper, we consider a more general partition problem resulting from the combination of the notion
of arbitrarily partitionable graphs [1]] with the constraint of prescribing a set of vertices from Theorem T}
Let G be a connected graph of order n. A sequence 7 = (n1,ng, ..., n,) of positive integers is admissible
for G if it performs a partition of n, that is if Y % , n; = n. If, additionally, we can partition V(G)
into p parts (V1, Va, ..., V,,) such that each V; induces a connected subgraph of G with order n;, then 7 is
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realizable in G, the partition (V;, V5, ..., V}) being a realization of T in G. If every admissible sequence
for GG is also realizable in G, then G is arbitrarily partitionable (AP for short). The interested reader is
referred to [1, 12,16, 8] for a review of some results on AP graphs.

Now suppose that we still want to partition G into an arbitrary number, say p, of connected subgraphs
G1,Ga,...,G, of prescribed orders, but in such a way that for each i € {1,2,...,k} with fixed k €
{1,2,...,p}, the subgraph G; contains a vertex v; of GG arbitrarily chosen beforehand. To model this
additional requirement, the definition of AP graphs can be strenghtened as follows [3]]. A k-prescription of
G is a k-tuple P = (vy, v, ..., Ug) of k distinct vertices of G. We say that a sequence 7 = (n1,na, ..., Np)
with p > k elements is realizable in G under P if there exists a realization (V7, V3, ..., V},) of 7 in G such
that the vertex v; belongs to V; for every i € {1,2,...,k}. Notice that we have adopted the convention
that the elements of 7 associated with the prescribed vertices are the first elements of 7. We say that G is
(p, k)-partitionable if every sequence admissible for GG consisting of exactly p elements is realizable in G
under every k-prescription. Finally, the graph G is arbitrarily partitionable under k prescriptions (AP+k
for short) if G is (p, k)-partitionable for every p € {k,k + 1,...,n}.

According to these definitions, an AP+0 graph is an AP graph. Stated differently, Theorem [I] asserts
that every k-connected graph is (k, k)-partitionable. In the same flavour, note that every k-connected
graph with k& > 2 is trivially (k, k — 1)-partitionable. Hence, when dealing with a k-connected graph, we
only consider sequences with strictly more than k£ elements throughout this paper. It also has to be known
that deciding whether a sequence is realizable in a graph under a prescription is NP-complete in general,
even when the sequence or the prescription has a fixed number of elements [4].

Only a few classes of AP+k graphs are known. For every £ > 1, the set of complete graphs on at
least k vertices is a trivial class of AP+k graphs, these graphs having the largest possible size. Regarding
graphs with less edges, it was proved in [3] that k*" powers of paths (resp. cycles) are AP+(k — 1) (resp.
AP+(2k — 1)) for every k > 1, these results being tight (i.e. we cannot always partition these graphs when
more prescriptions are requested).

In this work, we investigate the least possible size of an AP+k graph. In this scope, we focus on optimal
AP+k graphs, i.e. on AP+k graphs with the least possible number of edges regarding their order and
connectivity. This is done by studying the family of well-known Harary graphs. After having introduced
some notation and preliminary results in Section [2] we prove some more results regarding the partition
of powers of paths or cycles in Section [3] These results are then used to show, in Section [d] that every
(k + 1)-connected Harary graph is an optimal AP+k graph for every k& # 2. We finally deal with 3-
connected Harary graphs in Section[5] In particular, we show that these graphs are not necessarily AP+2.
We however provide another class of optimal AP+2 graphs instead. All these results imply that, for every
k > 1and n > k, every optimal AP+k graph with order n has size [”(kzi“)}

2 Definitions, notation, and preliminary results

A subgraph H of a graph G is a spanning subgraph of G if V(H) = V(G). We also say that G is
spanned by H. Given an integer k& > 1, the k" power of G, denoted by G*, is the graph with the same
vertex set as G, two vertices of G* being adjacent if they are at distance at most k in G. We denote by
P, (resp. C},) the path (resp. cycle) on n vertices. The vertices of P,, or C,, are consecutively denoted
by vg,v1, ..., vn—1. Regarding P,, the vertices vy and v, _1 are its first and last vertices, respectively,
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(a) He,s. (b) Hs,10- (c) Hs, 7.
Fig. 1: Three examples of Harary graphs.

sometimes called its endvertices. We use the same terminology to deal with the vertices of P¥ (resp. C¥)
according to its natural spanning P, (resp. C),).

Let £ > 1 and n > k be two integers. The k-connected Harary graph on n vertices, denoted by Hy, ,,,
has a vertex set {vg, v1, ..., v,—1 } and the following edges:

e if k = 2r is even, then two vertices v; and v; are linked if and only if i —r < 7 <7+ 7}

e if k = 2r + 1is odd and n is even, then H}, ,, is obtained by joining v; and Vitz in Hy, ,, for every
ie€{0,1,..., 5 — 1}

e if k = 2r 4+ 1 and n are odd, then Hy, ,, is obtained from Hs,.,, by first linking v to both ey and
vr=1, and then each vertex v; to vy [z forevery i € {1,2,...,[ 5] — 1}

where the subscripts are taken modulo n. Three examples of Harary graphs are given in Figure|l] When
k is odd, the neighbours of a vertex v; of Hy, ,, which are at distance strictly more than r from v; in the
underlying C,, (there are at most two of them) are called the antipodal neighbours of v;. In particular, the
vertex v; has two antipodal neighbours if and only if ¢ = 0, and &k and n are both odd. A diagonal edge of
Hj, ,, is an edge linking two vertices each of which is an antipodal neighbour of the other one.

