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Abstract

A graph G is arbitrarily partitionable (AP for short) if for every partition (τ1, ..., τp) of
|V (G)| there exists a partition (V1, ..., Vp) of V (G) such that each Vi induces a connected
subgraph of G with order τi. If, additionally, k of these subgraphs (k ≤ p) each contains
an arbitrary vertex of G prescribed beforehand, then G is arbitrarily partitionable under k
prescriptions (AP+k for short). Every AP+k-graph on n vertices must be (k+1)-connected,

and have thus at least dn(k+1)
2 e edges. We show that there exist AP+k-graphs on n vertices

and dn(k+1)
2 e edges for every k ≥ 1 and n ≥ k.

Keywords: arbitrarily partitionable graph, partition under prescriptions, Harary graph.

1 Introduction

We denote by V (G) and E(G) the sets of vertices and edges, respectively, of a graph G. The
order (resp. size) of G is the cardinality of the set V (G) (resp. E(G)). If X is a subset of V (G),
then G[X] denotes the subgraph of G induced by X.

In the late 1970s, Györi and Lovàsz independently proved the following well-known result.

Theorem 1 (Györi [4] and Lovàsz [6], independently) If G is a k-connected graph, then,
given k pairwise distinct vertices (v1, ..., vk) of G and k positive integers (τ1, ..., τk) adding up
to |V (G)|, there exists a partition (V1, ..., Vk) of V (G) such that vi ∈ Vi, the subgraph G[Vi] is
connected and |Vi| = τi for every i ∈ [1, k].

In this paper, we consider a more general partition problem resulting from the combination
of the notion of arbitrarily partitionable graphs [1] with the constraint of prescribing a set of
vertices from Theorem 1. Let G be a connected graph of order n. A sequence τ = (τ1, ..., τp)
of positive integers is admissible for G if it performs a partition of n, that is if

∑p
i=1 τi = n.

If, additionally, we can partition V (G) into p parts (V1, ..., Vp) such that each Vi induces a
connected subgraph of G with order τi, then τ is realizable in G, and the partition (V1, ..., Vp)
is a realization of τ in G. If every admissible sequence for G is also realizable in G, then G is
arbitrarily partitionable (AP for short). The interested reader is referred to [1, 2, 7] for a review
of some results on AP-graphs.

Now suppose that we still want to partition G into an arbitrary number, say p, of connected
subgraphs G1, . . . , Gp of prescribed orders, but in such a way that each connected subgraph
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Gi ∈ {G1, . . . , Gk}, with k ≤ p, contains some vertex vi of G arbitrarily chosen. To model
this additional requirement, the definition of AP-graphs can be strenghtened as follows [3]. A
k-prescription of G is a subset P = (v1, ..., vk) of k distinct vertices of G. We say that a sequence
(τ1, ..., τp) with p ≥ k elements is realizable in G under P if there exists a realization (V1, ..., Vp)
of τ in G such that for every i ∈ [1, k], the vertex vi belongs to Vi. Notice that we have adopted
the convention that the sizes associated to the prescribed vertices are located at the beginning
of the sequence. We now say that G is (p, k)-partitionable if every sequence admissible for G
consisting of exactly p elements is realizable in G under every k-prescription. Finally, G is
arbitrarily partitionable under k prescriptions (AP+k for short) if G is (p, k)-partitionable for
every p ∈ [k, n].

According to these definitions, an AP+0-graph is an AP-graph. Stated differently, Theorem 1
says that every k-connected graph is (k, k)-partitionable. Hence, throughout this paper, we
mainly consider (p, k)-partitions with p > k. For any k ≥ 1, the set of complete graphs on
at least k vertices is a trivial class of AP+k-graphs, each of them having the largest possible
number of edges. In this work, we will focus on optimal AP+k-graphs, that is AP+k-graphs
having the least possible number of edges.

This paper is organized as follows. In Section 2, we introduce some notations and prelim-
inary results which are useful to prove, in Sections 3 and 4, respectively, some results on the
partitioning of powers of paths and cycles under many prescriptions. In Section 5, these results
are then used to show that, for every k 6= 2, every (k+ 1)-connected Harary graph is an optimal
AP+k-graph. We finally show, in Section 6, that 3-connected Harary graphs are not necessarily
AP+2, and provide another class of optimal AP+2-graphs instead.

2 Definitions, notation, and preliminary results

A subgraph H of a graph G is a spanning subgraph of G if V (H) = V (G). We will also say that
G is spanned by H. Given a graph G and an integer k ≥ 1, the kth power of G, denoted by
Gk, is the graph with the same vertex set as G, two of its vertices being adjacent if they are at
distance at most k in G. Let Pn (resp. Cn) denote the path (resp. the cycle) on n vertices, and
{v0, ..., vn−1} its set of vertices. For convenience, the vertices v0 and vn−1 of Pn are called the
first vertex and the last vertex of Pn, respectively. We use the same terminology to deal with
the vertices of P kn (resp. Ckn) according to its natural spanning path Pn (resp. spanning cycle
Cn).

Let k ≥ 1 and n ≥ k be any two integers. The k-connected Harary graph on n vertices,
denoted by Hk,n, has vertex set {v0, ..., vn−1} and the following edges:

• if k = 2r is even, then two vertices vi and vj are linked if and only if i− r ≤ j ≤ i+ r;

• if k = 2r + 1 is odd and n is even, then Hk,n is obtained by joining vi and vi+n
2

in H2r,n

for every i ∈ [0, n2 − 1];

• if k = 2r + 1 and n are odd, then Hk,n is obtained from H2r,n by first linking v0 to both
vbn

2
c and vdn

2
e, and then each vertex vi to vi+dn

2
e for every i ∈ [1, bn2 c − 1];

where the subscripts are taken modulo n. Three examples of Harary graphs are given in Figure 1.
When k is odd, the neighbours of a vertex v of Hk,n which are at distance strictly more than k
from v in its spanning Cn are called the antipodal neighbours of v. Clearly, v has at most two
antipodal neighbours in Hk,n. In particular, v has exactly two antipodal neighbours if and only
if i = 0, and k and n are both odd. A diagonal edge of Hk,n is an edge linking two antipodal
neighbours of Hk,n.

