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Abstract

A graph G is arbitrarily partitionable (AP for short) if for every partition (n1, n2, ..., np) of
|V (G)| there exists a partition (V1, V2, ..., Vp) of V (G) such that each Vi induces a connected
subgraph of G with order ni. If, additionally, k of these subgraphs (k ≤ p) each contains
an arbitrary vertex of G prescribed beforehand, then G is arbitrarily partitionable under k

prescriptions (AP+k for short). Every AP+k graph on n vertices is (k + 1)-connected, and

thus has at least ⌈n(k+1)
2 ⌉ edges. We show that there exist AP+k graphs on n vertices and

⌈n(k+1)
2 ⌉ edges for every k ≥ 1 and n ≥ k.

Keywords: arbitrarily partitionable graph, partition under prescriptions, Harary graph.

1 Introduction

We denote by V (G) and E(G) the sets of vertices and edges, respectively, of a graph G. The
order (resp. size) of G is the cardinality of the set V (G) (resp. E(G)). If X is a subset of V (G),
then G[X] denotes the subgraph of G induced by X.

In the late 1970s, the following well-known result was proved.

Theorem 1 (Győri [5] and Lovász [7], independently). If G is a k-connected graph, then, given
a sequence (v1, v2, ..., vk) of k distinct vertices of G and a sequence (n1, n2, ..., nk) of k positive
integers adding up to |V (G)|, there exists a partition (V1, V2, ..., Vk) of V (G) such that vi ∈ Vi,
the subgraph G[Vi] is connected, and |Vi| = ni for every i ∈ {1, 2, ..., k}.

In this paper, we consider a more general partition problem resulting from the combination
of the notion of arbitrarily partitionable graphs [1] with the constraint of prescribing a set of
vertices from Theorem 1. Let G be a connected graph of order n. A sequence τ = (n1, n2, ..., np)
of positive integers is admissible for G if it performs a partition of n, that is if

∑p
i=1 ni = n.

If, additionally, we can partition V (G) into p parts (V1, V2, ..., Vp) such that each Vi induces a
connected subgraph of G with order ni, then τ is realizable in G, the partition (V1, V2, ..., Vp)
being a realization of τ in G. If every admissible sequence for G is also realizable in G, then G
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is arbitrarily partitionable (AP for short). The interested reader is referred to [1, 2, 6, 8] for a
review of some results on AP graphs.

Now suppose that we still want to partition G into an arbitrary number, say p, of connected
subgraphs G1, G2, ..., Gp of prescribed orders, but in such a way that for each i ∈ {1, 2, ..., k} with
fixed k ∈ {1, 2, ..., p}, the subgraph Gi contains a vertex vi of G arbitrarily chosen beforehand. To
model this additional requirement, the definition of AP graphs can be strenghtened as follows [3].
A k-prescription of G is a k-tuple P = (v1, v2, ..., vk) of k distinct vertices of G. We say that
a sequence τ = (n1, n2, ..., np) with p ≥ k elements is realizable in G under P if there exists a
realization (V1, V2, ..., Vp) of τ in G such that the vertex vi belongs to Vi for every i ∈ {1, 2, ..., k}.
Notice that we have adopted the convention that the elements of τ associated with the prescribed
vertices are the first elements of τ . We say that G is (p, k)-partitionable if every sequence
admissible for G consisting of exactly p elements is realizable in G under every k-prescription.
Finally, the graph G is arbitrarily partitionable under k prescriptions (AP+k for short) if G is
(p, k)-partitionable for every p ∈ {k, k + 1, ..., n}.

According to these definitions, an AP+0 graph is an AP graph. Stated differently, Theorem 1
asserts that every k-connected graph is (k, k)-partitionable. In the same flavour, note that every
k-connected graph with k ≥ 2 is trivially (k, k − 1)-partitionable Hence, when dealing with a
k-connected graph, we only consider sequences with strictly more than k elements throughout
this paper. It also has to be known that deciding whether a sequence is realizable in a graph
under a prescription is NP-complete in general, even when the sequence or the prescription has
a fixed number of elements [4].

Only a few classes of AP+k graphs are known. For every k ≥ 1, the set of complete graphs
on at least k vertices is a trivial class of AP+k graphs, these graphs having the largest possible
size. Regarding graphs with less edges, it was proved in [3] that kth powers of paths (resp.
cycles) are AP+(k − 1) (resp. AP+(2k − 1)) for every k ≥ 1, these results being tight (i.e. we
cannot always partition these graphs when more prescriptions are requested).

In this work, we investigate the least possible size of an AP+k graph. In this scope, we
focus on optimal AP+k graphs, i.e. on AP+k graphs with the least possible number of edges
regarding their order and connectivity. This is done by studying the family of well-known Harary
graphs. After having introduced some notation and preliminary results in Section 2, we prove
some more results regarding the partition of powers of paths or cycles in Section 3. These results
are then used to show, in Section 4, that every (k + 1)-connected Harary graph is an optimal
AP+k graph for every k 6= 2. We finally deal with 3-connected Harary graphs in Section 5. In
particular, we show that these graphs are not necessarily AP+2. We however provide another
class of optimal AP+2 graphs instead. All these results imply that, for every k ≥ 1 and n ≥ k,
every optimal AP+k graph with order n has size ⌈n(k+1)

2 ⌉.

2 Definitions, notation, and preliminary results

A subgraph H of a graph G is a spanning subgraph of G if V (H) = V (G). We also say that G

is spanned by H. Given an integer k ≥ 1, the kth power of G, denoted by Gk, is the graph with
the same vertex set as G, two vertices of Gk being adjacent if they are at distance at most k in
G. We denote by Pn (resp. Cn) the path (resp. cycle) on n vertices. The vertices of Pn or Cn

are consecutively denoted by v0, v1, ..., vn−1. Regarding Pn, the vertices v0 and vn−1 are its first
and last vertices, respectively, sometimes called its endvertices. We use the same terminology
to deal with the vertices of P k

n (resp. Ck
n) according to its natural spanning Pn (resp. Cn).

Let k ≥ 1 and n ≥ k be two integers. The k-connected Harary graph on n vertices, denoted
by Hk,n, has a vertex set {v0, v1, ..., vn−1} and the following edges:
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(a) H6,8. (b) H5,10. (c) H3,7.

Figure 1: Three examples of Harary graphs.

• if k = 2r is even, then two vertices vi and vj are linked if and only if i− r ≤ j ≤ i + r;

• if k = 2r + 1 is odd and n is even, then Hk,n is obtained by joining vi and vi+n
2

in H2r,n

for every i ∈ {0, 1, ..., n2 − 1};

• if k = 2r + 1 and n are odd, then Hk,n is obtained from H2r,n by first linking v0 to both
v⌊n

2
⌋ and v⌈n

2
⌉, and then each vertex vi to vi+⌈n

2
⌉ for every i ∈ {1, 2, ..., ⌊n2 ⌋ − 1};

where the subscripts are taken modulo n. Three examples of Harary graphs are given in Figure 1.
When k is odd, the neighbours of a vertex vi of Hk,n which are at distance strictly more than r

from vi in the underlying Cn (there are at most two of them) are called the antipodal neighbours
of vi. In particular, the vertex vi has two antipodal neighbours if and only if i = 0, and k and
n are both odd. A diagonal edge of Hk,n is an edge linking two vertices each of which is an
antipodal neighbour of the other one.