If G is a graph with a natural ordering of its vertices (like powers of paths and cycles, or Harary graphs),
then, for every vertex v of G, we denote by v™ (resp. v ™) the neighbour of v succeeding (resp. preceding)
v in this ordering. Every power of path P* with underlying path P,, = vgv;...v,,_1 is considered to be
depicted in a “usual” way, i.e. from its leftmost vertex vy to its rightmost vertex v,,_1. By uGv we refer to
the graph G[{u, u™, (u™)™,...,v, v}] for every two vertices u and v of G. Assuming P is a prescription

of G, a prescribed block B of P in G is a set {”ijl 3 Vi s eees vm} of consecutive prescribed vertices, i.e.

v =vl ,v. =uv ,.,v; =uvl . Wesay that B is maximal if neither v nor v are prescribed
72 Y1 73 Lia Te Lig—1 vt e

vertices.

One important property of AP graphs is the following.

Observation 2. [f a graph G admits a spanning AP (resp. AP+k) subgraph (resp. for some k > 1), then
G is AP (resp. AP+k).
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Recall that a graph is traceable if it admits a Hamiltonian path. Since every path is AP, Observation 2]
implies the following result.

Corollary 3. Every traceable graph is AP.

We now point out the following property of AP+k graphs, from which we deduce a bound on the size
of an optimal AP+ graph.

Observation 4. Let k > 1. Every AP+k graph is (k + 1)-connected. Therefore, an optimal AP+k graph
on n vertices has at least [@] edges.

Proof: Assume G is a graph with order n. If there exist k vertices vy, va, ..., vg, such that G—{vy, v, ..., v }
is not connected, then the sequence (1, 1, ..., 1, n—k) with the value 1 appearing k times cannot be realized
in G under (v, vg, ..., vy ). Therefore, a necessary condition for G to be AP+k is to be (k + 1)-connected.
The lower bound then follows. O

As mentioned by Corollary [3] paths are AP+0, while it is easy to check that cycles are AP+1. Baudon
et al. generalized these observations to powers of paths and cycles [3]].

Theorem 5 ([3]). The graph P¥ is AP+(k—1) for every k > 1 and n > k. The graph CF is AP+(2k —1)
foreveryk > 1andn > 2k.

Provided that n > 2k + 2, note that the size of P**1is (k 4+ 1)(n — (k + 1)) + Zle i. Then, since
|E(PEY)| > f@} , an optimal AP+k graph on n vertices may have less edges than P**1. On the
contrary, every graph C¥ is 2k-regular and hence is an edge-minimal 2k-connected graph. According to
Observation it follows that the set of k*" powers of cycles is a set of optimal AP+(2k — 1) graphs for
every k > 1.

3 Partitioning powers of paths and cycles under prescriptions

As pointed out in Theorem recall that k*" powers of paths and cycles are AP+(k — 1) and AP+(2k — 1),
respectively. This result is tight according to Observation[d} in the sense that we cannot always prescribe
more vertices while partitioning these graphs. In this section, we exhibit situations under which these
graphs can be partitioned under more prescriptions than indicated by their connectivity.

The following first result asserts that k" powers of paths can be partitioned under k-prescriptions when
either the first or the last vertex is prescribed.

Lemma 6 ([3]). Let P = (v;,,vi,, ..., v;, ) be a k-prescription of P* withk > 1, n > kand 0 < i; <
Qg < ... <i <n—1Ifiy =0o0riy =n—1, then every sequence T = (n1,ns, ..., n,) admissible for
PX with p > k elements is realizable in P* under P.

In the next result, we prove that k" powers of paths are also partitionable under k-prescriptions when
the prescribed vertices do not form a prescribed block with size k.

Lemma 7. Let P = (v;,,;,, ..., v;,, ) be a k-prescription of P¥ with k > 1, n > kand 0 < iy < iy <
.. <t < n—1. Ifthe prescribed vertices do not form a prescribed block with size k, then every sequence
T = (n1,na, ...,np) admissible for P¥ with p > k elements is realizable in P¥ under P.
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Proof: Let G = P/f for given values of k > landn > k. If s = Z?:k 1y < i1, then a realization
of 7 in G under P is (V1, Va, ..., V,) where (Vit1, Viyo, ..., V) is a realization of (ng41, ngkt2, ..., Nyp)
in the traceable graph G[{vog, v1, ..., vs—1}], and (V1, Va, ..., V}) is a realization of (ny,na,...,n;) in G —
{vo, v1, ..., vs—1} under P which exists according to Theorem

Suppose now that s > ;. On the one hand, if ny > ¢;, then a realization of 7 in G under P is
(Vi UV Vo, Vs, ..., V,), where V{ = {vg,v1,...,v5, 1} and (V{’, V5, V3,...,V,) is a realization of
(n1 — 41,n2,...,np) in G — V{ under P obtained via Lemma@ On the other hand, if n; < i1, then
let V4 be a subset of {vg, v1, ..., v;, } obtained as follows. First, we set V; = {v;, } and we then repeatedly
add to V] the vertex located at distance 2 on the left of the last vertex added to V; as long as |V;| < ny and
vg 18 not reached. If there is no vertex at distance 2 on the left of the last vertex added to V; (but V; needs
additional vertices), then we add to V; every remaining vertex from {vg, vy, ..., v;, —1} — Vi from left to
right until V; has size ny. Let X = {wvg,v1,...,v;, -1} — V1. Notice that, at the end of the procedure,
G[V1] is connected, G[X] is traceable, and v;, -1 € X. Now, if there exists r € {k + 1,k + 2, ..., p} such
that Z;:kﬂ n; = | X, then a realization of 7 in G under P is (Vi, V5, ..., V;,) where (Vit1, Viyo, ..., Vi)
is a realization of (ng41, nk+2, ..., n,) in G[X] and (Va, Va, ..., Vi, Vi1, Vg, ..., V) is a realization of
(N2, M3, ooy Mgy g1, Nt 2, .o, M) ID G — {09, V1, ..., ¥4, } under {v;,, vi,...,v;, } obtained using Theo-
rem[3]

