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DENSITY ESTIMATION OF A BIOMEDICAL VARIABLE SUBJECT
TO MEASUREMENT ERROR USING AN AUXILIARY SET OF
REPLICATE OBSERVATIONS

J. J. STIRNEMANN®?) £ COMTE® AND A. SAMSON®

ABsTRACT. Correcting for measurement error the density of a routinely collected biomed-
ical variable is an important issue when describing reference values for both healthy and
pathological states. The present work addresses the problem of estimating the density of a
biomedical variable observed with measurement error without any a priori knowledge on
the error density. Assuming the availability of a sample of replicate observations, either
internal or external, which is generally easily obtained in clinical settings, an estimator
is proposed based on non-parametric deconvolution theory with an adaptive procedure
for cut-off selection, the replicates being used for an estimation of the error density.
This approach is illustrated in two applicative examples: i) the systolic blood pressure
distribution density using the Framingham Study dataset and ii) the distribution of the
timing of onset of pregnancy within the female cycle, using ultrasound measurements in
the first trimester of pregnancy.

Keywords. Density estimation; non-parametric methods; measurement error; gesta-
tional age; replicate measurements.

1. INTRODUCTION

The variability of a biomedical variable in a target population depends on several fac-
tors. However, its measurement inevitably exposes to measurement error, which adds to
the observed variability. This is particularly important in clinical settings or large scale
epidemiological studies, when dealing with routinely collected variables, like blood pres-
sure or kaliema, the measurement of which relies on simple devices and/or depends on the
circumstances and the operator. Depending on the magnitude of the measurement error, a
direct consequence is that the probability distribution function of the observable variable
deviates from the probability distribution function of the unobservable true underlying
variable. Therefore, measurement error will alter any statistical inference depending on
the amount of error the true measurement is contaminated with. In epidemiology and
regression for example, measurement error in the exposure variable will bias the result to-
wards the null hypothesis. Numerous examples of methods for dealing with such an error
have been suggested in epidemiology (see Budtz-Jorgensen et al. [2003| for an example in
environmental epidemiology and Freedman et al. [2008] for an example in a dietary intake
cohort study). Similar considerations have been discussed in clinical trials, mostly when
the design involves surrogate end-points and biomarkers Sarkar and Qu [2007], Li and Qu
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[2010]. Other common examples include genetics and population association studies, in-
volving both clinical Lobach et al. [2008], Barendse [2011] and technical Bergemann and
Zhao [2010] aspects of variables with measurement error.

In the present work, we are interested in the basic problem of estimating the density of
a variable when it is measured with an unknown error. There are numerous examples that
justify the need for an accurate estimation of the density of a biomedical variable such
as the establishment of reference ranges. More particularly, taking potential measurement
noise into account should improve the threshold values when planning a screening program
based on blood biomarkers. In descriptive epidemiology, removing the measurement error
might help in uncovering a bimodal distribution of the variable of interest, thus suggest-
ing a mixture of two different subpopulations. However, since the error is not directly
observed, the issue of estimating the density of the error-free unobserved variable is not
straightforward. Depending on the setting, several solutions exist for estimating density
of the true variable: i) when the density of the error is assumed to be known, classical
deconvolution algorithm may be used to achieve a non-parametric estimation using kernel
Fan [1991], Liu and Taylor [1989], Stefanski and Carroll [1990], Hesse [1999], Delaigle and
Gijbels [2004] or wavelet methods Fan and Koo [2002], Pensky and Vidakovic [1999]. With
biomedical variables, this may occur when gross inspection of the data strongly suggests a
Gaussian error. However, in many circumstances Gaussian approximation of the error may
not hold, as exemplified later. Furthermore, when the parameters of the error distribution
are unknown, these methods require a sample estimation of both the mean and variance of
the error as an additional estimation step for plugging into a density estimation algorithm.
Many of these efficient algorithms are presently available in the R statistical decon pack-
age R Development Core Team [2010], Wang and Wang [2011]; ii) the density of the error
may be unknown but a sample of pure errors without signal is available. In this circum-
stance, deconvolution algorithms have been implemented and have shown good properties
regarding convergence Diggle and Hall [1993], Neumann [1997], Comte and Lacour [2011],
Wang and Ye [2012]. However, this situation is less likely to occur in biomedical research
especially epidemiological and clinical data, since a sample of signal-free errors requires
a specific experimental design, in which signal- free samples have some meaning and are
available. However, this situation occurs when dealing with measurement devices such
as biological assays or imaging intensity measures. Indeed, assessing the intrinsic charac-
teristics of any new measuring technique is a mandatory step although not always fully
informative for the real-life setting.