If G is a graph with a natural ordering of its vertices (like powers of paths and cycles, or
Harary graphs), then, for any vertex v of G, we denote by v+ (resp. v−) the neighbour of v
following v (resp. preceding v) in this ordering.
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Figure 1: The Harary graphs H6,8, H5,10 and H3,7

One of the first important property of AP-graphs is the following one.

Proposition 2 If a graph G admits a spanning AP-subgraph (resp. a spanning AP+k-subgraph
for some k ≥ 1), then G is AP (resp. AP+k).

Recall that a graph is traceable if it admits a Hamiltonian path. Since every path is obviously
AP, the previous proposition implies that every traceable graph is AP.

We now point out the following property of AP+k-graphs, from which we deduce the size of
an optimal AP+k-graph.

Observation 3 Every AP+k-graph is (k + 1)-connected. Therefore, an optimal AP+k-graph

has dn(k+1)
2 e edges.

Indeed, if there exist p vertices v1, ..., vp, where p ≤ k, such thatG−{v1, ..., vp} is disconnected
into q connected components on n1, ..., nq vertices, respectively, with n1 ≥ ... ≥ nq, then the
sequence (1, ..., 1, n1 + 1, (

∑q
i=2 ni)−1) cannot be realized in G under (v1, ..., vp). Since an edge-

minimal (k + 1)-connected graph has size dn(k+1)
2 e, this is the size of an optimal AP+k-graph.

Baudon et al. [3] proved that, for every k ≥ 1, there exist non complete AP+k-graphs,
namely the powers of paths and the powers of cycles:

Theorem 4 (Baudon et al. [3]) The graph P k+1
n is AP+k for every k ≥ 0 and n ≥ k + 1.

The graph Ckn is AP+(2k − 1) for every k ≥ 1 and n ≥ 2k.

Since the number of edges of P k+1
n is (k+1)(n− (k+1))+

∑k
i=1 i, this graph has more edges

than an optimal AP+k-graph having the same number of vertices. However, Ckn is 2k-regular
and hence is an edge-minimal 2k-connected graph. According to Observation 3, it follows that
the set of kth powers of cycles is a set of optimal AP+(2k − 1)-graphs.

3 Partitioning P k
n under strictly more than k − 1 prescriptions

In this section, we point out, in terms of prescribed vertices location, some situations in which
it is possible to partition the graph P kn under strictly more than k − 1 prescriptions.

Lemma 5 ([3]) Let P = (vi1 , ..., vik) be a k-prescription of P kn with k ≥ 1, n ≥ k and 0 ≤ i1 <
... < ik ≤ n − 1. If i1 = 0 or ik = n − 1, then every partition τ = (τ1, ..., τp) of n with p ≥ k
elements is realizable in P kn under P .

Lemma 6 Let P = (vi1 , ..., vik+1
) be a (k + 1)-prescription of G = P kn with k ≥ 1, n ≥ k and

0 ≤ i1 < ... < ik+1 ≤ n− 1. If i1 = 0 and ik+1 = n− 1, then every partition τ = (τ1, ..., τp) of n
with p ≥ k + 1 elements is realizable in G under P .

3



Proof. We prove this claim by induction on k. For k = 1, the result is obvious; thus, we now
suppose that k ≥ 2 and that the claim holds for every k′ such that k′ < k. If τ1 ≤ i2, then
a correct realization of τ in G under P is (V1, ..., Vp) where V1 = {v0, ..., vτ1−1} and (V2, ..., Vp)
is a realization of (τ2, ..., τp) in G − V1 under the prescription (vi2 , ..., vik+1

). This realization
necessarily exists according to Lemma 5 since vik+1

is the last vertex of G− V1.
Suppose now that τ1 > i2. Observe that [0, k − 1] − (

⋃k
j=2 ij mod k) is not empty, and let

us denote by r one of these values. The subset V1 of the realization is constructed as follows.
It first contains all the vertices between v0 and vi2−1, that is V1 ⊇ {v0, ..., vi2−1}. We then add
the vertex vj to V1, where j ∈ [i2 + 1, i2 + k − 1] is such that j ≡ r mod k. Finally, as long
as |V1| < τ1 and we do not reach vn−1, we repeatedly add to V1 the vertex at distance k on
the right from the last one added to V1 (vj+k, vj+2k, etc.). According to our choice of r, these
vertices are not prescribed ones and, at any moment of this procedure, the subgraph G− V1 is
spanned by the (k − 1)th power of a path and the subgraph G[V1] is connected.

Thus, on the one hand, if V1 = τ1 holds after the procedure, then (V1, ..., Vp) is a correct
realization of τ under P , where (V2, ..., Vp) is a realization of (τ2, ..., τp) in G − V1 under the
prescription (vi2 , ..., vik+1

) which necessarily exists by the induction hypothesis since vi2 and
vik+1

are the first and last vertices of G− V1.
On the other hand, if |V1| < τ1 holds once the procedure is achieved, then each vertex from

V (G)− V1 has a neighbour in V1. Hence, we can obtain a correct realization (V1 ∪ V ′1 , V2, ..., Vp)
of τ in G under P , where (V2, ..., Vp, V

′
1) is a realization of (τ2, ..., τp, τ1 − |V1|) in G− V1 under

the prescription (vi2 , ..., vik+1
). Once again, such a realization necessarily exists in this subgraph

according to the induction hypothesis.

Lemma 7 Let P = (vi1 , ..., vik) be a k-prescription of G = P kn with k ≥ 1, n ≥ k and 0 ≤ i1 <
... < ik ≤ n− 1. If ik 6= i1 + k− 1, then every partition τ = (τ1, ..., τp) of n with p ≥ k elements
is realizable in P kn under P .