If such a value of r does not exist, then let r be such that Z;;iﬂ n; < |X| and Z;=k+1 n; > | X|.
Let further n). = | X| — Z;;i 417, ny. =n, —ny, and v, ¢ P be the nearest neighbour of v;, _; located
on the right of v;,. Such a vertex necessarily exists since the opposite assumption would imply that our
k prescribed vertices are located consecutively along G. Moreover, either v, or v;, is the first vertex of
G — {vo, v1, ..., v;; }. We then obtain a realization (V3, Va, ..., V,_1, VU V) V11, V4o, ..., V) of T in
G under P, where (V,!, V11, Viega, ..., Vo—1) is arealization of (n)., ng41, nky2, ..., nr—1) in G[X] under

" : . . 1
(viy—1), and (Vo, Vs, ..., Vi, V) Vi1, Viga, ..., Vp) is a realization of (ng, ns, ..., ng, ny, Nyy1, Nry2,
cooy Mp) N G[{W4, 41, Vi, 42, ..., Un—1}] under (vs,, vy, ..., V5, , Uq ). These two realizations exist according
to Lemmal6l O

We now strengthen Lemma E] by showing that k" powers of paths are partitionable under (k + 1)-
prescriptions when their endvertices are prescribed.

Lemma 8. Let P = (v;,, vi,, ..., Vj, ) be a (k + 1)-prescription of P¥ withk > 1,n > kand 0 < i; <
ig < ... <ipy1 <n—1 Ifiy = 0and ity = n—1, then every sequence T = (n1,na, ..., np) admissible
for P* with p > k + 1 elements is realizable in P¥ under P.

Proof: We prove this claim by induction on k. For k = 1, the result is obvious. We thus now suppose
that & > 2 and that the claim holds for every k' < k. Let G = Pr’f . If n1 < i9, then a realization
of 7 in G under P is (V1, V5, ..., V,) where Vi = {vg,v1,...,vn,—1} and (V2, V5, ..., V},) is a realization
of (ng,ns,...,n,) in G — Vi under (vy,, vi,, ..., Vi, , ). This realization necessarily exists according to
Lemma@ since v;, , , is the last vertex of G — V7.

Suppose now that n; > is. Observe that {0, 1,....,.k — 1} — Usz{ij mod k} is not empty, so let us
denote by r one of its elements. The subset V; of the realization is constructed as follows. It first contains
all the vertices between vy and v;,_1, i.e. {vg,v1,...,0;,—1} C V5. We then add the vertex v, to V7,
where a € {is + 1,i2 + 2,...,i2 + k — 1} is such that « = r mod k. Finally, as long as |V1| < nq, we
repeatedly add to V7 the vertex at distance k on the right from the last vertex added to V7, unless it is equal
tO0 V1, i.€. Ugtk, then v, o, and so on. According to our choice of r, these vertices are not prescribed
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ones and, at any moment of the procedure, the subgraph G — V; is spanned by the (k — 1)** power of a
path, and the subgraph G[V;] is connected.

On the one hand, if [V3| = n; holds after the procedure, then (V1,V3,...,V,) is a realization of
7 under P, where (V3,V3,...,V,) is a realization of (ng,ng,...,n,) in G — V; under the prescription
(Viy, Vig, -, Uiy, ) Which necessarily exists by the induction hypothesis since v;, and v;, ,, are the end-
vertices of G — V.

On the other hand, if |V} | < ny holds once the procedure is achieved, then each vertex from V(G) — V3
has a neighbour in V3. Hence, we can obtain a realization (V3 U V{, V5, V3,...,V,) of 7 in G under P,
where (V, Vs, ..., V,, V{) is a realization of (ng,ng, ...,ny, n1 — |V1|) in G — V4 under the prescription
(Viy, Vig, ..o, Uiy, ). Once again, such a realization necessarily exists according to the induction hypothe-
sis. O

We now prove an analogous result concerning cycles to the power of at least 2. Let G = C¥ for some
k > 2and n > 2k, the sequence 7 = (ng, 11, ..., np—1) be admissible for G, and P = (v;,, iy, -, Vigy ;)
be a 2k-prescription of G, with p > 2k and 0 < 45 < 71 < ... < d9x—1 < n — 1. For every
j € {0,1,...,2k — 1}, we denote by D, the set {vjj'_il, (U$71)+, ...,vi;,vz-j} containing the consecu-
tive vertices of G' lying between v;,_, and v;,, including v;,. The size of every D; is denoted d;. In

particular, we have Z?igl dj =mn.

Lemma9. Let P = (vi,,V;,, ., Viy,_, ) be a 2k-prescription of CF with k > 2, n > 2k and 0 < i <
11 < ... < dop—1 < n — 1. If the prescribed vertices are not organized into two maximal prescribed
blocks with size k, then every sequence T = (ng, na, ..., np—1) admissible for C¥ with p > 2k elements is
realizable in C¥ under P.