The present work focuses on a situation where no hypothesis regarding the measure-
ment error distribution can be made and where there is no access to a sample of signal-free
measurement errors. However, as we will see in the following Section, errors are considered
random, additive and homoscedastic. An estimator of the density of the measurement
error-free variable is proposed based upon a second sample comprising replicate observa-
tions obtained in the same way as the primary sample of single observations. This estimator
has shown good asymptotic properties both theoretically and in simulations Comte et al.
[2011]. To illustrate its potential use in biomedical data, we apply this method in two
real-data case studies:

i. Systolic blood pressure in the Framingham Study on coronary heart disease. Repli-
cate data is used to estimate the distribution of systolic blood pressure, measured
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twice on the same visit. The estimate is compared to both a naive estimator and
to an estimation assuming a Gaussian approximation of the error density.

ii. Timing of onset of pregnancy within the female cycle in a cohort of pregnant women.
We are interested here in estimating the density of the time interval between last
menstrual period and onset of pregnancy. Since the true date of onset of pregnancy
is unknown, we may only observe a noisy observation of this time interval. A first
trimester ultrasound measurement of crown-rump length of the embryo is used as
a noisy observation for dating pregnancy. Replicate observations are obtained from
a sample of twin pregnancies using ultrasound measurements on each twin.

In Section 2 we introduce the general frame and notations of deconvolution models followed
by our estimator with replicate measurements. Case-studies are presented in Sections 3
and 4. We finish with some discussion in Section 5.

2. DECONVOLUTION WITH REPLICATE MEASUREMENTS

Only the outline of the model and methods is presented here. Technical details regarding
theoretical developments and convergence properties may be found in Comte, Samson and
Stirnemann (2011) Comte et al. [2011].

2.1. Model and notations. We will denote Y; the noisy observation and X; the unob-
served variable for subject j. The goal is to estimate f the density of X. The classical
formulation of measurement-error models yields:

(1) Yj:Xj+5j’ j=1...,n

where €; is an error term identically and independently distributed with an unknown den-
sity fe. Furthermore, we consider the specific case of a homoscedastic error: the sequences
(ej)1<j<n and (Xj)i<j<n are assumed independent. The density of Y; denoted fy is the
convolution of the densities of X; and . Denoting x the convolution operator, we have:

(2) fr(@) = (f  f2)(@) = / F( — ) f-(u)du

Equivalently, taking the characteristic function of each density denoted by an asterisk, we
have:

(3) fy(w) = f*(u) x f2(u)

Since Y is observed, a natural estimator of f;- will be the empirical characteristic function.
However, in most biomedical circumstances, the density of the error will be unknown prior
to analysis and a sample of pure errors will not be available and sometimes altogether non-
realistic. On the contrary, it is often possible to obtain a sample of repeated measurements,
which we call replicates throughout this article not to confuse the reader with longitudinal
observations. We define replicates as two or more error-contaminated observations of same
nature (with identically distributed errors) of a single unobserved true quantity. This is
often the case in reproducibility studies for example, when two or more observers will
measure the same biological parameter. We suggest that an estimator of the density
of an error-contaminated variable can be obtained using replicate observations in this
circumstance.
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2.2. Estimators and deconvolution with replicate measurements. Let us assume
we have a sample of size M of 2L replicate noisy observations of Xj:

(4) Yk,2€*l = Xk + €k,20—1, Yk,2€ = Xk + €k,205 k= 17 e 7M7€ = 17 e 7L

with Xy, exor—1 and eg 90, for k = 1,...,M, £ = 1,..., L, independent and identically
distributed. We assume the sequences (Xy)i<ip<nr, (€x20—1)1<k<m and (€g20)1<k<rr are
independent. Therefore, we consider that two independent samples are available: the
first, of size M, containing replicate observations and the second, of size n containing non-
replicate observations. Density estimation by deconvolution with replicate observations has
been previously studied Delaigle et al. [2008], Li and Vuong [1998], Meister and Neumann
[2009], showing that an estimator may be achieved using the sample of replicates to estimate
the noise density and to improve the deconvolution step. Although related to the estimator
given by Delaigle, Hall and Meister Delaigle et al. [2008], we suggest a new estimator that
has shown good finite sample and asymptotic properties Comte et al. [2011]. Aside from
the assumption of independence, a reasonable assumption is that € is symmetric and that
its characteristic function never vanishes. This assumption implies that the characteristic
function is real-valued and strictly positive. Under this hypothesis, observing that Y, 001 —
Y} o¢ reduces to the difference of two independent, identically distributed random variables
€k20—1 — €k,2¢, We have the following relationship between the corresponding characteristic
functions

P vime (W) = (f())?