If G is a graph with a natural ordering of its vertices (like powers of paths and cycles, or
Harary graphs), then, for every vertex v of G, we denote by v+ (resp. v−) the neighbour of v
succeeding (resp. preceding) v in this ordering. Every power of path P k

n with underlying path
Pn = v0v1...vn−1 is considered to be depicted in a “usual” way, i.e. from its leftmost vertex
v0 to its rightmost vertex vn−1. By uGv we refer to the graph G[{u, u+, (u+)+, ..., v−, v}] for
every two vertices u and v of G. Assuming P is a prescription of G, a prescribed block B of P
in G is a set {vij1 , vij2 , ..., vijℓ} of consecutive prescribed vertices, i.e. vij2 = v+ij1

, vij3 = v+ij2
, ...,

vijℓ = v+ijℓ−1
. We say that B is maximal if neither v−ij1

nor v+ijℓ
are prescribed vertices.

One important property of AP graphs is the following.

Observation 2. If a graph G admits a spanning AP (resp. AP+k) subgraph (resp. for some
k ≥ 1), then G is AP (resp. AP+k).

Recall that a graph is traceable if it admits a Hamiltonian path. Since every path is AP,
Observation 2 implies the following result.

Corollary 3. Every traceable graph is AP.

We now point out the following property of AP+k graphs, from which we deduce a bound
on the size of an optimal AP+k graph.

Observation 4. Let k ≥ 1. Every AP+k graph is (k + 1)-connected. Therefore, an optimal

AP+k graph on n vertices has at least ⌈n(k+1)
2 ⌉ edges.
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Proof. Assume G is a graph with order n. If there exist k vertices v1, v2, ..., vk such that G −
{v1, v2, ..., vk} is not connected, then the sequence (1, 1, ..., 1, n− k) with the value 1 appearing
k times cannot be realized in G under (v1, v2, ..., vk). Therefore, a necessary condition for G to
be AP+k is to be (k + 1)-connected. Since an optimal AP+k graph is also an edge-minimal

(k + 1)-connected graph, an optimal AP+k graph on n vertices has size ⌈n(k+1)
2 ⌉.

As mentioned by Corollary 3, paths are AP+0, while it is easy to check that cycles are
AP+1. Baudon et al. generalized these observations to powers of paths and cycles [3].

Theorem 5 ([3]). The graph P k
n is AP+(k − 1) for every k ≥ 1 and n ≥ k. The graph Ck

n is
AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Provided that n ≥ 2k + 2, note that the size of P k+1
n is (k + 1)(n− (k + 1)) +

∑k
i=1 i. Then,

since |E(P k+1
n )| > ⌈n(k+1)

2 ⌉, an optimal AP+k graphs on n vertices may have less edges than
P k+1
n . On the contrary, every graph Ck

n is 2k-regular and hence is an edge-minimal 2k-connected
graph. According to Observation 4, it follows that the set of kth powers of cycles is a set of
optimal AP+(2k − 1) graphs for every k ≥ 1.

3 Partitioning powers of paths and cycles under prescriptions

As pointed out in Theorem 5, recall that kth powers of paths and cycles are AP+(k − 1) and
AP+(2k − 1), respectively. This result is tight according to Observation 4, in the sense that
we cannot always prescribe more vertices while partitioning these graphs. In this section, we
exhibit situations under which these graphs can be partitioned under more prescriptions than
indicated by their connectivity.

The following first result asserts that kth powers of paths can be partitioned under k-
prescriptions when either the first or the last vertex is prescribed.

Lemma 6 ([3]). Let P = (vi1 , vi2 , ..., vik) be a k-prescription of P k
n with k ≥ 1, n ≥ k and

0 ≤ i1 < i2 < ... < ik ≤ n − 1. If i1 = 0 or ik = n − 1, then every sequence τ = (n1, n2, ..., np)
admissible for P k

n with p ≥ k elements is realizable in P k
n under P .

In the next result, we prove that kth powers of paths are also partitionable under k-prescriptions
when the prescribed vertices do not form a prescribed block with size k.

Lemma 7. Let P = (vi1 , vi2 , ..., vik) be a k-prescription of P k
n with k ≥ 1, n ≥ k and 0 ≤ i1 <

i2 < ... < ik ≤ n− 1. If the prescribed vertices do not form a prescribed block with size k, then
every sequence τ = (n1, n2, ..., np) admissible for P k

n with p ≥ k elements is realizable in P k
n

under P .

Proof. Let G = P k
n for given values of k ≥ 1 and n ≥ k. If s =

∑p
j=k+1 nj ≤ i1, then a realization

of τ in G under P is (V1, V2, ..., Vp) where (Vk+1, Vk+2, ..., Vp) is a realization of (nk+1, nk+2, ..., np)
in the traceable graph G[{v0, v1, ..., vs−1}], and (V1, V2, ..., Vk) is a realization of (n1, n2, ..., nk)
in G− {v0, v1, ..., vs−1} under P obtained using Theorem 1.

Suppose now that s > i1. On the one hand, if n1 > i1, then a realization of τ in G under P

is (V ′1 ∪ V ′′1 , V2, V3, ..., Vp), where V ′1 = {v0, v1, ..., vi1−1} and (V ′′1 , V2, V3, ..., Vp) is a realization of
(n1− i1, n2, ..., np) in G−V ′1 under P obtained via Lemma 6. On the other hand, if n1 ≤ i1, then
let V1 be a subset of {v0, v1, ..., vi1} obtained as follows. First, we set V1 = {vi1} and we then
repeatedly add to V1 the vertex located at distance 2 on the left of the last vertex added to V1 as
long as |V1| < n1 and v0 is not reached. If there is no vertex at distance 2 on the left of the last
vertex added to V1 (but V1 needs additional vertices), then we add to V1 every remaining vertex
from {v0, v1, ..., vi1−1}−V1 from left to right until V1 has size n1. Let X = {v0, v1, ..., vi1−1}−V1.
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Notice that, at the end of the procedure, G[V1] is connected, G[X] is traceable, and vi1−1 ∈ X.
Now, if there exists r ∈ {k + 1, k + 2, ..., p} such that

∑r
j=k+1 nj = |X|, then a realization of τ

in G under P is (V1, V2, ..., Vp) where (Vk+1, Vk+2, ..., Vr) is a realization of (nk+1, nk+2, ..., nr) in
G[X] and (V2, V3, ..., Vk, Vr+1, Vr+2, ..., Vp) is a realization of (n2, n3, ..., nk, nr+1, nr+2, ..., np) in
G− {v0, v1, ..., vi1} under {vi2 , vi3 ..., vik} obtained using Theorem 5.