Proof: Let k& > 2 be fixed, and G = C¥ for some value of n > 2k. We prove that every partition
T = (no,n1,...,np—1) of n with p > 2k elements is realizable in G under every 2k-prescription P =
(Vigs Vig s ooy Vi, ) With 0 < dg < i1 < ... < igx—1 < m — 1 when the prescribed vertices do not form

two maximal prescribed blocks with size k. For every j € {0,1,...,2k — 1}, let ¢; = ng_l dy and

s; = Z;:;“_l ny, where the indices are counted modulo 2k. In other words, the value g; is the order
j—1

Vijp1» = Vij4_y» and s; is the amount of vertices needed by the subgraphs containing these prescribed

vertices in a realization of 7 in G’ under P. Note that there necessarily exists a j such that s; < g; since

having Z?Sl 55 > Egk_l(qj + 1) implies & E?igl nge >k Zﬁigl d¢ + 2k, which is impossible since

Jj=0
n = ?igl dy and n > Z?igl ng. To prove the claim, we distinguish several cases depending on the

relationship between s;’s and g;’s.

of the graph v;’  Gui,., , = G[{ij_1,(i]_1)",...,ij+x-1}] including the k prescribed vertices v; ,

Case 1. s; = g; for some j € {0,1,...,2k — 1}.
In this situation, a realization of 7 in G under P is deduced as follows. Assume j = 0 without loss
of generality, and set Gy = G| ’Z;é Dy]. Note that Gy is the k*" power of a path. If ZZ;(} dy >
k + 1, then Gy is k-connected and thus admits a realization (Vy, V4, ..., Vi—1) of (ng, n1, ..., ng—1) under
(Vigs Viy s -y Vip,_, ) according to Theorem Otherwise, if ZIZ:_& dy = k, then (Vp,V1,..., V1) =
({vip },{vir }s -y {vi_, }) is a realization of (ng,ni,...,nk—1) = (1,1,...,1) in Gy under (v;,, v;,,
<oy Vip_,)- On the other hand, the graph G — U];:_ol Dy is the k*" power of a path whose last ver-
tex is v;,, ,. Therefore, there exists a realization (Vi, Vit1,..., Vp—1) of (ng, Ngt1,...,np—1) under
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(Vig» Vij i1 s -+ Vigy,_, ) in this graph by Lemma@ The partition (Vp, Vi, ..., V,—1) is then a realization of
7 in G under P.

Case 2. We are not in Case 1 and s; > q; for some j € {0,1,...,2k — 1}.
In particular, there exists a value of j for which s; > ¢; and s;41 < gj41. Suppose j = 0 without loss of
generality.

Case 2.1. There exists a set X = {vj;k_l, (v;;k_l)“', vy Ugfwitha € {ig—1 + 1,ik—1 +2, ... i — 1}
such that | X| = so.
A realization of 7 in G under P can be obtained as follows. Firstly, let (Vj, V1, ..., V1) be arealization of
(n0, 71, ..., 1 —1) in G[X] under (vi, vy, , .., Vi, _, ). Such a realization exists by Theorem|]since G[X]
is the k" power of a path. Secondly, let (Vi, Vi11, ..., Vp—1) be a realization of (ng, ng11, ..., np—1) in
G — X under (v, , Vi, .- Viy,_, ) Which necessarily exists according to Lemma @ since v;,, , is the
last vertex of G — X. The partition (Vp, V1, ..., V,_1) is then a realization of 7 in G under P.

Case 2.2. Such a set X does not exist.
In such a situation, we have sg > qo + di, — 1, i.e. 25;01 ng > Z?:o dy, — 1. Besides, since ny’s
and d;’s are strictly greater than 0, we get Y5 ng > 1+ S.h_ dy. Since s1 < q1, ie. Yor_ ny <
25:1 dy, it follows that there exists a n(, such that 1 < nj, < ng and nj, + Zif:l ng =1+ Zif:l dy =
[{vig, v;; ,--» Vi }|. A realization of 7 in G under P is then obtained as follows. On the one hand, let
(Vg, Vi, Va, ..., Vi) be a realization of (n,n1,na, ..., ng) in G[{v,, v;l, ..., vs, }] under (vig, vy, , .., 03, ),
which exists according to Lemma since v;, and v;, are the endvertices of G[{v;,, v}, ..., v, }]. On the
other hand, let nj = (no —n()+ 1 (note that ng > 1), and let (Vy’, Vg1, Viyo, ..., Vp—1) be a realization
of (n{, Nkt1, Mhet2, s Np—1) i G[{vfk, (vfk)*, coy Vg Hunder (Vig, Uiy, 15 Vigys +vs Vigy,_, )» Which exists
according to Lemma@ since G[{v;F, (v;7)T, ..., vi, }] is the k* power of a path with last vertex v;,, and k
prescribed vertices are specified. The partition (Vg U V', V1, Va, ..., V,,_1) is then a realization of 7 in G
under P since G[Vj] and G[V{'] are connected and both contain the vertex v;, (which is actually the only

vertex appearing in both these subgraphs).

Case 3. s; < g; forevery j € {0,1,...,2k — 1}.
We distinguish two subcases.

Case 3.1. There are two consecutive prescribed vertices.
Assume v;, = vj;kil without loss of generality, with i = 0 and 951 = n — 1.

Case 3.1.1. There exists r € {2k, 2k + 1,...,p — 1} such that so + Y ,_o;. e = qo-
In this situation, we can deduce a realization of 7 in G under P as follows. Firstly, let (Vy, Vi, ...,

. . k—1
Vi—1, Vak, Vag41, ..., V) be a realization of (ng, n1, ..., ng—1, Nk, Nog—1, ..., nr) in G[U,_, D] under
(Vigs Viy s -y Vip,_, ) Which exists according to Lemma @ since v;, is the first vertex of G| i:ol D], this
graph being the kth power of some path. Secondly, let (Vi, Vit1, ..., Var—1, Vi1, Vigo, ..., Vpo1)
o . k—1

be a realization of (ng, ngy1, .oy N2k—1, Nrg1s Mrg2,s -y Np—1) in G — J,—y De under (v, , vy, s -
Viy,_, ) Which exists for the same reason as previously since v;,, _, is the last vertex of G — Uif;ol D,. The
partition (Vp, V4, ..., V—1) is then a realization of 7 in G under P.