Proof. If x =
∑p

j=k+1 τj ≤ i1, then a correct realization of τ in G under P is (V1, ..., Vp)
where (Vk+1, ..., Vp) is an arbitrary realization of (τk+1, ..., τp) in the traceable subgraph
G[{v0, ..., vx−1}], and (V1, ..., Vk) is a realization of (τ1, ..., τk) in G − {v0, ..., vx−1} under P
obtained using Theorem 1.

Suppose now that x > i1. On the one hand, if τ1 > i1, then a correct realization of τ in
G under P is (V ′1 ∪ V ′′1 , V2, ..., Vp), where V ′1 = {v0, ..., vi1−1} and (V ′′1 , V2, ..., Vp) is a realization
of (τ1 − i1, τ2, ..., τp) in G − V ′1 under P obtained via Lemma 5. On the other hand, if τ1 ≤ i1,
then let V1 be a subset of {v0, ..., vi1} obtained as follows. First, we let V1 = {vi1} and we then
repeatedly add to V1 the vertex located at distance 2 on the left of the last vertex added to V1 as
long as |V1| < τ1 and v0 is not reached. If there is no vertex at distance 2 on the left of the last
vertex added to V1, then we add to V1 every remaining vertex from {v0, ..., vi1−1}− V1 from left
to right until V1 has size τ1. Let X = {v0, ..., vi1−1}−V1. Notice that, at the end of the previous
procedure, G[V1] is connected, G[X] is traceable, and vi1−1 ∈ X. Now, if there exists y ∈ [k+1, p]
such that

∑y
j=k+1 τj = |X|, then a correct realization of τ in G under P is (V1, ..., Vp) where

(Vk+1, ..., Vy) is a realization of (τk+1, ..., τy) in G[X] and (V2, ..., Vk, Vy+1, ..., Vp) is a realization
of (τ2, ..., τk, τy+1, ..., τp) in G− {v1, ..., vi1} under {vi2 , ..., vik} obtained using Lemma 5.

Theorem 1. On the contrary, if for some y we have
∑y−1

j=k+1 τj < |X| and
∑y

j=k+1 τj > |X|,
then let τ ′y = |X| −

∑y−1
j=k+1 τj , τ

′′
y = τy − τ ′y, and vα 6∈ P be the nearest neighbour of vi1−1

located on the right of vi1 . Such a vertex necessarily exists since otherwise this would imply
that our k prescribed vertices are located consecutively along G. Moreover, vα is the first
vertex of G − {v0, ..., vi1} if v+i1 6= vi2 . We then obtain a desired realization (V1, ..., Vy−1, V

′
y ∪

V ′′y , Vy+1, ..., Vp) of τ in G under P , where (V ′y , Vk+1, ..., Vy−1) is a realization of (τ ′y, τk+1, ..., τy−1)
in G[X] under (vi1−1), and (V2, ..., Vk, V

′′
y , Vy+1, ..., Vp) is a realization of (τ2, ..., τk, τ

′′
y , τy+1, ..., τp)

in G[{vi1+1, ..., vn−1}] under (vi2 , ..., vik , vα). Those two realizations exist according to Lemma 5.
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4 Partitioning Ck
n under 2k prescriptions

We now prove, for any k ≥ 1 and n ≥ 2k, that Ckn can be partitioned under 2k prescriptions
when the prescribed vertices are ”conveniently” located in Ckn. Since the Harary graph H2k+1,n

is spanned by Ckn, these results imply that, in some situations, we can deduce a partitioning of
H2k+1,n under 2k prescriptions using a spanning subgraph argument.

We first introduce some notations. Suppose that G = Ckn for some k ≥ 1 and n ≥ 2k, and
that we want to realize the sequence τ = (τ0, ..., τp−1) in G under P = (vi0 , ..., vi2k−1

), with
p ≥ 2k and 0 ≤ i0 < ... < i2k−1 ≤ n − 1. For every j ∈ [0, 2k − 1], we denote by dj the

value ij − ij−1 − 1. In particular, we have n = 2k +
∑2k−1

j=0 dj . Given two distinct integers
x, y ∈ [0, 2k− 1] such that x < y, the garden of the prescribed vertices vix , ..., viy in G is defined
as Gx,y = {v+ix−1

, ..., v−iy+1
} and is the maximum subset of consecutive vertices of G containing no

other prescribed vertices than vix , ..., viy . In particular, |Gx,y| = (y − x+ 1) +
∑y+1

j=x dj . We say
that the prescribed vertices vix , ..., viy are saturated for τ in their garden if

∑y
j=x τj > |Gx,y|,

that is if the parts associated to the prescribed vertices vix , ..., viy of a realization of τ in G under
P must contain some vertices of V (G)−Gx,y.

Lemma 8 Let P = (vi0 , ..., vi2k−1
) be a 2k-prescription of G = Ckn with k ≥ 1, n ≥ 2k and

0 ≤ i1 < ... < i2k−1 ≤ n − 1, and τ = (τ0, ..., τp−1) be an admissible sequence for G with
p ≥ 2k. For any x ∈ [0, 2k − 1], if the prescribed vertices vix , ..., vix+k−1

are saturated for τ in
their garden, then neither the prescribed vertices vix+1 , ..., vix+k nor vix+k+1

, ..., vix are saturated
in their respective garden.

Proof. Let us consider, without loss of generality, that x = 0. If the prescribed vertices
vi0 , ..., vik−1

are saturated for τ in G0,k−1, then we have:

k−1∑
j=0

τj > k +

k∑
j=0

dj ,

and
2k−1∑
j=k

τj < k +

2k−1∑
j=k+1

dj .