If such a value of r does not exist, then let r be such that
∑r−1

j=k+1 nj < |X| and
∑r

j=k+1 nj >

|X|. Let further n′r = |X| −
∑r−1

j=k+1 nj , n
′′
r = nr − n′r, and va 6∈ P be the nearest neighbour of

vi1−1 located on the right of vi1 . Such a vertex necessarily exists since the opposite assumption
would imply that our k prescribed vertices are located consecutively along G. Moreover, either va
or vi2 is the first vertex of G−{v0, v1, ..., vi1}. We then obtain a realization (V1, V2, ..., Vr−1, V

′
r ∪

V ′′r , Vr+1, Vr+2, ..., Vp) of τ in G under P , where (V ′r , Vk+1, Vk+2, ..., Vr−1) is a realization of
(n′r, nk+1, nk+2, ..., nr−1) in G[X] under (vi1−1), and (V2, V3, ..., Vk, V

′′
r , Vr+1, Vr+2, ..., Vp) is a real-

ization of (n2, n3, ..., nk, n
′′
r , nr+1, nr+2, ..., np) in G[{vi1+1, vi1+2, ..., vn−1}] under (vi2 , vi3 , ..., vik , va).

These two realizations exist according to Lemma 6.

We now strengthen Lemma 6 by showing that kth powers of paths are partitionable under
(k + 1)-prescriptions when their endvertices are prescribed.

Lemma 8. Let P = (vi1 , vi2 , ..., vik+1
) be a (k + 1)-prescription of P k

n with k ≥ 1, n ≥ k

and 0 ≤ i1 < i2 < ... < ik+1 ≤ n − 1. If i1 = 0 and ik+1 = n − 1, then every sequence
τ = (n1, n2, ..., np) admissible for P k

n with p ≥ k + 1 elements is realizable in P k
n under P .

Proof. We prove this claim by induction on k. For k = 1, the result is obvious. We thus now
suppose that k ≥ 2 and that the claim holds for every k′ < k. Let G = P k

n . If n1 ≤ i2, then a
realization of τ in G under P is (V1, V2, ..., Vp) where V1 = {v0, v1, ..., vn1−1} and (V2, V3, ..., Vp)
is a realization of (n2, n3, ..., np) in G−V1 under (vi2 , vi3 , ..., vik+1

). This realization necessarily
exists according to Lemma 6 since vik+1

is the last vertex of G− V1.

Suppose now that n1 > i2. Observe that {0, 1, ..., k− 1}−
⋃k

j=2{ij mod k} is not empty, so
let us denote by r one of its elements. The subset V1 of the realization is constructed as follows.
It first contains all the vertices between v0 and vi2−1, i.e. {v0, v1, ..., vi2−1} ⊆ V1. We then add
the vertex va to V1, where a ∈ {i2 + 1, i2 + 2, ..., i2 + k − 1} is such that a ≡ r mod k. Finally,
as long as |V1| < n1, we repeatedly add to V1 the vertex at distance k on the right from the
last vertex added to V1, unless it is equal to vn−1, i.e. va+k, then va+2k, and so on. According
to our choice of r, these vertices are not prescribed ones and, at any moment of the procedure,
the subgraph G − V1 is spanned by the (k − 1)th power of a path, and the subgraph G[V1] is
connected.

On the one hand, if |V1| = n1 holds after the procedure, then (V1, V2, ..., Vp) is a realization of
τ under P , where (V2, V3, ..., Vp) is a realization of (n2, n3, ..., np) in G−V1 under the prescription
(vi2 , vi3 , ..., vik+1

) which necessarily exists by the induction hypothesis since vi2 and vik+1
are the

endvertices of G− V1.

On the other hand, if |V1| < n1 holds once the procedure is achieved, then each vertex from
V (G)−V1 has a neighbour in V1. Hence, we can obtain a realization (V1 ∪V ′1 , V2, V3, ..., Vp) of τ
in G under P , where (V2, V3, ..., Vp, V

′
1) is a realization of (n2, n3, ..., np, n1−|V1|) in G−V1 under

the prescription (vi2 , vi3 , ..., vik+1
). Once again, such a realization necessarily exists according to

the induction hypothesis.

We now prove an analogous result concerning cycles to the power of at least 2. Let G = Ck
n

for some k ≥ 2 and n ≥ 2k, the sequence τ = (n0, n1, ..., np−1) be admissible for G, and P =
(vi0 , vi1 , ..., vi2k−1

) be a 2k-prescription of G, with p ≥ 2k and 0 ≤ i0 < i1 < ... < i2k−1 ≤ n− 1.
For every j ∈ {0, 1, ..., 2k − 1}, we denote by Dj the set {v+ij−1

, (v+ij−1
)+, ..., v−ij , vij} containing

the consecutive vertices of G lying between vij−1
and vij , including vij . The size of every Dj is

denoted dj . In particular, we have
∑2k−1

j=0 dj = n.
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Lemma 9. Let P = (vi0 , vi1 , ..., vi2k−1
) be a 2k-prescription of Ck

n with k ≥ 2, n ≥ 2k and
0 ≤ i0 < i1 < ... < i2k−1 ≤ n− 1. If the prescribed vertices are not organized into two maximal
prescribed blocks with size k, then every sequence τ = (n0, n1, ..., np−1) admissible for Ck

n with
p ≥ 2k elements is realizable in Ck

n under P .

Proof. Let k ≥ 2 be fixed, and G = Ck
n for some value of n ≥ 2k. We prove that every partition

τ = (n0, n1, ..., np−1) of n with p ≥ 2k elements is realizable in G under every 2k-prescription
P = (vi0 , vi1 , ..., vi2k−1

) with 0 ≤ i0 < i1 < ... < i2k−1 ≤ n − 1 when the prescribed vertices
do not form two maximal prescribed blocks with size k. For every j ∈ {0, 1, ..., 2k − 1}, let

qj =
∑j+k−1

ℓ=j dℓ and sj =
∑j+k−1

ℓ=j nℓ, where the indices are counted modulo 2k. In other words,

the value qj is the order of the graph v+ij−1
Gvij+k−1

= G[{i+j−1, (i
+
j−1)

+, ..., ij+k−1}] including
the k prescribed vertices vij , vij+1

, ..., vij+k−1
, and sj is the amount of vertices needed by the

subgraphs containing these prescribed vertices in a realization of τ in G under P . Note that
there necessarily exists a j such that sj ≤ qj since having

∑2k−1
j=0 sj ≥

∑2k−1
j=0 (qj + 1) implies

k
∑2k−1

ℓ=0 nℓ ≥ k
∑2k−1

ℓ=0 dℓ + 2k, which is impossible since n =
∑2k−1

ℓ=0 dℓ and n ≥
∑2k−1

ℓ=0 nℓ. To
prove the claim, we distinguish several cases depending on the relationship between sj ’s and
qj ’s.