Case 3.1.2. Such r does not exist.
Letr € {2k,2k+1,...,p— 1} be the value for which we have s +ZZ;21k ne < goand so+ Y y_op Mg >
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qo- Such a value exists since s9 < ¢o and s, < gx. So let further n. = g9 — (so + Zz;;k ny) and

"

n! = n, —nl. . Denote by v, the last non-prescribed vertex of G [Ulzz_ol D], and by vy, the first non-

prescribed vertex of G — U?;Ol Dy.

Case 3.1.2.1. The vertices v, and vy, are adjacent in G.
Let v, = v;; for some ¢ € {k + 1,k + 2,...,2k — 2}. Then we obtain a realization of 7 in G under
P as follows. Firstly, let (Vo, V1, ..., Vie_1, V), Vag, Va1, ..., Ve—1) be a realization of (ng, ni,
vy M1y My Nakey M2k 1y ooy Np—1) IN G[U’Z;Ol Dy] under (v, vy, ...y Vip_,, Va), Which exists by
Lemma since G| if:_(} Dy] is the k*" power of a path whose endvertices are v;, and v;, . Secondly, let
Vies Vier1s -, Vg, Vi Vi1, Va2, -y Vak—1, Vg1, Viga, .., Vp—1) be a realization of (ng, ng+1, ..., N,
N Mgty g2y <oy M2k—1, Mpg1s g2, <oy Np—1) I G — UIZ:_Ol Dy under (s, Viyyys s Vigs Vb, Vigyr s
Vi gy s Vig,_, ). This realization exists according to Lemma a since G — Ui:é Dy is the k" power of

a path, either vy, or v;, is the first vertex of G — Uf;ol Dy, and v,,, _, is the last vertex of G — Uf;é Dy.
It follows that (Vo, Vi, ..., Vie1, V. UV Vii1, Vigo, ..., V_1) is a realization of 7 in G under P since
G[V;! U V"] is connected thanks to the edge v, vp.

Case 3.1.2.2. The vertices v, and vy, are not adjacent in G.
In this situation, either v;, , or v;, belongs to a prescribed block with size at least k. Then one can relabel
the prescribed vertices so that v;, and v;,, , correspond to two consecutive prescribed vertices from this
prescribed block, and use the procedures from Case 3.1. Since s; < ¢; forevery j € {0,1,...,2k — 1},
note that this time the two vertices v, and v, (if these vertices are needed) have to be adjacent since
otherwise it would mean that the prescribed vertices form another prescribed block with size at least k,
implying that there are two prescribed blocks with size k, contradicting the assumption of the lemma.

Case 3.2. There are no two consecutive prescribed vertices.

Case 3.2.1. There exists a set X of consecutive vertices of G such that X N P = {vij, Vijprs oo
Vi; i, ) and | X| = s; for some j € {0,1,...,2k — 1}.
In this situation, we obtain a realization of 7 in G under P as follows. Assume j = 0 without loss of gener-
ality. Firstly, let (Vp, V1, ..., Vi—1) be arealization of (n;,, ni, , ..., n4,_, ) in G[X ] under (v, Vi, ooy Vi, )s
which exists by Theorem since G[X] is the k*" power of some path. Secondly, let (Vi,, Vit 1, ..., Vp_1)
be a realization of (nk, k41, -, 7p—1) in G—X under (vi, , Vi, -, Viy, _, ) Obtained thanks to Lemmal[7]
since G’ — X is the k*" power of a path and there are no consecutive prescribed vertices. Then (Vj, V7,
..., Vp—1) is a realization of 7 in G under P.

Case 3.2.2. s; < q; — dj + 1 forevery j € {0,1,...,2k — 1}.

Case 3.2.2.1. There are two prescribed vertices v;, and v;,, | such that ng +ngy1 > dgyq + 1.
Assume ¢ = 2k — 1 without loss of generality. Then there exist two sets of consecutive vertices X =
{Vige_ v, s vay and Y = {vF, (vt i}, with @ € {igg_1,i2k—1 +1 mod n,...,ig — 1
mod n}, | X| < nog—1 and |Y| < ng. A realization of 7 in G under P can be then obtained as in
Case 3.1 by doing as if v;,, _, and v;, were consecutive prescribed vertices (this is straightforward due
to the notation we have adopted herein), but requesting v;,, , and v;, to belong to subgraphs with order
nok—1 — | X| + 1 and ng — |Y'| + 1, respectively. Recall that we are under the assumption that there are no
two consecutive prescribed vertices. For the resulting parts V3, _, and V{j, the graphs G[V;, _; U X] and
G[Vy U Y] are connected, and have order ny;_1 and ng, respectively.
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Case 3.2.2.2. n]—i—njﬂ<dj+1+1f0reveryj€{01 2k — 1}
In particular, ng +n1 < dy + 1 = |{v;,, v;" e .y Vi, }|. We cannot have both ng > (%1 and n; >
(%1, since otherwise we would get ng + n1 > dy + 1, a contradiction. Let us thus suppose that
ng < (dlj L without loss of generality. Then note that the graph induced by Vo = {vi,, vig12, Vig 14 -
Vig+2(no—1)} has order ng and contains v;,, and the graph G[{vi,, ,,v; ,...,vi,} — Vo] is traceable
with endvertices v;,, , and v;, .

k _

Let t1 = [{vi,, v, v} — Y ne and ¢ = [{v] v (vt e ) s vi | = no. From 7, we
define three sequences 7y, o and 73. First, let 74 = (nl,ng, cees Ty M2y Mkt 1y vy Ty —1 )5 WheETE 71
is the unique index in {2k, 2k + 1,...,p — 1} such that 32,5, ny < t; and 3,1, ng > t;. Now, if
t — Z;;i ne > 0, then addn, =t;— Zk% ny as the (k -+ 1)*" element of ;. Note that the elements
of 7y sum up to [{v;,, v;’, .. vzk}|

