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GROUPS OF VIRTUAL AND WELDED LINKS

VALERIY G. BARDAKOV AND PAOLO BELLINGERI

Abstract. We define new notions of groups of virtual and welded knots (or links) and we
study their relations with other invariants, in particular the Kauffman group of a virtual
knot.

1. introduction

Virtual knot theory has been introduced by Kauffman [21] as a generalization of classical
knot theory. Virtual knots (and links) are represented as generic immersions of circles
in the plane (virtual link diagrams) where double points can be classical (with the usual
information on overpasses and underpasses) or virtual. Virtual link diagram are equivalent
under ambient isotopy and some types of local moves (generalized Reidemeister moves):
classical Reidemeister moves (Figure 1), virtual Reidemeister moves and mixed Reidemeister
moves (Figures 2 and 3).

Figure 1. Classical Reidemeister moves
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2 BARDAKOV AND BELLINGERI

Figure 2. Virtual Reidemeister moves

Figure 3. Mixed Reidemeister moves

A Theorem of Goussarov, Polyak and Viro [15, Theorem 1B] states that if two classical
knot diagrams are equivalent under generalized Reidemeister moves, then they are equivalent
under the classical Reidemeister moves. In this sense virtual link theory is a nontrivial
extension of classical theory. This Theorem is a straightforward consequence of the fact
that the knot group (more precisely the group system of a knot, see for instance [11, 18])
is a complete knot invariant which can be naturally extended in the realm of virtual links.
Nevertheless this notion of invariant does not appear satisfactory for virtual objects (see
Section 4): the main goal of this paper is to explore new invariants for virtual links using
braids and their virtual generalizations.

In fact, using virtual generalized Reidemeister moves we can introduce a notion of “virtual”
braids (see for instance [21, 30]). Virtual braids on n strands form a group, usually denoted
by V Bn. The relations between virtual braids and virtual knots (and links) are completely
determined by a generalization of Alexander and Markov Theorems [19].

To the generalized Reidemeister moves on virtual diagrams one could add the following
local moves, called forbidden moves of type F1 and F2 (Figure 4):

We can include one or both of them to obtain a "quotient" theory of the theory of virtual
links. If we allow the move F1, then we obtain the theory of Welded links whose interest is
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Figure 4. Forbidden moves of type F1 (on the left) and type F2 (on the right)

growing up recently, in particular because of the fact that the welded braid counterpart can
be defined in several equivalent ways (for instance in terms of configuration spaces, mapping
classes and automorphisms of free groups). The theory with both forbidden moves added is
called the theory of Fused links but this theory is trivial, at least at the level of knots, since
any knot is equivalent to the trivial knot [20, 27].

The paper is organized as follows: in Sections 2 and 3 we recall some definitions and
classical results and we construct a representation of V Bn into AutFn+1; using this repre-
sentation we define (Section 4) a new notion of group of a virtual knot (or link) and we
compare our invariant to other known invariants. In the case of welded objects (Section 5)
our construction gives an invariant which is a straightforward generalization to welded knots
of Kauffman notion of group of virtual knots. We conclude with some observations on the
analogous of Wada groups in the realm of welded links.
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2. Braids vs virtual and welded braids

During last twenty years several generalizations of braid groups were defined and studied,
according to their definition as "diagrams" in the plane: in particular singular braids [1],
virtual braids [21, 30] and welded braids [13].

It is worth to mention that for all of these generalizations it exists an Alexander-like
theorem, stating that any singular (respectively virtual or welded) link can be represented
as the closure of a singular (respectively virtual or welded) braid. Moreover, there are
generalizations of classical Markov’s theorem for braids giving a characterization for two
singular (respectively virtual or welded) braids whose closures represent the same singular
(respectively virtual or welded) link [14, 19].

In the following we introduce virtual and welded braid groups as quotients of free product
of braid groups and corresponding symmetric groups.
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Virtual and welded braid groups have several other definitions, more intrinsic, see for
instance [6, 19] for the virtual case and [9, 13, 19] for the welded one.

The braid group Bn, n ≥ 2, on n strings can be defined as the group generated by
σ1, σ2, . . . , σn−1, with the defining relations:

σi σi+1 σi = σi+1 σi σi+1, i = 1, 2, . . . , n− 2,

σi σj = σj σi, |i− j| ≥ 2.

The virtual braid group V Bn can be defined as the group generated by the elements σi,
ρi, i = 1, 2, . . . , n− 1 with the defining relations:

σi σi+1 σi = σi+1 σi σi+1, i = 1, 2, . . . , n− 2,

σi σj = σj σi, |i− j| ≥ 2.