Case 1. sj = qj for some j ∈ {0, 1, ..., 2k − 1}.
In this situation, a realization of τ in G under P is deduced as follows. Assume j = 0 without
loss of generality, and set G0 = G[

⋃k−1
ℓ=0 Dℓ]. Note that G0 is the kth power of a path. If

∑k−1
ℓ=0 dℓ ≥ k + 1, then G0 is k-connected and thus admits a realization (V0, V1, ..., Vk−1) of

(n0, n1, ..., nk−1) under (vi0 , vi1 , ..., vik−1
) according to Theorem 1. Otherwise, if

∑k−1
ℓ=0 dℓ = k,

then (V0, V1, ..., Vk−1) = ({vi0}, {vi1}, ..., {vik−1
}) is a realization of (n0, n1, ..., nk−1) = (1, 1, ..., 1)

in G0 under (vi0 , vi1 , ..., vik−1
). On the other hand, the graph G −

⋃k−1
ℓ=0 Dℓ is the kth power

of a path whose last vertex is vi2k−1
. Therefore, there exists a realization (Vk, Vk+1, ..., Vp−1)

of (nk, nk+1, ..., np−1) under (vik , vik+1
, ..., vi2k−1

) in this graph by Lemma 6. The partition
(V0, V1, ..., Vp−1) is then a realization of τ in G under P .

Case 2. We are not in Case 1 and sj > qj for some j ∈ {0, 1, ..., 2k − 1}.
In particular, there exists a value of j for which sj > qj and sj+1 < qj+1. Suppose j = 0 without
loss of generality.

Case 2.1. There exists a set X = {v+i2k−1
, (v+i2k−1

)+, ..., va} with a ∈ {ik−1+1, ik−1+2, ..., ik−

1} such that |X| = s0.
A realization of τ in G under P can be obtained as follows. Firstly, let (V0, V1, ..., Vk−1) be
a realization of (n0, n1, ..., nk−1) in G[X] under (vi0 , vi1 , ..., vik−1

). Such a realization exists by
Theorem 1 since G[X] is the kth power of a path. Secondly, let (Vk, Vk+1, ..., Vp−1) be a realization
of (nk, nk+1, ..., np−1) in G−X under (vik , vik+1

, ..., vi2k−1
) which necessarily exists according to

Lemma 6 since vi2k−1
is the last vertex of G − X. The partition (V0, V1, ..., Vp−1) is then a

realization of τ in G under P .

Case 2.2. Such a set X does not exist.
In such a situation, we have s0 > q0 + dk − 1, i.e.

∑k−1
ℓ=0 nℓ >

∑k
ℓ=0 dℓ − 1. Besides, since

nℓ’s and dℓ’s are strictly greater than 0, we get
∑k

ℓ=0 nℓ ≥ 1 +
∑k

ℓ=1 dℓ. Since s1 < q1, i.e.
∑k

ℓ=1 nℓ <
∑k

ℓ=1 dℓ, it follows that there exists a n′0 such that 1 ≤ n′0 ≤ n0 and n′0 +
∑k

ℓ=1 nℓ =

1+
∑k

ℓ=1 dℓ = |{vi0 , v
+
i0
, ..., vik}|. A realization of τ in G under P is then obtained as follows. On

the one hand, let (V ′0 , V1, V2, ..., Vk) be a realization of (n′0, n1, n2, ..., nk) in G[{vi0 , v
+
i0
, ..., vik}]

under (vi0 , vi1 , ..., vik), which exists according to Lemma 8 since vi0 and vik are the endvertices
of G[{vi0 , v

+
i0
, ..., vik}]. On the other hand, let n′′0 = (n0 − n′0) + 1 (note that n′′0 ≥ 1), and let

(V ′′0 , Vk+1, Vk+2, ..., Vp−1) be a realization of (n′′0, nk+1, nk+2, ..., np−1) in G[{v+ik , (v
+
ik

)+, ..., vi0}]

under (vi0 , vik+1
, vik+2

, ..., vi2k−1
), which exists according to Lemma 6 since G[{v+ik , (v

+
ik

)+, ..., vi0}]
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is the kth power of a path with last vertex vi0 , and k prescribed vertices are specified. The
partition (V ′0 ∪V ′′0 , V1, V2, ..., Vp−1) is then a realization of τ in G under P since G[V ′0 ] and G[V ′′0 ]
are connected and both contain the vertex vi0 (which is actually the only vertex appearing in
both these subgraphs).

Case 3. sj < qj for every j ∈ {0, 1, ..., 2k − 1}.
We distinguish two subcases.

Case 3.1. There are two consecutive prescribed vertices.
Assume vi0 = v+i2k−1

without loss of generality, with i0 = 0 and i2k−1 = n− 1.

Case 3.1.1. There exists r ∈ {2k, 2k + 1, ..., p− 1} such that s0 +
∑r

ℓ=2k nℓ = q0.
In this situation, we can deduce a realization of τ in G under P as follows. Firstly, let
(V0, V1, ..., Vk−1, V2k, V2k+1, ..., Vr) be a realization of (n0, n1, ..., nk−1, n2k, n2k−1, ..., nr) in G[

⋃k−1
ℓ=0 Dℓ]

under (vi0 , vi1 , ..., vik−1
) which exists according to Lemma 6 since vi0 is the first vertex of

G[
⋃k−1

ℓ=0 Dℓ], this graph being the kth power of some path. Secondly, let (Vk, Vk+1, ..., V2k−1,

Vr+1, Vr+2, ..., Vp−1) be a realization of (nk, nk+1, ..., n2k−1, nr+1, nr+2, ..., np−1) in G−
⋃k−1

ℓ=0 Dℓ

under (vik , vik+1
, ..., vi2k−1

) which exists for the same reason as previously since vi2k−1
is the last

vertex of G−
⋃k−1

ℓ=0 Dℓ. The partition (V0, V1, ..., Vp−1) is then a realization of τ in G under P .

Case 3.1.2. Such r does not exist.
Let r ∈ {2k, 2k + 1, ..., p − 1} be the value for which we have s0 +

∑r−1
ℓ=2k nℓ < q0 and s0 +

∑r
ℓ=2k nℓ > q0. Such a value exists since s0 < q0 and sk < qk. So let further n′r = q0 − (s0 +

∑r−1
ℓ=2k nℓ) and n′′r = nr − n′r . Denote by va the last non-prescribed vertex of G[

⋃k−1
ℓ=0 Dℓ], and

by vb the first non-prescribed vertex of G−
⋃k−1

ℓ=0 Dℓ.