Letn, =n,, —n; . If n;.’l > to, then let 7o = (t2), and set 7"2 =ryand n), = n;’ —to. Otherwise, let
7o be the index in {r1+1,7r1 +2, ..., p—1} for which n/ +3>7,2 " +1 ne < t2 and n;/, +ZZ;1+1 ng > to.
Now let 5 = (n;fl,nhﬂ,nnH, ey Mpy—1). Setny, = tg - + 220 +1 ng) and ;) = n,, —n;

o
and add n’r2 as the second element of 75 if n’r2 > (. Once 73 is constructed note that its elements sum u2p
to |{vm o (v£k71)+,...,vi}\ —n
Finally, assuming n;, > 0 (otherwise, remove this element from the sequence), let 73 = (nj41, Ngy2,
o M2k 15 Mty s Mg 11, My 42, -+, Np—1). Note that the elements of 73 sum up to |{vzk, (v;:)J’7 cees Vigp_1 }-
Remark that every element of 7 has been associated with one of 7y, 75 and 73, with at most two non-
prescribed elements being split so that the 7;’s sum up exactly to the orders of some subgraphs of G. In
the case where 7 contains a ”’big” non-prescribed element, it is even possible that this element was split
into three integers among 71, 7o and 73. To obtain the realization of 7 in G under P, we realize 7y, 72 and
T3 in vertex-disjoint subgraphs of GG, and this in such a way that if an original element of 7 was dispatched
in several of the 7;’s, then the resulting connected subgraphs perform a whole connected subgraph when
unified.

The three realizations R, R and R3 are obtained as follows.

e Let Ry be a realization of 71 in G[{v;,,v;, ..., v;, }] under (v;,, vs,, ..., 05, , v} ), which exists ac-
cording to Lemmasince v;, and v;, are the endvertices of G[{v;,, v}, ..., v;, }] and there are k+1
prescribed vertices.

e Let R, be arealization of 73 in G[{v; vt )t ,v;, } — Vo], which is traceable by our choice

12k — 1’( 12k —1
+

of V. Additionally request the realization to satisfy the prescription (v 217vm_l) when 79 has at

least two elements. Such a requirement is allowed according to Lemmalg]

+
e Let R be a realization of 73 in G[{v;" , (vj)" , ..., viy,_, Y] under (vi,,, , Vip oy s oos Vigy_, 5
v;,. ). The existence of such a realization follows from Lemma@ since G [{vzk , (UZ-: )t

Viy,_, 1] is the k™" power of some path whose last vertex is v;,, _,.

g eee s

The realization of 7 in G under P is obtained by considering Vj and the parts from R;, Ro and Rj,
and unifying those parts whose sizes result from the split of a single element of 7, if necessary. By our
choice of the prescribed vertices, these parts have neighbouring vertices (this follows from the facts that



10 Olivier Baudon, Julien Bensmail, Eric Sopena

k > 2, and that the prescribed vertices of P are not consecutive), and thus induce connected subgraphs.
This completes the proof. O

4 Partitioning Harary graphs under prescriptions

Harary graphs are trivially AP according to Corollary |3 We here show that we can always prescribe the
largest possible number of vertices (with respect to their connectivity) while partitioning these graphs,
except for 3-connected Harary graphs. We consider the three kinds of Harary graphs for this purpose.

4.1 Construction 1: k is even

The Harary graph H}, ,, with k£ even is isomorphic to C,]f/ * which is AP+(k — 1) according to Theorem
for every k > 2 and n > 2k. We thus derive the following result.

Corollary 10. For every even k > 2 and n > 2k, the Harary graph Hy, ,, is AP+(k — 1).

4.2 Construction 2: k is odd and n is even

Let £ > 2 and n > 2k + 1 be two integers such that n is even. By construction, the Harary graph
Hopt1,n is spanned by Hoy, ,, and is thus AP+(2k — 1) according to Corollary However, regarding
the connectivity of Hay1,y,, one could wonder whether Hoj 1 ,, is AP+2E.

Before proving that Haj 1,5, is indeed AP+2k, we first introduce the following lemma which deals with
the traceability of a graph composed by two linked squares of paths.

Lemma 11. If G is a graph such that V (G) = Vi U Vs, the subgraphs G[V1] and G[V2] are both spanned
by the square of a path, and there exists an edge joining one vertex of V, and one of Vs, then G is traceable.

Proof: Let vy, v, ..., vp and uq, ug, ..., ug denote the consecutive vertices of G[V;] and G[V3], and v, €
V1 and up, € V3 be two vertices of G such that v,up € E(G). Consider the following subpaths of G:

- P= V1V2...Vgq—15

0= Vg4+1Vq+3---Vo—1VgUp—2Vp—_4...Vq42 if £ — a is even,
Va+1Va+3---VgUp—1V¢—3... Vg2 Otherwise;

_p o ] weatoraupue ue s if ¢/ — bis even,
- Up+2Upt4...Ugr —1 Upr Ugr —2Ugr —4... Up+1 Otherwise;

-S= Up—1Up—2...U7T.

It is then easy to check that PQu,up RS is a Hamiltonian path of G. O
We are now ready to prove our main result.

Theorem 12. For every k > 2 and evenn > 2k + 1, the Harary graph Hoy 11, is AP+2k.
Proof: Let k > 2 and evenn > 2k+1 be fixed, and G = Hag41 5, be the (2k+1)-connected Harary graph
on n vertices. We prove that every sequence 7 = (ng, n1, ..., np—1), admissible for G with p > 2k + 1

elements, is realizable in G under every 2k-prescription P = (v, Vi, ..., Uiy, ;) With 0 < ip < 49 <
o < i9k—1 < n — 1. We distinguish two main cases.
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Case 1. If the prescribed vertices are not organized into two maximal prescribed blocks with size k,
then, because k£ > 2, we can deduce a realization of 7 in the spanning C,’j of G under P, thanks to
Lemma[9] Such a realization is naturally a realization of 7 in G under P.