If the prescribed vertices vi1 , ..., vik are also saturated for τ in G1,k, then

k∑
j=1

τj > k +
k+1∑
j=1

dj ,

and

τ0 +

2k−1∑
j=k+1

τj < k + d0 +
2k−1∑
j=k+2

dj ,

which implies that both n1−nk+1 > d1− dk+2 and n1−nk+1 < d1− dk+2 hold, a contradiction.
If we now suppose that vik+1

, ..., v0 are saturated for τ in Gk+1,0, then

k∑
j=1

τj < k +

k∑
j=2

dj ,

and

τ0 +

2k−1∑
j=k+1

τj > k + d0 + d1 +

2k−1∑
j=k+1

dj ,
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and we thus get that both

(

k−1∑
j=1

τj)− (

2k−1∑
j=k+1

τj) > (

k∑
j=2

dj)− (

2k−1∑
j=k−1

dj)

and

(

k−1∑
j=1

τj)− (

2k−1∑
j=k+1

τj) < (

k∑
j=2

dj)− (

2k−1∑
j=k−1

dj)

hold, again a contradiction.

In what follows, a maximal block B of P in Ckn is a maximal subset B ⊆ P of consecutive
vertices of Ckn. In particular, if {viq , ..., viq+α} is a maximal block of P in Ckn, then neither v−iq
nor v+iq+α are prescribed vertices.

Lemma 9 Let P = (vi0 , ..., vi2k−1
) be a 2k-prescription of G = Ckn with k ≥ 1, n ≥ 2k and

0 ≤ i1 < ... < ik ≤ n− 1. If there exists exactly one maximal block B of P in G of size at least
k, then every partition τ = (τ0, ..., τp−1) of n with p ≥ 2k elements is realizable in G under P .

Proof. Let us suppose, without loss of generality, that vi0 , ..., vik−1
belong to B. We distinguish

two subcases depending on whether vi0 , ..., vik−1
are saturated for τ in their garden or not.

Case 1: The prescribed vertices vi0 , ..., vik−1
are not saturated for τ in G0,k−1.

Let X be a subset of
∑k−1

j=0 τj consecutive vertices of G0,k−1 such that X∩P = {vi0 , ..., vik−1
}.

According to Theorem 1, there exists a realization (V0, ..., Vk−1) of (τ0, ..., τk−1) in G[X] under
the prescription (vi0 , ..., vik−1

) since this subgraph is k-connected. Now observe that a realization
(Vk, ..., Vp−1) of (τk, ..., τp−1) in G − X under the prescription (vik , ..., vi2k−1

) necessarily exists
since G−X is isomorphic to the kth power of a path and we supposed that the prescribed vertices
perform only one maximal block of size at least k in G. This implies that either vik is the first
vertex of G −X, vi2k−1

is the last vertex of G −X, or the prescribed vertices vik , ..., vi2k−1
are

not consecutive in G−X. In the first two cases, the realization is obtained thanks to Lemma 5,
and it follows from Lemma 7 in the third case. Finally, observe that (V0, ..., Vp−1) is a correct
realization of τ in G under P .

Case 2: The prescribed vertices vi0 , ..., vik−1
are saturated for τ in G0,k−1.

By Lemma 8, we know that neither vi1 , ..., vik nor vik+1
, ..., vi0 are saturated for τ in G1,k

and Gk+1,0, respectively. Hence, only two cases may occur.

Case 2.a. If there exists a subset X ′ of
∑k

j=1 τj consecutive vertices of G1,k such that P ∩X ′ =
{vi1 , ..., vik}, then, since vi0 is the last vertex of G − X ′, all the conditions are met to apply
the procedure used in Case 1 with vi1 , ..., vik and X ′ to get the desired realization. A similar
realization can be obtained analogously if the assumption above holds for vik+1

, ..., vi0 and their
garden Gk+1,0.

Case 2.b. Suppose now that both
∑k

j=1 τj < k+
∑k

j=2 dj and τ0+
∑2k−1

j=k+1 τj < k+d0+
∑2k−1

j=k+2 dj

hold. LetX = {vi1 , ..., vik}. If there exists a x ∈ [2k, p−1] such that (
∑k

j=1 τj)+(
∑x

j=2k τj) = |X|
then we can partition G into two graphs G[X] and G −X and obtain a whole realization of τ
in G under P by considering realizations of (τ1, ..., τk, τ2k, ..., τx) in G[X] under (vi1 , ..., vik) and
of (τ0, τk+1, ..., τ2k−1, τx+1, ..., τp−1) in G−X under (vi0 , vik+1

, ..., vi2k−1
) which necessarily exist

since the conditions of Lemma 5 are satisfied in both cases (vi0 is the last vertex of G−X and
vi1 is the first vertex of G[X]). Finally, (V0, ..., Vp−1) is a realization of τ in G under P .

If such a x does not exist, then let x ∈ [2k, p− 1] be such that (
∑k

j=1 τj) + (
∑x−1

j=2k τj) < |X|
and (

∑k
j=1 τj) + (

∑x
j=2k τj) > |X|, and let τ ′x = |X|− [(

∑k
j=1 τj) + (

∑x−1
j=2k τj)] and τ ′′x = τx− τ ′x.

Since we supposed that there is only one maximal block of P in G with size at least k and

6



vi0 and vi1 are adjacent according to the natural ordering of V (G), there exist α ∈ [i1, ik] and
β ∈ [ik+1, ik+k−1] such that vα and vβ are adjacent and are not prescribed vertices (otherwise
there would exist a second maximal block of P in G with size at least k since vi1 , ..., vik are not
saturated for τ in their garden). In particular, let us choose vβ in such a way that the distance
between vα and vβ is the smallest possible according to the natural ordering of V (G). We get
that either vβ or vik+1

is the first vertex of G−X.
Finally, we obtain the desired realization of τ in G under P as follows. First,

let (V1, ..., Vk, V
′
x, V2k, ..., Vx−1) be a realization of (τ1, ..., τk, τ

′
x, τ2k, ..., τx−1) in G[X] un-

der (vi1 , ..., vik , vα). Then, let (V0, Vk+1, ..., V2k−1, V
′′
x , Vx+1, ..., Vp−1) be a realization of

(τ0, τk+1, ..., τ2k−1, τ
′′
x , τx+1, ..., τp−1) in G−X under (vi0 , vik+1

, ..., vi2k−1
, vβ). These two realiza-

tions necessarily exist according to Lemma 6. Moreover, the subgraph G[V ′x ∪ V ′′x ] is connected
since vαvβ ∈ E(G); therefore, we eventually get that (V0, ..., Vx−1, V

′
x ∪ V ′′x , Vx+1, ..., Vp−1) is a

correct realization of τ in G under P .