Case 3.1.2.1. The vertices va and vb are adjacent (in G).
Let vb = v+iq for some q ∈ {k + 1, k + 2, ..., 2k − 2}. Then we obtain a realization of τ in G

under P as follows. Firstly, let (V0, V1, ..., Vk−1, V
′
r , V2k, V2k+1, ..., Vr−1) be a realization

of (n0, n1, ..., nk−1, n
′
r, n2k, n2k+1, ..., nr−1) in G[

⋃k−1
ℓ=0 Dℓ] under (vi0 , vi1 , ..., vik−1

, va), which

exists by Lemma 8 since G[
⋃k−1

ℓ=0 Dℓ] is the kth power of a path whose endvertices are vi0
and vik−1

. Secondly, let (Vk, Vk+1, ..., Vq, V
′′
r , Vq+1, Vq+2, ..., V2k−1, Vr+1, Vr+2, ..., Vp−1) be a re-

alization of (nk, nk+1, ..., nq, n
′′
r , nq+1, nq+2, ..., n2k−1, nr+1, nr+2, ..., np−1) in G−

⋃k−1
ℓ=0 Dℓ under

(vik , vik+1
, ..., viq , vb, viq+1

, viq+2
, ..., vi2k−1

). This realization exists according to Lemma 8 since

G−
⋃k−1

ℓ=0 Dℓ is the kth power of a path, either vb or vik is the first vertex of G−
⋃k−1

ℓ=0 Dℓ, and vi2k−1

is the last vertex of G −
⋃k−1

ℓ=0 Dℓ. It follows that (V0, V1, ..., Vr−1, V
′
r ∪ V ′′r , Vr+1, Vr+2, ..., Vp−1)

is a realization of τ in G under P since G[V ′r ∪ V ′′r ] is connected thanks to the edge vavb.

Case 3.1.2.2. The vertices va and vb are not adjacent.
In this situation, either vik−1

or vik belongs to a prescribed block with size at least k. Then one
can relabel the prescribed vertices so that vi0 and vi2k−1

correspond to two consecutive prescribed
vertices from this prescribed block, and use the procedures from Case 3.1. Since sj < qj for
every j ∈ {0, 1, ..., 2k − 1}, note that this time the two vertices va and vb (if these vertices are
needed) have to be adjacent since otherwise it would mean that the prescribed vertices form
another prescribed block with size at least k, implying that there are two prescribed blocks with
size k, contradicting the assumption of the lemma.

Case 3.2. There are no two consecutive prescribed vertices.

Case 3.2.1. There exists a set X of consecutive vertices of G such that X ∩P = {vij , vij+1
,

..., vij+k−1
} and |X| = sj for some j ∈ {0, 1, ..., 2k − 1}.

In this situation, we obtain a realization of τ in G under P as follows. Assume j = 0 without loss
of generality. Firstly, let (V0, V1, ..., Vk−1) be a realization of (ni0 , ni1 , ..., nik−1

) in G[X] under
(vi0 , vi1 , ..., vik−1

), which exists by Theorem 1 since G[X] is the kth power of some path. Secondly,
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let (Vk, Vk+1, ..., Vp−1) be a realization of (nk, nk+1, ..., np−1) in G−X under (vik , vik+1
, ..., vi2k−1

)
obtained thanks to Lemma 7 since G−X is the kth power of a path and there are no consecutive
prescribed vertices. Then (V0, V1, ..., Vp−1) is a realization of τ in G under P .

Case 3.2.2. sj < qj − dj + 1 for every j ∈ {0, 1, ..., 2k − 1}.

Case 3.2.2.1. There are two prescribed vertices viℓ and viℓ+1
such that nℓ +nℓ+1 ≥ dℓ+1 +1.

Assume ℓ = 2k − 1 without loss of generality. Then there exist two sets of consecutive
vertices X = {vi2k−1

, v+i2k−1
, ..., va} and Y = {v+a , (v

+
a )+, ..., vi0}, with a ∈ {i2k−1, i2k−1 + 1

(mod n), ..., i0− 1 (mod n)}, |X| ≤ n2k−1 and |Y | ≤ n0. A realization of τ in G under P can be
then obtained as in Case 3.1 by doing as if vi2k−1

and vi0 were consecutive prescribed vertices
(this is straightforward due to the notation we have adopted herein), but requesting vi2k−1

and
vi0 to belong to subgraphs with order n2k−1 − |X| + 1 and n0 − |Y | + 1, respectively. Recall
that we are under the assumption that there are no two consecutive prescribed vertices. For the
resulting parts V ′2k−1 and V ′0 , the graphs G[V ′2k−1 ∪X] and G[V ′0 ∪ Y ] are connected, and have
order n2k−1 and n0, respectively.

Case 3.2.2.2. nj + nj+1 < dj+1 + 1 for every j ∈ {0, 1, ..., 2k − 1}.
In particular, n0 + n1 < d1 + 1 = |{vi0 , v

+
i0
, ..., vi1}|. We cannot have both n0 ≥ ⌈d1+1

2 ⌉

and n1 ≥ ⌈d1+1
2 ⌉, since otherwise we would get n0 + n1 ≥ d1 + 1, a contradiction. Let

us thus suppose that n0 < ⌈d1+1
2 ⌉ without loss of generality. Then note that the graph in-

duced by V0 = {vi0 , vi0+2, vi0+4..., vi0+2(n0−1)} has order n0 and contains vi0 , and the graph

G[{vi2k−1
, v+i2k−1

, ..., vi1} − V0] is traceable with endvertices vi2k−1
and vi1 .

Let t1 = |{vi1 , v
+
i1
, ..., vik}| −

∑k
ℓ=1 nℓ and t2 = |{v+i2k−1

, (v+i2k−1
)+, ..., v−i1}| − n0. From τ , we

define three sequences τ1, τ2 and τ3. First, let τ1 = (n1, n2, ..., nk, n2k, n2k+1, ..., nr1−1), where r1
is the unique index in {2k, 2k + 1, ..., p − 1} such that

∑r1−1
ℓ=2k nℓ ≤ t1 and

∑r1
ℓ=2k nℓ > t1. Now,

if t1 −
∑r1−1

ℓ=2k nℓ > 0, then add n′r1 = t1 −
∑r1−1

ℓ=2k nℓ as the (k + 1)th element of τ1. Note that the
elements of τ1 sum up to |{vi1 , v

+
i1
, ..., vik}|.

Let n′′r1 = nr1 − n′r1 . If n′′r1 ≥ t2, then let τ2 = (t2), and set r2 = r1 and n′′r2 = n′′r1 − t2.

Otherwise, let r2 be the index in {r1 + 1, r1 + 2, ..., p − 1} for which n′′r1 +
∑r2−1

ℓ=r1+1 nℓ ≤ t2
and n′′r1 +

∑r2
ℓ=r1+1 nℓ > t2. Now let τ2 = (n′′r1 , nr1+1, nr1+2, ..., nr2−1). Set n′r2 = t2 − (n′′r1 +

∑r2−1
ℓ=r1+1 nℓ) and n′′r2 = nr2 − n′r2 , and add n′r2 as the second element of τ2 if n′r2 > 0. Once τ2 is

constructed, note that its elements sum up to |{v+i2k−1
, (v+i2k−1

)+, ..., v−i1}| − n0.