Under the assumption of a symmetric error, fI is real-valued. Hence an estimator of the

square of fI is obtained by taking the real part of the estimator of f)*/lC o1 —Yeop:

M L
— 1
(5) (f2)*(u) = VL 1; ; cos (u(Yg,20-1 — Yi,20))
We also define an estimator for fy- which is the empirical characteristic function of the
independent noisy observations (Yj)i<j<n and (Yi1)1<p<m:

n

M
. 1 . .
(6) fr(w) = > ety e
k=1

n+ M\ 4
7=1

Because of numerical tractability, (5) cannot be plugged as such in (3) together with (6).
In order to prevent the effect of dividing by small numbers in (3), we define a truncated
estimator of f7, as suggested by Neumann (1997) Neumann [1997]:

1 1{(]"5/*\)2(U) > (LM)~1/2}
e TR

(7)

Finally, plugging (7) and (6) in (3) and using Fourrier inversion with a mm cut-off, we
have the final estimator of f using a wm cut-off for integrability purpose :
R 1 Tm ] £x
® ) = 5 [ el
27 J—wm fi(w)

This estimator can also be viewed as a deconvolution kernel estimator with bandwidth

1/(mm).
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2.3. Outline of technical calculation of fm(az) Technical details regarding calculation
of fm(z) can be found in Comte and Lacour Comte and Lacour [2011], Comte, Rozenholc
and Taupin Comte et al. [2006] and Comte, Samson and Stirnemann Comte et al. [2011].
Details regarding the selection of an appropriate cut-off 7m in (8) can be found in Comte,
Samson and Stirnemann Comte et al. [2011]. In brief, the estimator is projected on an
orthonormal basis built from sinus cardinal functions defined by ¢(z) = sin(7x)/7mz. Such
an orthonormal basis allows a smooth estimate while offering desirable computational
properties. Concurrently, the choice of the cut-off mm is based upon an estimation of an
optimal value for m defined by a bias-variance compromise:

moPt = argmin(”f — fmll® + Var(m)>
m

where || f — fm|? is the bias between the true unknown density function f and the function
that is estimated by (8) while var(m) is the unknown variance of the estimator, function
of m. Each of these two quantities may be estimated and plugged in to estimate an
appropriate cut-off for the estimator.

The final algorithm allows a fully automatized estimation of f with cut-off selection
and has been implemented in R. Compared to the estimator presented in Delaigle et al.
[2008], the presented method provides an adaptative selection procedure for the optimal
bandwidth mm and uses a different orthonormal basis for projection. As presented in Comte
et al. [2011], comparative simulations show that the presented estimator outperforms the
earlier in terms of pointwise risk.

3. CASE STUDY: DISTRIBUTION OF SYSTOLIC BLOOD PRESSURE IN THE FRAMINGHAM
DATA

To exemplify the method in a simple case study, we consider data from the Framingham
Study on coronary heart disease discussed in Carroll et al. (2006) Carroll et al. [2006]
and in Wang and Wang (2011) Wang and Wang [2011] where systolic blood pressure
(SBP) were measured. An accurate denoised estimation of SBP may be of interest in
several ways: population reference ranges could be substantially refined; the results of
epidemiologic studies or trials using systolic blood pressure as a covariate or as an outcome
could be improved; considering the measuring devices are unbiased, the denoised estimate
is independant of the measuring technique and may be regarded as a gold-standard since
any device-specific noise has been removed.