Lemma 10 Let P = (vi0 , ..., vi2k−1
) be a 2k-prescription of G = Ckn with k ≥ 1, n ≥ 2k and

0 ≤ i1 < ... < ik ≤ n − 1. If there does not exist a maximal block of P in G of size at least k,
then every partition τ = (τ0, ..., τp−1) of n with p ≥ 2k elements is realizable in G under P .

Proof. We can suppose, without loss of generality, that neither vi0 , ..., vik−1
nor vik , ..., vi2k−1

are
saturated for τ in G0,k−1 and Gk,2k−1, respectively. Indeed, if one of these conditions holds, then
this cannot be simultaneously the case for vi1 , ..., vik nor vik+1

, ..., vi2k−1
, vi0 in their respective

garden according to Lemma 8; we could thus easily relabel our prescribed vertices and part sizes
so that the above assertion holds.

We distinguish the following two subcases.

Case 1. If we can find a subset X of
∑k−1

j=0 τj consecutive vertices of G0,k−1 such that P ∩X =
{vi0 , ..., vik−1

}, then we can obtain a correct realization of τ in G under P in a same way as what
we did in Case 2.a of Lemma 9. A similar argument holds if there exists a satisfying subset X
included in the garden of vik , ..., vi2k−1

.

Case 2. The last case which may happen is the one where both
∑k−1

j=0 τj < k +
∑k−1

j=1 dj and∑2k−1
j=k τj < k +

∑2k−1
j=k+1 dj hold, and neither vi0 and vi2k−1

nor vik−1
and vik are consecutive

vertices of G (otherwise, we could use the arguments of Case 2.b of Lemma 9 to deduce a
realization of τ in G under P ). We can suppose that there does not exist x ∈ [2k, p − 1] such
that

∑k−1
j=0 τj +

∑x
j=2k τj = k +

∑k−1
j=1 dj or

∑2k−1
j=k τj +

∑x
j=2k τj = k +

∑2k−1
j=k+1 dj for otherwise

we could find a realization of τ in G under P using Lemma 7 since there is no maximal block of
P in G with size at least k. We explain below how to deduce a realization of τ in G under P .

If τ0 + τ2k−1 ≥ d0 + 2, then we can obtain a correct realization of τ in G un-
der P as follows. Let V ′0 = {vi0−1, vi0−2, ..., vα} and V ′2k−1 = {vi2k−1+1, vi2k−1+2, ..., v

−
α }

where |V ′0 | < τ0, |V ′2k−1| < τ2k−1, and α ∈ [i2k−1 + 1, i0 − 1]. Then, consider a real-
ization (V ′′0 , V1, ..., V2k−2, V

′′
2k−1, V2k, ..., Vp−1) of the sequence (τ0 − |V ′0 |, τ1, ..., τ2k−2, τ2k−1 −

|V ′2k−1|, τ2k, ..., τp−1) in the subgraph G[{vi0 , ..., vi2k−1
}] under P obtained in the same way as

what we did for Case 2.b (that is by doing as if vi0 and vi2k−1
were consecutive vertices of G).

Such a realization necessarily exists since we supposed that there is no maximal block of P
in G with size at least k. Finally, observe that the realization (V ′0 ∪ V ′′0 , V1, ..., V2k−2, V ′2k−1 ∪
V ′′2k−1, V2k, ..., Vp−1) is a correct realization of τ in G under P .

Now, if τ0 + τ2k−1 < d0 + 2, then τ0 − 1 ≥ bd0(k−1)k c and τ2k−1 − 1 ≥ bd0(k−1)k c cannot
hold simultaneously since otherwise we would get a contradiction. Let Z = {v+i2k−1

, ..., v−i0} and

suppose that τ0 − 1 < bd0(k−1)k c; thus, there exists a subset V0 of Z ∪ {vi0} such that G[V0] is
connected on τ0 vertices, V0 contains the vertex vi0 but does not contain neither v+i2k−1

nor v−i0 ,

and the subgraph G[Z − V0] is traceable.
Once again, we can suppose that there does not exist x ∈ [2k, p − 1] such that

∑k−1
j=1 τj +∑x

j=2k τj = |G1,k−1| since otherwise we could easily deduce a realization of τ in G under P using
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Lemmas 5 and 6 (recall that vik , ..., vi2k−1
are not saturated for τ in their garden). Thus, let

x ∈ [2k, p− 1] be such that
∑k−1

j=1 τj +
∑x−1

j=2k τj < |G1,k−1| and
∑k−1

j=1 τj +
∑x

j=2k τj > |G1,k−1|,
and let τ ′x = |G1,k−1| −

∑k−1
j=1 τj −

∑x−1
j=2k τj and τ ′′x = τx − τ ′x. For the sake of the proof, let us

also denote τp instead of τ ′′x . Since G1,k−1 only includes k − 1 prescribed vertices, then we can
obtain a realization (V1, ..., Vk−1, V

′
x, V2k, ..., Vx−1) of (τ1, ..., τk−1, τ

′
x, τ2k, ..., τx−1) in G[G1,k−1]

under (vi1 , ..., vik−1
, vα) where vα is a non-prescribed vertex of G1,k−1 neighbouring v−i0 . Such

a vertex necessarily exists since there are no maximal block of P of size at least k in G; in
particular, choose vα = v+i0 if vi1 6= v+i0 . The previous realization exists by Lemma 5.