Finally, assuming n′′r2 > 0 (otherwise, remove this element from the sequence), let τ3 =
(nk+1, nk+2, ..., n2k−1, n

′′
r2 , nr2+1, nr2+2, ..., np−1). Note that the elements of τ3 sum up to |{v+ik ,

(v+ik)+, ..., vi2k−1
}|.

Note that every element of τ has been associated with one of τ1, τ2 and τ3, with at most
two non-prescribed elements being split so that the τi’s sum up exactly to the orders of some
subgraphs of G. In the case where τ contains a “big” non-prescribed element, it is even possible
that this element was split into three integers among τ1, τ2 and τ3. To obtain the realization
of τ in G under P , we realize τ1, τ2 and τ3 in vertex-disjoint subgraphs of G, and this in such
a way that if an original element of τ was dispatched in several of the τi’s, then the resulting
connected subgraphs perform a whole connected subgraph when unified.

The three realizations R1, R2 and R3 are obtained as follows.

• Let R1 be a realization of τ1 in G[{vi1 , v
+
i1
, ..., vik}] under (vi1 , vi2 , ..., vik , v

+
i1

), which exists

according to Lemma 8 since vi1 and vik are the endvertices of G[{vi1 , v
+
i1
, ..., vik}] and there

are k + 1 prescribed vertices.

• Let R2 be a realization of τ2 in G[{v+i2k−1
, (v+i2k−1

)+, ..., v−i1}−V0], which is traceable by our

choice of V0. Additionally request the realization to satisfy the prescription (v−i1 , v
+
i2k−1

)
when τ2 has at least two elements. Such a requirement is allowed according to Lemma 8.
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• Let R3 be a realization of τ3 in G[{v+ik , (v+ik)+ , ... , vi2k−1
}] under (vik+1

, vik+2
, ..., vi2k−1

, v−i2k−1
). The existence of such a realization follows from Lemma 6 since G[{v+ik , (v+ik)+ ,

... , vi2k−1
}] is the kth power of some path whose last vertex is vi2k−1

.

The realization of τ in G under P is obtained by considering V0 and the parts from R1, R2

and R3, and unifying those parts whose sizes result from the split of a single element of τ , if
necessary. By our choice of the prescribed vertices, these parts have neighbouring vertices (this
follows from the facts that k ≥ 2, and that the prescribed vertices of P are not consecutive),
and thus induce connected subgraphs. This completes the proof.

4 Partitioning Harary graphs under prescriptions

Harary graphs are trivially AP according to Corollary 3. We here show that we can always
prescribe the largest possible number of vertices (with respect to their connectivity) while par-
titioning these graphs, except for 3-connected Harary graphs. We consider the three kinds of
Harary graphs for this purpose.

4.1 Construction 1: k is even

The Harary graph Hk,n with k even is isomorphic to C
k/2
n which is AP+(k − 1) according to

Theorem 5 for every k ≥ 2 and n ≥ 2k. We thus derive the following result.

Corollary 10. For every even k ≥ 2 and n ≥ 2k, the Harary graph Hk,n is AP+(k − 1).

4.2 Construction 2: k is odd and n is even

Let k ≥ 2 and n ≥ 2k + 1 be two integers such that n is even. By construction, the Harary
graph H2k+1,n is spanned by H2k,n and is thus AP+(2k−1) according to Corollary 10. However,
regarding the connectivity of H2k+1,n, one could wonder whether H2k+1,n is AP+2k.

Before proving that H2k+1,n is indeed AP+2k, we first introduce the following lemma which
deals with the traceability of a graph composed by two linked squares of paths.

Lemma 11. If G is a graph such that V (G) = V1 ∪ V2, the subgraphs G[V1] and G[V2] are both
spanned by the square of a path, and there exists an edge joining one vertex of V1 and one of V2,
then G is traceable.

Proof. Let v1, v2, ..., vℓ and u1, u2, ..., uℓ′ denote the consecutive vertices of G[V1] and G[V2], and
va ∈ V1 and ub ∈ V2 be two vertices of G such that vaub ∈ E(G). Consider the following
subpaths of G:

- P = v1v2...va−1;

- Q =

{

va+1va+3...vℓ−1vℓvℓ−2vℓ−4...va+2 if ℓ− a is even,
va+1va+3...vℓvℓ−1vℓ−3...va+2 otherwise;

- R =

{

ub+2ub+4...uℓ′uℓ′−1uℓ′−3...ub+1 if ℓ′ − b is even,
ub+2ub+4...uℓ′−1uℓ′uℓ′−2uℓ′−4...ub+1 otherwise;

- S = ub−1ub−2...u1.

It is then easy to check that PQvaubRS is a Hamiltonian path of G.
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We are now ready to prove our main result.

Theorem 12. For every k ≥ 2 and even n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.

Proof. Let k ≥ 2 and even n ≥ 2k + 1 be fixed, and G = H2k+1,n be the (2k + 1)-connected
Harary graph on n vertices. We prove that every sequence τ = (n0, n1, ..., np−1), admissible for
G with p ≥ 2k+1 elements, is realizable in G under every 2k-prescription P = (vi0 , vi1 , ..., vi2k−1

)
with 0 ≤ i0 < i1 < ... < i2k−1 ≤ n− 1. We distinguish two main cases.

Case 1. If the prescribed vertices are not organized into two maximal prescribed blocks
with size k, then, because k ≥ 2, we can deduce a realization of τ in the spanning Ck

n of G under
P , thanks to Lemma 9. Such a realization is naturally a realization of τ in G under P .

Case 2. Suppose now that the prescribed vertices form two maximal prescribed blocks B1

and B2 with size exactly k in G. In this situation, note that G−P only remains connected thanks
to some diagonal edges. Indeed, assume B1 = {vi0 , vi1 , ..., vik−1

} and B2 = {vik , vik+1
, ..., vi2k−1

}
without loss of generality. Then the antipodal neighbours of v−i0 and v+ik−1

cannot both belong
to P : since n ≥ 2k + 2, if this were the case then these two antipodal neighbours would
belong to B2, and similarly for all antipodal neighbours of vi0 , vi1 , ..., vik−1

(according to our
assumptions on the maximal prescribed blocks). We would then get that B2 has size at least
k + 2, a contradiction. Let us thus denote by va and vb two antipodal neighbours of G such
that va, vb 6∈ B1 ∪ B2. In particular, we may suppose a ∈ {ik−1 + 1, ik−1 + 2, ..., ik − 1} and
b ∈ {i2k−1 + 1, i2k−1 + 2, ..., i0− 1}. Let further a1 = a− ik−1− 1, a2 = ik − a− 1, a3 = i0− b− 1
and a4 = b − i2k−1 − 1 denote the number of consecutive vertices between B1, B2 and the two
vertices va and vb according to the natural ordering of G.