The data consist of measurements of SBP in 1,615 males on several visits on an 8-year
follow-up. During each visit, each patient had its blood pressure measured twice. Since
each measurement is contaminated with an unknown error due to either human, biological
or technical variations, the density of blood pressure is unknown. Considering only the first
visit, our goal is to estimate the density of SBP, using the replicate measurements denoted
SBP1 and SBP2 on each individual. In these data, a plot of SBP1 — SBP2 shows that
the hypothesis of a Gaussian error would roughly hold in this case as shown in Figure 1
and standard packaged deconvolution algorithms could be used. However, for the sake of
the experience, let’s not assume a parametric known distribution for the error. To fit our
setting, we split the sample into two separate datasets: one containing the first 500 replicate
observations of SBP1 and S BP2 and the second containing only the 1115 last observations
of SBP2. The hypothesis of homoscedastic error is investigated graphically by plotting
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FIGURE 1. Diagnostic plots for the Framingham data. Left-side panel: nor-
mal quantile-quantile plot of the standardized difference SBP1 — SBP2.
Right-side panel: A scatterplot of the difference versus the average of the
replicate observations for graphical inspection of potential heteroscedastic-
ity. A nonparametric local scatterplot smoother (LOESS) is added (solid
line).

SBP1— SBP2 versus (SBP1+ SBP2)/2 in Figure 1 showing no significant relationship.
Deconvolving S B P2 using the replicate observations yields the estimate presented in Figure
2 (solid line). This estimate is compared to the deconvolution estimator obtained when
considering the noise as Gaussian (dotted line) using the decon package in R Wang and
Wang [2011]. Despite ungraceful ripples in the tails of our estimate, our estimate (solid line)
shows a more peaked mode compared to the estimate with Gaussian error. This finding
demonstrates that the hypothesis of a Gaussian error may in fact hamper the estimation
since it seems to underestimate the amount of noise present in the data. Furthermore,
the distributional mode is slightly right-shifted using our estimator. Compared to both
deconvolution estimators, the naive kernel estimator (dashed-line) of the raw SBP2 data
underestimates the peak since the unknown error adds variance to the true distribution.

4. CASE STUDY: ESTIMATION OF DENSITY OF ONSET OF PREGNANCY

Except in the specific case of in vitro fertilization, the precise date of pregnancy is
unknown in women conceiving naturally. Therefore, it must be estimated using proxy
measures that are subject to measurement error (see Dunson et al. (1999) Dunson et al.
[1999] and Dunson et al. (2001) Dunson et al. [2001] for a comprehensive study regarding
measurement error in markers of ovulation). Ultrasound biometry of the embryo in early
pregnancy has been proven the most accurate method for dating pregnancy in clinical
practice Gardosi et al. [1997b,a|, Mongelli and Gardosi [1997], Tunon et al. [1996]. Numer-
ous regression formulas have related early ultrasound biometry and gestational age both in
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FiGURE 2. Estimation by deconvolution of the density of SBP2 in the
Framingham Study. The solid line represents the proposed estimator with-
out assumption on measurement error, whereas the dashed line represents
the deconvolution estimator with assumption of Gaussian measurement er-
rors. The histogram of the raw observations of SBP2 and the naive kernel
estimator (dotted line) are given for comparison.

spontaneously conceived pregnancies and pregnancies conceived with assisted reproduction
techniques Sladkevicius et al. [2005]. The most widely used formula is that of Robinson
Robinson [1973| using crown-rump length in the first trimester of pregnancy. Therefore, for
women conceiving spontaneously, early pregnancy ultrasound biometry provides a relevant
noisy observation Y; of Xj.

4.1. The data. The first dataset is a sample of singleton pregnancies with one noisy
observation Y of X;; the second is a sample of replicate observations obtained from twin
pregnancies yielding noisy observations Y1 and Yio of Xj.

4.1.1. Single observation sample. The data comprises basic information recorded at time
of first trimester ultrasound and is provided by a single early pregnancy screening center
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in Paris, France. Since screening is part of a national policy, women are unselected and are
likely to be a representative sample of the general population of pregnant women. First
trimester screening visits are planned at around 12 weeks following last menstrual period
(about 10 weeks of gestation) and between 11 and 14 weeks as determined by ultrasound.
Recorded data includes maternal age, characteristics of the cycles, last menstrual period
and ultrasound biometric measurements in the fetus.

Cases were selected if conception was natural (i.e. without assisted reproductive tech-
niques) and if the woman could recall last menstrual period. Because it could influence
the recollection of last menstrual period, women were also excluded if ultrasound dating
of the pregnancy had been performed prior to the visit.

Over a one-year period, 1,706 cases met these criteria. Menstrual cycles were considered
regular in 1386 women whereas 320 women had irregular cycles. For each woman, the
observed time interval between the last menstrual period and the date given by the ultra-
sound measurement of crown-rump length (CRL) was computed, representing the noisy
observation Y; discussed in Section 2.1.