For the same reasons as above, let us suppose that there does not exist y ∈ [x + 1, p] such
that

∑2k−1
j=k τj +

∑y
j=x+1 τj = k +

∑2k−1
j=k+1 dj . Then denote by y ∈ [x + 1, p] the least integer

such that
∑2k−1

j=k τj +
∑y−1

j=x+1 τj < k +
∑2k−1

j=k+1 dj and
∑2k−1

j=k τj +
∑y

j=x+1 τj > k +
∑2k−1

j=k+1 dj .
Next, let us split τy into two elements τ ′y and τ ′′y as above, and use the arguments above once
again to obtain a realization (Vk, ..., V2k−1, V

′
y , Vx+1, ..., Vy−1) of (τk, ..., τ2k−1, τ

′
y, τx+1, ..., τy−1) in

G[{vik , ..., vi2k−1
}] under (vik , ..., vi2k−1

, vβ) where vβ is a non-prescribed vertex of {vik , ..., vi2k−1
}

neighbouring v+i2k−1
. This realization exists by Lemma 6 since vik and vi2k−1

are the first and

last vertices of G[{vik , ..., vi2k−1
}], respectively.

On the one hand, if y = p, then it means that the element τx was split into three elements
τ ′x, τ ′y and τ ′′y . In this case, the realization (V0, ..., Vx−1, V

′
x ∪ V ′y ∪ Z, Vy+1, ..., Vp−1) is a correct

realization of τ in G under P . On the other hand, if y < p, then, since G[Z − V0] is spanned by
a path whose first and last vertices are v+i2k−1

and v−i0 , respectively, by Lemma 6 there exists a

realization (V ′′x , V
′′
y , Vy+1, ..., Vp−1) of (τ ′′x , τ

′′
y , τy+1, ..., τp−1) in G[Z − V0] under (v−i0 , v

+
i2k−1

). By

construction, G[V ′x∪V ′′x ] and G[V ′y ∪V ′′y ] both induce a connected subgraph of G. It follows that
(V0, ..., Vx−1, V

′
x ∪ V ′′x , Vx+1, ..., Vy−1, V

′
y ∪ V ′′y , Vy+1, ..., Vp−1) is a realization of τ in G under P .

5 Partitioning Harary graphs under prescriptions

Harary graphs are known to be graphs having the smallest possible size regarding their connec-
tivity [5]. They trivially have the property of being AP since they are Hamiltonian; thus, one
could wonder about the maximum number of prescribed vertices we can allow while partitioning
them. In particular, can we always prescribe k vertices when partitioning a (k + 1)-connected
Harary graph? If this is the case, then such a graph will also be an optimal AP+k-graph.

We investigate, in this section, the question for the three different constructions of Harary
graphs, according to the parities of both n and k.

5.1 Construction 1: k is even

For every k ≥ 2 and n ≥ 2k such that k is even, Hk,n is isomorphic to C
k
2
n which is AP+(k − 1)

according to Theorem 4. Thus, the following result derives directly.

Corollary 11 For every even k ≥ 2 and n ≥ 2k, the Harary graph Hk,n is AP+(k − 1).

5.2 Construction 2: k is odd and n is even

Let k ≥ 2 and n ≥ 2 be two integers such that k is odd and n is even. By construction,
H2k+1,n is spanned by H2k,n and thus is AP+(2k− 1) according to Corollary 11. Although this
number of prescribed vertices is good since H2k+1,n is (2k + 1)-connected, the connectivity of
this graph suggests that we could up to one more prescribed vertex while partitioning it (see
Observation 3).

Before proving that H2k+1,n is actually AP+2k, we first introduce the following lemma which
deals with the traceability of a graph composed by two linked squares of paths.
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Lemma 12 If G is a graph such that V (G) = V1 ∪ V2, the subgraphs G[V1] and G[V2] are both
spanned by the square of a path, and there exists an edge joining one vertex of V1 and one of V2,
then G is traceable.

Proof. Let v1, ..., vn1 and u1, ..., un2 denote the vertices of G[V1] and G[V2], from left to right,
and vα and uβ be two vertices of G such that vαuβ ∈ E(G). Consider the following subpaths
of G:

- P = v1v2...vα−1;

- Q =

{
vα+1vα+3...vn1−1vn1vn1−2vn1−4...vα+2 if n1 − α is even,
vα+1vα+3...vn1vn1−1vn1−3...vα+2 otherwise;

- R =

{
uβ+2uβ+4...un2un2−1un2−3...uβ+1 if n2 − β is even,
uβ+2uβ+4...un2−1un2un2−2un2−4...uβ+1 otherwise;

- S = uβ−1uβ−2...u1.

It is then easy to check that PQvαuβRS is a Hamiltonian path of G.

We now prove the main result of this section.

Theorem 13 For every odd k ≥ 2 and even n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.

Proof. Let G = H2k+1,n be the (2k + 1)-connected Harary graph on n vertices. We prove
that every partition τ = (τ0, ..., τp−1) of n with p ≥ 2k + 1 elements is realizable in G under
every prescription P = (vi0 , ..., vi2k−1

) with 0 ≤ i0 < ... < i2k−1 ≤ n − 1. We distinguish three
cases depending on whether there exists a realization of τ in Ckn under P or not. Since Ckn is a
spanning subgraph of G, such a realization would also be a realization of τ in G under P .

Case 1. First observe that if there exists exactly one maximal block of P in G with size at
least k, then we can obtain a correct realization of τ in G under P by considering a realization
of τ in Ckn under P . Such a realization necessarily exists according to Lemma 9.

Case 2. Similarly, if there does not exist a maximal block of P in G with size at least k,
then we can use Lemma 10 to deduce a realization of τ in Ckn under P . This realization is also
a realization of τ in G under P .

Case 3. The last case we have to consider is the one where there exist two maximal blocks
B1 and B2 of P in G with size exactly k. In this case, the prescribed vertices disconnect the
graph into two components linked by some diagonal edges. Indeed, without loss of generality,
let us suppose that B1 = {vi0 , ..., vik−1

} and B2 = {vik , ..., vi2k−1
}; necessarily, the antipodal

neighbours of v−i0 and v+ik−1
do not both belong to P since otherwise there would exist a maximal

block of P in G with size at least k + 2. Let us denote by vα and vβ two antipodal neighbours
of G such that vα, vβ 6∈ B1 ∪ B2, α ∈ [ik−1 + 1, ik − 1] and β ∈ [i2k−1 + 1, i0 − 1]. Besides, let
a1 = α − ik−1 − 1, a2 = ik − α − 1, a3 = i0 − β − 1 and a4 = β − i2k−1 − 1 denote the number
of consecutive vertices between B1, B2 and the two vertices vα and vβ according to the natural
ordering of V (G).