Case 2.1.
∑k−1

j=0 nj ≤ a1 + a3 + k and
∑2k−1

j=k nj ≤ a2 + a4 + k.
In this situation, we can find two subsets X and Y of consecutive vertices of G such that
|X| =

∑k−1
j=0 nj , |Y | =

∑2k−1
j=k nj , {vi0 , vi1 , ..., vik−1

} ⊆ X, {vik , vik+1
, ..., vi2k−1

} ⊆ Y , and va, vb 6∈

X ∪ Y . Since G[X] and G[Y ] are both isomorphic to the kth power of a path, using Theorem 1
we can deduce two realizations (V0, V1, ..., Vk−1) and (Vk, Vk+1, ..., V2k−1) of (n0, n1, ..., nk−1) and
(nk, nk+1, ..., n2k−1), respectively, in G[X] and G[Y ], respectively, under (vi0 , vi1 , ..., vik−1) and
(vik , vik+1

, ..., vi2k−1
), respectively. Now, since k ≥ 2, the graph G−(X∪Y ) is traceable according

to Lemma 11 and thus admits a realization (V2k, V2k+1, ..., Vp−1) of (n2k, n2k+1, ..., np−1). Finally,
the partition (V0, V1, ..., Vp−1) is a realization of τ in G under P .

Case 2.2.
∑k−1

j=0 nj > a1 + a3 + k without loss of generality.

Note that we have
∑2k−1

j=0 nj ≥ min{a1 + a2 + 2k + 1, a3 + a4 + 2k + 1}, since otherwise

a1 + a3 + 2k + 1 ≤
k−1
∑

j=0

nj +

2k−1
∑

j=k

nj =

2k−1
∑

j=0

nj <
1

2
(a1 + a2 + a3 + a4) + 2k + 1,

which implies a1 + a3 < a2 + a4, a contradiction. Then we consider two new cases.

Case 2.2.1.
∑2k−1

j=0 nj ≥ a1 + a2 + 2k + 1.
Under this assumption, we can find two subsets of consecutive vertices X,Y ⊆ V (G) such that
{vi0 , vi1 , ..., vik−1

} ⊆ X, {vik , vik+1
, ..., vi2k−1

} ⊆ Y , |X| =
∑k−1

j=0 nj , |Y | =
∑2k−1

j=k nj , and the last
vertex of G[X] is the vertex preceding the first vertex of G[Y ]. By Theorem 1, we can deduce re-
alizations (V0, V1, ..., Vk−1) and (Vk, Vk+1, ..., V2k−1) of (n0, n1, ..., nk−1) and (nk, nk+1, ..., n2k−1),
respectively, in G[X] and G[Y ], respectively, under (vi0 , vi1 , ..., vik−1

) and (vik , vik+1
, ..., vi2k−1

),
respectively. Finally, since the graph G− (X∪Y ) is isomorphic to the kth power of a path, there
exists a realization (V2k, V2k+1, ..., Vp) of the remaining sequence (n2k, n2k+1, ..., np−1) in it. We
get that (V0, V1, ..., Vp−1) is a realization of τ in G under P .
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Case 2.2.2.
∑2k−1

j=0 nj ≥ a3 + a4 + 2k + 1.
In this case, we proceed similarly as in Case 2.2.1, but the last vertex of G[Y ] has to be the
vertex preceding the first vertex of G[X].

4.3 Construction 3: k and n are odd

Since two Harary graphs H2k+1,n and H2k+1,n′ , with k ≥ 2, and n ≥ 2k+1 and n′ ≥ 2k+1 being
even and odd, respectively, are both spanned by Ck

n, Case 1 from the proof of Theorem 12 also
holds directly regarding Harary graphs with odd connectivity and order. Despite H2k+1,n and
H2k+1,n′ slightly differ by their diagonal edges, it is easy to realize that if the assumptions of
Case 2 from the proof of Theorem 12 are fulfilled, that proof can be adapted for considering
Harary graphs of odd connectivity and order.

Theorem 13. For every k ≥ 2 and odd n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.

5 On the existence of optimal AP+2 graphs

Recall that Theorems 12 and 13 exclude 3-connected Harary graphs, mainly because some of
their subgraphs do not satisfy the traceability property exhibited in Lemma 11. Therefore, our
proof cannot be used to prove that 3-connected Harary graphs are AP+2.

Besides, it turns out that 3-connected Harary graphs are not all AP+2 anyway. A straight
argument for that claim follows from the fact that an unbalanced bipartite graph G = (A∪B,E),
i.e. such that |A| 6= |B|, with even order does not admit a perfect matching.

Lemma 14. If a bipartite graph G = (A ∪ B,E) has even (resp. odd) order, then, assuming
G has enough vertices, the graph G cannot be AP+k for every even (resp. odd) k ≥ 2 (resp.
k ≥ 1).

Proof. We prove the claim for bipartite graphs with even order, but the proof is analogous for
bipartite graphs with odd order. Let k ≥ 2 be even and fixed. For such a value of k, we can find
two subsets X ⊂ A and Y ⊂ B such that X ∩Y = ∅, |X|+ |Y | = k, and |A−X| 6= |B−Y |. Let
A′ = A−X and B′ = B−X. Then since |A′|+ |B′| is even and |A′| 6= |B′|, the graph G[A′∪B′]
cannot admit a perfect matching. It follows that the sequence (1, 1, ..., 1, 2, 2, ..., 2), with the value
1 appearing k times, is not realizable in G under (v1, v2, ..., vk), where {v1, v2, ..., vk} = X∪Y .

Corollary 15. For every n ≡ 2 mod 4, the Harary graph H3,n is not AP+2.

Proof. This follows from Lemma 14 since every such Harary graph is a balanced bipartite graph.

In order to prove that there actually exist optimal AP+2 graphs, we introduce another class
of 3-connected graphs. Let n ≥ 4. The graph Prn is constructed as follows.

• If n is even, then Prn is obtained from the cycle Cn, whose vertices are successively
denoted by u,w1

1, w
1
2, ..., w

1
n−2

2

, v, w2
n−2

2

, w2
n−2

2
−1

..., w2
1, by adding to it the edge uv, and the

edge w1
iw

2
i for every i ∈ {1, 2, ..., n−22 }.

• If n is odd, then Prn is obtained by first removing the edges w1
1w

2
1 and w1

n−3

2

w2
n−3

2

from

Prn−1, and then adding to it a new vertex o and the edges ow1
1, ow2

1, ow1
n−3

2

, and ow2
n−3

2

.
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1
2 w
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3 w

1
4
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2
1 w
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2 w

2
3 w

2
4

vu

w
1
1

(a) Pr10.

w
1
3

w
2
3

u v

w
2
1 w

2
2

w
1
1 w

1
2

o

(b) Pr9.