4.1.2. Replicate observation sample. Replicate independent observations are obtained from
86 spontaneous twin pregnancies in the same clinical setting as singleton pregnancies. Since
onset of pregnancy is the same for both twins, the difference in CRL between the twins
may be considered a measurement error. In more technical terms, we have shown in (5),
that the empirical characteristic function of the difference of replicate noisy observations
is an estimator of the square of the characteristic function of the noise itself. Therefore,
each twin pregnancy has two observed time-intervals between LMP and DP based upon
ultrasound, thus defining replicates of noisy observations Yz and Yo defined in Section
2.2.

It would be arguable here to check if the assumption of normality regarding ¢; would
hold, therefore allowing standard deconvolution algorithms with f. considered as known.
Denote 62 the empirical estimator of the variance of Yj; — Yio. Since both twins are ex-
changeable, we chose to compare the square of the standardized difference (Y1 — Yio)/6)?
to a x2(df = 1) distribution. Graphically, Figure 3 shows that the hypothesis of a nor-
mal error is difficult to sustain, mostly because of departure in the quantile-quantile plot.
Therefore, standard deconvolution methods will not apply since we cannot guess any fur-
ther which potential density the error ¢; originates from. Thus, the only way around is to
consider the density of the error unknown as discussed in Section 2.

4.2. Estimation. We first consider only women with regular cycles. Deconvolution esti-
mation of f in this population is presented in Figure 4. On the X-axis, t = 0 corresponds
to the last menstrual period. The mode of the distribution is reached at 13 days meaning
that in pregnant women with regular cycles, pregnancy is most likely to occur at that date
within the cycle. Noteworthy, this distribution is skewed with a very low probability of
pregnancy before 7 days and after 28 days. Therefore, even in women with regular cycles,
there is a wide variation in the onset of pregnancy within a female cycle. Compared to the
naive estimator not taking into account the error using standard kernel estimation routines
(dashed line), our estimate shows a narrower and higher peak because of noise removal.

4.3. Influence of covariates. Several covariates have been shown to affect menstrual
cycle characteristics including age, ethnicity, smoking, alcohol and other toxic substances
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FiGUuRE 3. Diagnostic plots in the pregnancy data. Left-side panel:
quantile-quantile plot comparing (Yz1 — Yx2)?/6% and a x2(df = 1) dis-
tribution. Right-side panel: investigation of potential heteroscedasticity by
plotting (Yi1 — Yao)?/62 versus the average (Yi; — Yio)/2. No significant
trend was found using a nonparametric LOESS scatterplot smoother (solid
line).

Liu et al. [2004]. The influences of age and cycle regularity are studied here as potential
covariates for the timing of pregnancy.

4.3.1. Influence of maternal age. Maternal age was broken into four classes according to
quartiles of increasing age in women with reported regular cycles. In each class of age, the
density of onset of pregnancy was estimated independently. The results are presented in
the top panel of Figure 5. As expected, a noticeable shortening of the time interval between
LMP and date of pregnancy is noticed with increasing age, consistent with the shortening
of the first phase of menstrual cycle with age. In each class of age, the modes of the
densities were 14.1 days, 13.1 days, 13 days and 13 days for women aged [18.1-29.3], |29.3,
32.4], |32.4,36] and ]36,48.1| respectively. The shape of the density also changes across age
classes with positive skewness in younger women and negative skewness in older women
consistent with the hypothesis of a shortening in the first phase of menstrual cycle with
age. Noteworthy, the densities are more peaked in middle aged classes than in extreme
classes showing that the probability of date of pregnancy is narrower around the mode in
women between 29 and 36 compared to older and younger women.

4.3.2. Influence of regularity of cycles. Prior knowledge regarding individual menstrual
characteristics may influence the dating of pregnancy since patients with irregular cycles
are subject to more variation in timing of ovulation and therefore in timing of pregnancy
as shown by Wilcox, Dunson and Baird (2000) Wilcox et al. [2000] in a study of fertility in
non-pregnant fertile women. A comparison of timing of pregnancy in patients with reported
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FIGURE 4. Estimated density of onset of pregnancy for women with regular
cycles (solid line). The histogram and naive estimator (dashed line) of the
raw data Y is given for comparison. The X-axis is the time interval between
onset of pregnancy and last menstrual period (t=0).

regular and irregular cycles is presented in the bottom panel of Figure 5. Consistent with
Wilcox, Dunson and Baird (2000) Wilcox et al. [2000], the density of onset of pregnancy
is shifted towards longer time intervals with a wider variation than women with regular
cycles.