If
∑k−1

j=0 τj ≤ a1 + a3 + k and
∑2k−1

j=k τj ≤ a2 + a4 + k, then we can find two subsets X

and Y of consecutive vertices of G such that |X| =
∑k−1

j=0 τj , |Y | =
∑2k−1

j=k τj , {vi0 , ..., vik−1
} ⊆

X, {vik , ..., vi2k−1
} ⊆ Y , and vα, vβ 6∈ X ∪ Y . Since G[X] and G[Y ] are both isomorphic to

the kth power of a path, then using Theorem 1 we can deduce two realizations (V0, ..., Vk−1)
and (Vk, ..., V2k−1) of (τ0, ..., τk−1) and (τk, ..., τ2k−1) in G[X] and G[Y ] under the prescriptions
(vi0 , ..., vik−1) and (vik , ..., vi2k−1

). Moreover, since k ≥ 2, G − (X,Y ) is traceable according
to Lemma 12, there exists a realization (V2k, ..., Vp−1) of (τ2k, ..., τp−1) in G − (X,Y ). Finally,
(V0, ..., Vp−1) is a correct realization of τ in G under P .
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Let us now suppose that, without loss of generality,
∑k−1

j=0 τj > a1 + a3 + k and
∑2k−1

j=k τj <

a2 + a4 + k. If
∑2k−1

j=0 τj ≥ a1 + a2 + 2k+ 1, then we can find two subsets of consecutive vertices

X,Y ⊆ V (G) such that, for some γ ∈ [ik−1 + 1, ik − 1], vγ ∈ X, v+γ ∈ Y , {vi0 , ..., vik−1
} ⊆ X,

{vik , ..., vi2k−1
} ⊆ Y , |X| =

∑k−1
j=0 τj and |Y | =

∑2k−1
j=k τj . By Theorem 1, we know that there

exists a realization (V0, ..., Vk−1) of (τ0, ..., τk−1) in G[X] under the prescription (vi0 , ..., vik−1
),

and a realization (Vk, ..., V2k−1) of (τk, ..., τ2k−1) in G[Y ] under (vik , ..., vi2k−1
). Finally, G−(X,Y )

is isomorphic to the kth power of a path, and thus there exists a realization (V2k, ..., Vp) of the
remaining sequence (τ2k, ..., τp−1) in it. We get that (V0, ..., Vp−1) is a realization of τ in G under
P .

If it is not possible to choose the subsets X and Y in such a way that they have two
neighbouring consecutive vertices along the arc of size a1 + a2 + 1 of G, then we can necessarily
find two such subsets along the arc of size a3 + a4 + 1 of G. Indeed, in such a situation we have∑k−1

j=0 τj > a1 + a3 + k by hypothesis, but
∑k−1

j=0 τj < a1 + a2 + k+ 1. This implies that a2 ≥ a3,
and, since a1 + a3 = a2 + a4, that a1 ≥ a4. Hence, we get

∑k−1
j=0 τj > a4 + a3 + k and it is

therefore possible to choose the two subsets X and Y along the arc of size a3 + a4 + 1 of G to
deduce a realization of τ in G under P .

5.3 Construction 3: k and n are odd

The Harary graph G = H2k+1,n+1, where k ≥ 2 and n+ 1 ≥ 2k + 1 are odd, is spanned by Ckn.
Thus, it follows, according to Lemmas 9 and 10, that there always exists a realization of τ in
G under a 2k-prescription which admits at most one maximal block in G with size at least k.
Moreover, H2k+1,n and H2k+1,n+1 differ by their diagonal edges, but the arguments we used to
prove Case 3 of Theorem 13 also hold when considering H2k+1,n+1 instead of H2k+1,n.

Thus, we can directly derive the following result.

Theorem 14 For every odd k ≥ 2 and odd n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.

6 On the existence of optimal AP+2-graphs

The proof of Theorems 13 and 14 relies on the fact that some particular subgraphs of a Harary
graph Hk,n necessarily satisfy the conditions of Lemma 12 when k 6= 3. Although, one can easily
check that this lemma cannot be used when Hk,n is not connected enough, in particular when
k = 3. Hence, our proof cannot be used directly to prove that a Harary graph H3,n is AP+2 for
some n.

Besides, these graphs are not all AP+2 anyway:

Observation 15 For every n ≡ 2 mod 4, the Harary graph H3,n is not AP+2.

Indeed, let n ≡ 2 mod 4 and G = H3,n. One can check that the subgraph G−{v0, v2} does
not admit a perfect matching. Therefore, the sequence (1, 1, 2, ..., 2) is not realizable in G under
(v0, v2).

In order to prove that there actually exist optimal AP+2-graphs, we introduce a new class
of 3-connected graphs.

Definition 16 Let n ≥ 4. The graph Prn is constructed as follows:

• If n is even, Prn is obtained from the cycle Cn, whose vertices are successively denoted
by u,w1

1, ..., w
1
n−2
2

, v, w2
n−2
2

, ..., w2
1, by adding it the edge uv and all edges w1

iw
2
i , for every

i ∈ [1, n−22 ].

• If n is odd, Prn is obtained by first removing the edges w1
1w

2
1 and w1

n−3
2

w2
n−3
2

from Prn−1,

and then adding it a new vertex o linked to w1
1, w2

1, w1
n−3
2

, and w2
n−3
2

.
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w1
2 w1

3 w1
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1 w2
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vu
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1
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w2
1 w2

2

w1
1 w1

2

o

Figure 2: The graphs Pr10 and Pr9

The two graphs Pr9 and Pr10 are drawn in Figure 2.
For every n ≥ 4, the graph Prn is 3-connected and has the least possible number of edges,

that is d3n2 e. To now prove that such a graph is AP+2, we consider the following sufficient
condition for a graph to be AP+2 which is easier to determine for Pr graphs. Recall that a
graph G is Hamiltonian-connected if, for every two distinct vertices u and v of G, there exists a
Hamiltonian path in G with endvertices u and v.