Case 2. Suppose now that the prescribed vertices form two maximal prescribed blocks By and Bs
with size exactly k in G. In this situation, note that G — P only remains connected thanks to some
diagonal edges. Indeed, assume By = {v;y, iy, ..., Viy_, } and By = {0, Vi1 s s Vig,_, y Without
loss of generality. Then the antipodal neighbours of v; and v _, cannot both belong to P: since n >
2k + 2, if this were the case then these two antipodal nelghbours would belong to Bs, and similarly for
all antipodal neighbours of v;,, v;,, ..., v;,_, (according to our assumptions on the maximal prescribed
blocks). We would then get that B, has size at least k£ + 2, a contradiction. Let us thus denote by
v, and v, two antipodal neighbours of G such that v,,v, ¢ By U Bg. In particular, we may suppose
a € {ig—1+1,ig—1+2,...,0,—1}and b € {iog_1+1,i25-1+2,...,50—1}. Let furthera; = a—ip_1—1,
as =i —a—1,a3 =iy —b—1and ay = b — ig_1 — 1 denote the number of consecutive vertices
between By, By and the two vertices v, and v, according to the natural ordering of G.

Case 2.1. Zj On] §a1+a3+kandz Tk nj < ag+ a4+ k.

In this situation, we can find two subsets X and Y of consecutive vertices of G such that |X| =
Ef;é nj, |Y| = E?i;l nj, {'Uio’ Vigs ey Uik71} c X, {Uikvvik+1 3oy ’Ui2k—1} C Y, and v, vp ¢
X UY. Since G[X] and G[Y] are both isomorphic to the k" power of a path, by Theoremwe know
that we can deduce two realizations (Vg, Vi1,..., Vi—1) and (Vi, Vg1, ..., Vag—1) of (ng,n1, ..., ng—1)
and (ng, ng+1, ..., N2k—1), respectively, in G[X] and G[Y], respectively, under (v;,, s, ..., v, —1) and
(Vig» Vigyr s - Vigy_, )» Tespectively. Now, since k > 2, the graph G — (X U Y) is traceable according
to Lemmaand thus admits a realization (Vax, Vag41, ..., Vp—1) Of (Nok, Nok+1, ..., Np—1). Finally, the
partition (Vp, Vi, ..., Vp—1) is a realization of 7 in G under P.

Case 2.2. Z] —ony > a1 + as + k without loss of generality.
Note that we have ZJ ~0 n] > min{a; + a2 + 2k + 1, a3 + a4 + 2k + 1}, since otherwise

k—1 2k—1 2k—1
a1+a3+2k+1§2nj+ZnJ—ZnJ a1+a2—|—a3+a4)+2k‘+1
§=0 j=k

which implies a1 + a3 < as + a4, a contradiction. Then we consider two new cases.

Case22.1. Y7 ' nj > a1 + ay + 2k + 1.

Under this assumption, we can find two subsets of consecutive vertices X,Y C V(G) such that {v;,, v;,,

o Vi b C© X, {0, Vi s oo = Zf énj, Y| = Z?kkl n;, and the last vertex
of G[X] is the vertex preceding the first vertex of G[Y]. By Theorem[I] we know that we can deduce
realizations (Vvo7 Vi,..., kal) and (Vv]€7 Vk+17 ey ‘/2]6,1) of (TL07 N1y ooy Nfe— 1) and (nk, Npg1y ey N2k — 1)
respectively, in G[X] and G[Y], respectively, under (vio,vi17...7vik71) and (v, , Vi, ...,vmil), re-
spectively. Finally, since the graph G — (X UY) is isomorphic to the k" power of a path, there exists
a realization (Vag, Vagy1, ..., Vp) of the remaining sequence (nog, Nok+1,...,Np—1) in it. We get that
(Vo, VA, ..., Vp—1) is a realization of 7 in G under P.
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Case2.2.2. 377 ' nj > a3 + as + 2k + 1.
In this case, we proceed similarly as in Case 2.2.1, but the last vertex of G[Y] has to be the vertex
preceding the first vertex of G[X]. O

4.3 Construction 3: k and n are odd

Since two Harary graphs Hayy1 , and Hajy1,, with k > 2, and n > 2k + 1 and n/ > 2k + 1 being
even and odd, respectively, are both spanned by C¥, Case 1 from the proof of Theorem (12| also holds
directly regarding Harary graphs with odd connectivity and order. Despite Hoj1,, and Hoy 1 5 slightly
differ by their diagonal edges, it is easy to realize that if the assumptions of Case 2 from the proof of
Theorem|[I2]are fulfilled, that proof can be adapted for considering Harary graphs of odd connectivity and
order.

Theorem 13. For every k > 2 and odd n > 2k + 1, the Harary graph Haj 11 ,, is AP+2F.

5 On the existence of optimal AP+2 graphs

Recall that Theorems [T2] and [T3] exclude 3-connected Harary graphs, mainly because some of their sub-
graphs do not satisfy the traceability property exhibited in Lemma Therefore, our proof cannot be
used to prove that 3-connected Harary graphs are AP+2.

Besides, it turns out that 3-connected Harary graphs are not all AP+2 anyway. A straight argument
for that claim follows from the fact that an unbalanced bipartite graph G = (AU B, E), i.e. such that
|A| # | B|, with even order does not admit a perfect matching.

Lemma 14. If a bipartite graph G = (A U B, E) has even (resp. odd) order, then, assuming G has
enough vertices, the graph G cannot be AP+k for every even (resp. odd) k > 2 (resp. k > 1).