5. CONCLUDING REMARKS

We have presented a general method for estimating the density of a variable with error
in measurement. This method is conceived for frequent situations occurring in biological
and clinical research settings and should allow researchers to improve analyses and pro-
vide more meaningful results. We emphasize that only reasonable hypotheses are required.
In particular, estimation does not require a prior hypothesis regarding a parametric den-
sity of the error. Such parametric distributions for errors usually include Laplace and
Gaussian densities which may often be an undesirable approximation. Owing to replicate

35
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FI1GURE 5. Top panel: estimated density of onset of pregnancy according
to maternal age in patients with regular menstrual cycles. Maternal age is
divided into quartiles, represented by increasing intensities of gray. Bottom
panel: estimated density of onset of pregnancy in women with regular cycles
(solid line) and women with irregular cycles (dashed line). The X-axis is
the time interval between onset of pregnancy and last menstrual period
(t=0).
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observations, only the hypothesis of Gaussian errors may be easily investigated since the
convolution of other distributions is unlikely to have a known parametric solution, except
in very specific cases. The only hypothesis regarding distribution of the errors is symmetry,
which seems a reasonable assumption in many situations involving biomedical data.

We wish to emphasize that replicate observations are not independent: only the errors
€r1 and e must be independent and identically distributed as well as independent of
the underlying true variable Xj. Independence between errors in replicate observations is
a classical and reasonable assumption. We acknowledge that independence between the
error and the true variable, defining homoscedasticity, may be difficult to verify. However,
following Bland and Altman (1999) Bland and Altman [1999], in most cases graphical in-
spection of a scatterplot of (Yi1 —Yko) versus (Y1 +Yk2)/2 should be sufficiently conclusive.
In case of evidence of heteroscedasticity, solutions have been recently suggested for repli-
cate measurements under the assumption of a Gaussian error, considering the variances as
random McIntyre and Stefanski [2011].

Two case-studies were used to exemplify the use of deconvolution in analyses of biomedi-
cal data: in the Framingham data, we showed that using an unknown-error algorithm does
not alter the estimation compared to classical algorithm assuming a fully known density for
the error. In the pregnancy data, we conducted a more complete data analysis presenting
novel results regarding timing of onset of pregnancy. The results of this second case study
deserve further discussion regarding interpretation and potential applications. Using twin
pregnancies may be arguable as a choice of replicate measurements since they may differ in
some way from the population of singleton pregnancies. However, as far as we know, there
does not seem to be a significant difference between singleton and twins for ultrasound
dating of pregnancy Dias et al. [2010|. Although it is related to previous results regarding
the probability of ovulation during the menstrual cycle in healthy women often referred to
as a "fertile window" Dunson et al. [1999, 2001|, Wilcox et al. [2000], the clinical question is
different: we are interested in the timing of pregnancy rather than the timing of ovulation.
These two events differ since pregnancy does not necessarily occur just following ovulation
and because the potency of an ovulation to lead to a pregnancy may depend upon its
timing itself. Therefore, the density of onset of pregnancy and the density of ovulation are
likely to be different. Furthermore, dating ovulation can be performed accurately only in
a specific prospective setting with intensive monitoring of biological samples throughout
successive cycles, whereas we are concerned by the general population of pregnant women
without enrollment in a specific experimental study. In a clinical perspective, the estima-
tion of the density of timing of pregnancy is interesting in several ways: i) The variability
of onset of pregnancy based upon last menstrual period displayed by the estimated density
is much wider than the + /- 5 days generally recognized as the interval of the error using
ultrasound in the first trimester. Therefore, even in women with regular cycles and with a
known date of last menstrual period, ultrasound will perform better than last menstrual
period for dating pregnancy in clinical practice. ii) As discussed earlier, using any proxy
for estimating onset of pregnancy in a single pregnant woman, such as crown-rump length
ultrasound measurement, is subject to measurement error. However, in a Bayesian per-
spective and notwithstanding the larger variability in dating resulting from last menstrual
period, the distribution of time to pregnancy may be used as a prior distribution for a
likelihood function given by a proxy measurement. Thus, it may refine the estimate of a
proxy measurement by incorporating last menstrual period as prior knowledge.
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