Lemma 17 If a graph G is Hamiltonian-connected, then G is AP+2.

This lemma obviously holds since, by Lemma 6, we can partition Pn under every 2-
prescription (u, v) as long as u and v are the endvertices of Pn.

Before showing that G = Prn is Hamiltonian-connected for every n ≥ 4, we first introduce
some notations to deal with the vertices of such a graph. Let q = n−2

2 if n is even (resp. q = n−3
2

if n is odd); given two distinct integers x and y in [1, q] (resp. in [2, q − 1]) such that x < y, we

denote by P↗x,y(G) and P↘x,y(G) the paths of G defined as follows.

P↗x,y(G) =

{
w2
xw

1
x if x = y,

w2
xw

1
xP
↘
x+1,y(G) otherwise.

P↘x,y(G) =

{
w1
xw

2
x if x = y,

w1
xw

2
xP
↗
x+1,y(G) otherwise.

The paths P↖x,y(G) and P↙x,y(G) of G are defined analogously from right to left when x > y.
For every α ∈ {1, 2}, we additionally define Pα,→x,y (G) for x < y (resp. Pα,←x,y (G) for x > y)
to be the path wαxw

α
x+1...w

α
y of G (resp. the path wαxw

α
x−1...w

α
y of G). For convenience, let us

assume that P↗x,y(G) = ∅, P↘x,y(G) = ∅ and Pα,→x,y (G) = ∅ (resp. P↖x,y(G) = ∅, P↙x,y(G) = ∅
and Pα,←x,y (G) = ∅) whenever x or y do not belong to the interval above or when x > y (resp.
when x < y). Using these notations, we get, for instance, that uP 1,→

1,4 (Pr10)vP
2,←
4,1 (Pr10) and

uP↗1,4(Pr10)v are Hamiltonian paths of Pr10.
We are now ready to prove that every Prn graph is Hamiltonian-connected, and thus AP+2

according to Lemma 17.

Proposition 18 For every n ≥ 4, the graph Prn is Hamiltonian-connected.

Proof. Let G = Prn, and q = n−2
2 if n is even, q = n−3

2 otherwise. Table 1 (resp. Table 2)
exhibits, given two distinct vertices s and t of G, a Hamiltonian path P of G whose endvertices
are s and t when n is even (resp. n is odd). In Table 1 (resp. Table 2), it is assumed that
1 ≤ i ≤ q when j is not defined (resp. 1 < i < q), and 0 ≤ i < j ≤ q otherwise (resp.
1 < i < j < q). All the Hamiltonian paths which do not appear in these two tables can be
deduced from other Hamiltonian paths using the symmetries of G.
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s t P

u v uP↗1,q(G)v

u w1
i

uP↗1,i−1(G)w2
i P

2,→
i+1,q(G)vP 1,←

q,i (G) if i− 1 is even

uP↘1,i−1(G)w2
i P

2,→
i+1,q(G)vP 1,←

q,i (G) otherwise

w1
i w1

j

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,1(G)uvP↖q,j(G) if q − j is even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,1(G)uvP↙q,j(G) otherwise

w1
i w2

j

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,1(G)uvP↙q,j(G) if q − j is even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,1(G)uvP↖q,j(G) otherwise

Table 1: Proof that Prn is Hamiltonian-connected for every n ≥ 4 even

s t P

o u oP 1,→
1,q (G)vP 2,←

q,1 (G)u

o w1
1

ow1
qvw

2
qP
↖
q−1,2w

2
1uw

1
1 if q is even

ow2
qvw

1
qP
↙
q−1,2w

2
1uw

1
1 otherwise

o w1
i

ow1
1uw

2
1P
↗
2,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) if i is even

ow2
1uw

1
1P
↘
2,i−1(G)w2

i P
2,→
i+1,q(G)vP 1,←

q,i (G) otherwise

u v uP 2,→
1,q (G)oP 1,→

1,q (G)v

u w1
1 uvP 2,←

q,1 (G)oP 1,←
q,1 (G)

u w1
q uvP 2,←

q,1 (G)oP 1,→
1,q (G)

u w1
i

uP 1,→
1,i−1(G)P 2,←

i−1,1(G)ow2
qvw

1
qP
↙
q−1,i(G) if q − i is even

uP 1,→
1,i−1(G)P 2,←

i−1,1(G)ow1
qvw

2
qP
↖
q−1,i(G) otherwise

w1
1 w2

1 w1
1uvP

1,←
q,2 (G)P 2,→

2,q (G)ow2
1

w1
1 w1

q P 1,→
1,q−1(G)P 1,←

q−1,1(G)uvw2
qow

1
q

w1
1 w2

q w1
1ow

2
1uvP

1,←
q,2 (G)P 2,→

2,q (G)

w1
i w1

j

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j(G) if i and q − j are even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j(G) if i is odd and q − j is even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j(G) if i is even and q − j is odd

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j(G) if i and q − j are odd

w1
i w2

j

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j(G) if i and q − j are even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j(G) if i is odd and q − j is even

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j(G) if i is even and q − j is odd

P 1,→
i,j−1(G)P 2,←

j−1,i(G)P↖i−1,2(G)w1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j(G) if i and n− j are odd

Table 2: Proof that Prn is Hamiltonian-connected for every n ≥ 5 odd

Corollary 19 For every n ≥ 4, the graph Prn is AP+2.

7 Conclusions

We summarize Corollaries 11 and 19 and Theorems 13 and 14 in this concluding theorem.

Theorem 20 For every k ≥ 1 and n ≥ k, there exist optimal AP+k-graphs on n vertices.

According to Observation 3, we know that the number of optimal AP+k-graphs is upper
bounded by the number of edge-minimal (k + 1)-connected graphs. However, it seems difficult

12



to make an estimation on the number of optimal AP+k-graphs in general.
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