Proof: We prove the claim for bipartite graphs with even order, but the proof is analogous for bipartite
graphs with odd order. Let k& > 2 be even and fixed. For such a value of k, we can find two subsets
X CAandY C Bsuchthat XNY =0, |X|+|Y|=k,and [A— X|# |B-Y|. Let A’ = A—- X
and B’ = B — X. Then since |A’| 4+ |B’| is even and |A’| # |B’|, the graph G[A’ U B’] cannot admit a
perfect matching. It follows that the sequence (1,1, ...,1,2,2, ..., 2), with the value 1 appearing k times,
is not realizable in G under (v, va, ..., vy ), where {vy,ve, ...,v} = X UY. O

Corollary 15. For every n =2 mod 4, the Harary graph Hs ,, is not AP+2.

Proof: This follows from LemmaI4]since every such Harary graph is a balanced bipartite graph. O

In order to prove that there actually exist optimal AP+2 graphs on n vertices and (37"] edges for every
n > 4, we introduce another class of 3-connected graphs. Let n > 4. The graph Pr,, is constructed as
follows.

e If n is even, then Pr,, is obtained from the cycle C,,, whose vertices are successively denoted by

u, Wi, we, .y wh o v, w% , wd , ., wi, by adding to it the edge uv, and the edge w)w? for
2 2 2

1
every i € {1,2,..., ”T_Q}

e If n is odd, then Pr,, is obtained by first removing the edges wiw? and w,_;w?_; from Pr,_1,
2

2
and then adding to it a new vertex o and the edges ow}, ow%, owl_5, and ow?_,.
Tz =
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1 bt 1
wy w, w3

wy

N

o

A
|

wy

(a) Prio. (b) Prg.

Fig. 2: Two examples of Pr graphs.

Two examples of such graphs are drawn in Figure [2| For every n > 4, the graph Pr,, is an edge-
minimal 3-connected graph since it has size [37”] To prove that Pr graphs are AP+2, we consider the
following sufficient condition for a graph to be AP+2. Recall that a graph G is Hamiltonian-connected if
G admits a Hamiltonian path with endvertices u and v for every two vertices u and v of G.

Lemma 16. If a graph G is Hamiltonian-connected, then G is AP+2.

Proof: The statement follows from Lemma [§] since every path P,, can be partitioned under every 2-
prescription (u, v) as long as u and v are the endvertices of P,. [

Before showing that G = Pr,, is Hamiltonian-connected for every n > 4, we first introduce some
notation. Let ¢ = ”T’Q (resp. ¢ = "T’:j) if n is even (resp. odd). Given two integers  and y in {1, 2, ..., ¢}
(resp. {2, 3, ...,q — 1}) such that z < y, we denote by P{‘y (G) and P, (@) the following paths of G.

2,01 i
wiwy if z =y,

wgw;P;}rLy(G) otherwise.

Pi6) = {

w?ifx =y,

1
x x
w?ch/_H’y (G) otherwise.

w
P(G) = { v
The paths P,,(G) and P¥,(G) of G are defined analogously from right to left when = > y. For
every a € {1,2}, we additionally define Py, (G) (resp. Py~ (G)) for x < y (resp. x > y) to be
the path wiwg .. wy (resp. wgwy_;...wy) of G . For convenience, let us assume that P{ ,(G) =
P> (G) = P27 (G) = 0 (resp. Ppy,(G) = P£,(G) = P& (G) = 0) whenever  or y does not
belong to the interval above or when x > y (resp. = < y). According to our terminology, note e.g. that
uPi;f> (Prlo)vPi’f_ (Pryp) and uPlﬁ(Prm)v are Hamiltonian paths of Pryg.
We are now ready to prove that every Pr,, graph is Hamiltonian-connected, and thus AP+2 according
to Lemmal |16)

1
T

Theorem 17. For every n > 4, the graph Pr,, is Hamiltonian-connected.
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L s [t ] P
u v uP{q(G)v
1 UJP1/ZL1(G)wizpii?q(G)UP;’f(G) ifi — 1iseven
u w; ’ s s
Z . uplz\;?_l(G)W?Pﬁ;?q(G)vP;f(G) otherwise
wl | w! P2y (G)P (G P2y 4 (GuvPy5(G) if g — jis even
1 2 le‘;jl(G)PJQLtl(G)P;}I1(G)UUP(‘1’/J(G) lfq — j iS even
w; wy Pl,a G Pz,e G P\ a N .
i1 (G) P (G) P2y 4 (G)uvP 5 (G) otherwise

Tab. 1: Proof that Pr,, is Hamiltonian-connected for every even n > 4.

Proof: Let G = Pr,, and ¢ = ”T’Q if n is even, or ¢ = ”T’?’ otherwise. Table(resp. Table exhibits,
given two distinct vertices s and ¢ of GG, a Hamiltonian path P of G’ whose endvertices are s and ¢ when
n is even (resp. n is odd). In TableE] (resp. Table @, it is assumed that 1 < ¢ < ¢ when j is not defined
(resp. 1 <4 < q),and 0 <17 < j < q otherwise (resp. 1 < ¢ < j < q). Every Hamiltonian path which
does not appear in these two tables can be deduced from another Hamiltonian path using the symmetries
of G. O

Corollary 18. For every n > 4, the graph Pr,, is AP+2.

6 Conclusion

We summarize Corollaries [I0]and [T8]and Theorems[12]and[I3]in this concluding theorem.
Theorem 19. Forevery k > 1 andn > k, there exists an optimal AP+k graph on n vertices and [@1
edges.

This result does not tell much about the number of optimal AP+k graphs on n vertices for some fixed
values of k and n. However, this number is upper bounded by the number of edge-minimal (k + 1)-
connected graphs with order n according to Observation 4]
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