Figure 2: Two examples of Pr graphs.

Two examples of such graphs are drawn in Figure 2. For every n ≥ 4, the graph Prn is an
edge-minimal 3-connected graph since it has size ⌈3n2 ⌉. To prove that Pr graphs are AP+2, we
consider the following sufficient condition for a graph to be AP+2. Recall that a graph G is
Hamiltonian-connected if G admits a Hamiltonian path with endvertices u and v for every two
vertices u and v of G.

Lemma 16. If a graph G is Hamiltonian-connected, then G is AP+2.

Proof. The statement follows from Lemma 8 since every path Pn can be partitioned under every
2-prescription (u, v) as long as u and v are the endvertices of Pn.

Before showing that G = Prn is Hamiltonian-connected for every n ≥ 4, we first introduce
some notation. Let q = n−2

2 (resp. q = n−3
2 ) if n is even (resp. odd). Given two integers x and

y in {1, 2, ..., q} (resp. {2, 3, ..., q − 1}) such that x ≤ y, we denote by P
ր
x,y(G) and P

ց
x,y(G) the

following paths of G.

P
ր
x,y(G) =

{

w2
xw

1
x if x = y,

w2
xw

1
xP
ց
x+1,y(G) otherwise.

P
ց
x,y(G) =

{

w1
xw

2
x if x = y,

w1
xw

2
xP
ր
x+1,y(G) otherwise.

The paths P
տ
x,y(G) and P

ւ
x,y(G) of G are defined analogously from right to left when x ≥ y.

For every α ∈ {1, 2}, we additionally define P
α,→
x,y (G) (resp. P

α,←
x,y (G)) for x < y (resp. x > y)

to be the path wα
xw

α
x+1...w

α
y (resp. wα

xw
α
x−1...w

α
y ) of G . For convenience, let us assume that

P
ր
x,y(G) = P

ց
x,y(G) = P

α,→
x,y (G) = ∅ (resp. P

տ
x,y(G) = P

ւ
x,y(G) = P

α,←
x,y (G) = ∅) whenever x or y

do not belong to the interval above or when x > y (resp. x < y). According to our terminology,

note e.g. that uP
1,→
1,4 (Pr10)vP

2,←
4,1 (Pr10) and uP

ր
1,4(Pr10)v are Hamiltonian paths of Pr10.

We are now ready to prove that every Prn graph is Hamiltonian-connected, and thus AP+2
according to Lemma 16.

Theorem 17. For every n ≥ 4, the graph Prn is Hamiltonian-connected.

Proof. Let G = Prn, and q = n−2
2 if n is even, or q = n−3

2 otherwise. Table 1 (resp. Table 2)
exhibits, given two distinct vertices s and t of G, a Hamiltonian path P of G whose endvertices
are s and t when n is even (resp. n is odd). In Table 1 (resp. Table 2), it is assumed that
1 ≤ i ≤ q when j is not defined (resp. 1 < i < q), and 0 ≤ i < j ≤ q otherwise (resp.
1 < i < j < q). Every Hamiltonian path which does not appear in these two tables can be
deduced from another Hamiltonian path using the symmetries of G.
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s t P

u v uP
ր
1,q(G)v

u w1
i

uP
ր
1,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) if i− 1 is even

uP
ց
1,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) otherwise

w1
i w1

j

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,1(G)uvPտq,j(G) if q − j is even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,1(G)uvPւq,j(G) otherwise

w1
i w2

j

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,1(G)uvPւq,j(G) if q − j is even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,1(G)uvPտq,j(G) otherwise

Table 1: Proof that Prn is Hamiltonian-connected for every even n ≥ 4.

s t P

o u oP
1,→
1,q (G)vP 2,←

q,1 (G)u

o w1
1

ow1
qvw

2
qP
տ
q−1,2w

2
1uw

1
1 if q is even

ow2
qvw

1
qP
ւ
q−1,2w

2
1uw

1
1 otherwise

o w1
i

ow1
1uw

2
1P
ր
2,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) if i is even

ow2
1uw

1
1P
ց
2,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) otherwise

u v uP
2,→
1,q (G)oP 1,→

1,q (G)v

u w1
1 uvP

2,←
q,1 (G)oP 1,←

q,1 (G)

u w1
q uvP

2,←
q,1 (G)oP 1,→

1,q (G)

u w1
i

uP
1,→
1,i−1(G)P 2,←

i−1,1(G)ow2
qvw

1
qP
ւ
q−1,i(G) if q − i is even

uP
1,→
1,i−1(G)P 2,←

i−1,1(G)ow1
qvw

2
qP
տ
q−1,i(G) otherwise

w1
1 w2

1 w1
1uvP

1,←
q,2 (G)P 2,→

2,q (G)ow2
1

w1
1 w1

q P
1,→
1,q−1(G)P 2,←

q−1,1(G)uvw2
qow

1
q

w1
1 w2

q w1
1ow

2
1uvP

1,←
q,2 (G)P 2,→

2,q (G)

w1
i w1

j

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w2
1uw

1
1ow

2
qvw

1
qP
ւ
q−1,j(G) if i and q − j are even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w1
1uw

2
1ow

2
qvw

1
qP
ւ
q−1,j(G) if i is odd and q − j is even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w2
1uw

1
1ow

1
qvw

2
qP
տ
q−1,j(G) if i is even and q − j is odd

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w1
1uw

2
1ow

1
qvw

2
qP
տ
q−1,j(G) if i and q − j are odd

w1
i w2

j

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w2
1uw

1
1ow

1
qvw

2
qP
տ
q−1,j(G) if i and q − j are even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w1
1uw

2
1ow

1
qvw

2
qP
տ
q−1,j(G) if i is odd and q − j is even

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w2
1uw

1
1ow

2
qvw

1
qP
ւ
q−1,j(G) if i is even and q − j is odd

P
1,→
i,j−1(G)P 2,←

j−1,i(G)Pտi−1,2(G)w1
1uw

2
1ow

2
qvw

1
qP
ւ
q−1,j(G) if i and n− j are odd

Table 2: Proof that Prn is Hamiltonian-connected for every odd n ≥ 5.

Corollary 18. For every n ≥ 4, the graph Prn is AP+2.

6 Conclusion

We summarize Corollaries 10 and 18 and Theorems 12 and 13 in this concluding theorem.

Theorem 19. For every k ≥ 1 and n ≥ k, there exists an optimal AP+k graph on n vertices
and ⌈n(k+1)

2 ⌉ edges.
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This result does not tell much about the number of optimal AP+k graphs on n vertices
for some fixed values of k and n. However, this number is upper bounded by the number of
edge-minimal (k + 1)-connected graphs with order n according to Observation 4.

Acknowledgements: The authors would like to thank the anonymous referees for pointing
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[5] E. Győri. On division of graphs to connected subgraphs. In Combinatorics, pages 485–494,
Colloq. Math. Soc. János Bolyai 18, 1978.
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