ρi ρi+1 ρi = ρi+1 ρi ρi+1, i = 1, 2, . . . , n− 2,

ρi ρj = ρj ρi, |i− j| ≥ 2.

ρ2i = 1, i = 1, 2, . . . , n− 1;

σi ρj = ρj σi, |i− j| ≥ 2,

ρi ρi+1 σi = σi+1 ρi ρi+1, i = 1, 2, . . . , n− 2.

It is easy to verify that ρi’s generate the symmetric group Sn and that the σi’s generate
the braid group Bn (see Remark 1).

In [15] it was proved that the relations

ρi σi+1 σi = σi+1 σi ρi+1, ρi+1 σi σi+1 = σi σi+1 ρi

corresponding to the forbidden moves F1 and F2 for virtual link diagram, are not fulfilled
in V Bn.

According to [13] the welded braid group WBn is generated by σi, αi, i = 1, 2, . . . , n− 1.
Elements σi generate the braid group Bn and elements αi generate the symmetric group Sn,
and the following mixed relations hold

αi σj = σj αi, |i− j| ≥ 2,

αi+1 αi σi+1 = σi αi+1 αi, i = 1, 2, . . . , n− 2,

αi σi+1 σi = σi+1 σi αi+1, i = 1, 2, . . . , n− 2.

Comparing the defining relations of V Bn and WBn, we see that the group presentation
of WBn can be obtained from the group presentation of V Bn replacing ρi by αi and adding
relations of type αi σi+1 σi = σi+1 σi αi+1, i = 1, 2, . . . , n− 2 which are related to F1 moves.

Notice that if we add to relations of V Bn the relations related to F2 moves:

ρi+1 σi σi+1 = σi σi+1 ρi, i = 1, 2, . . . , n− 2,

we get a group, WB′n, which is isomorphic to WBn: this isomorphism is given by the map
ιn : WB′n → WBn that sends ρi in αi and σi in σ−1i .
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3. Braids as automorphisms of free groups and generalizations

As remarked by Artin, the braid group Bn may be represented as a subgroup of Aut(Fn)
by associating to any generator σi, for i = 1, 2, . . . , n− 1, of Bn the following automorphism
of Fn:

σi :

 xi 7−→ xi xi+1 x
−1
i ,

xi+1 7−→ xi,
xl 7−→ xl, l 6= i, i+ 1.

Artin proved a stronger result (see for instance [23, Theorem 5.1]), by giving a character-
ization of braids as automorphisms of free groups. He proved that any automorphism β of
Aut(Fn)

1 corresponds to an element of Bn if and only if β satisfies the following conditions:

i) β(xi) = a−1i xπ(i) ai, 1 ≤ i ≤ n,

ii) β(x1x2 . . . xn) = x1x2 . . . xn,

where π ∈ Sn and ai ∈ Fn.
The group of conjugating automorphisms Cn consists of automorphisms satisfying the

first condition. In [13] it was proved that WBn is isomorphic to Cn and therefore the
group WBn can be also considered as a subgroup of Aut(Fn). More precisely the generators
σ1, . . . , σn−1 of WBn correspond to previous automorphisms of Fn while any generator αi,
for i = 1, 2, . . . , n− 1 is associated to the following automorphism of Fn:

αi :

 xi 7−→ xi+1

xi+1 7−→ xi,
xl 7−→ xl, l 6= i, i+ 1.

Remark 1. As noticed by Kamada [21], the above representation of WBn as conjugating
automorphisms and the fact WBn is a quotient of V Bn imply that the σi’s generate the braid
group Bn in V Bn.

On the other hand the construction of an embedding of V Bn into Aut(Fm) for some m
remains an open problem.

Theorem 2. [2] There is a representation ψ of V Bn in Aut(Fn+1), Fn+1 = 〈x1, x2, . . . , xn, y〉
which is defined by the following actions on the generators of V Bn:

ψ(σi) :


xi 7−→ xi xi+1 x

−1
i ,

xi+1 7−→ xi,
xl 7−→ xl, l 6= i, i+ 1;
y 7−→ y,

ψ(ρi) :


xi 7−→ y xi+1 y

−1,
xi+1 7−→ y−1 xi y,
xl 7−→ xl, l 6= i, i+ 1,
y 7−→ y,

for all i = 1, 2, . . . , n− 1.

1In the following we will consider the action of (classical, virtual or welded) braids from left to right and
β1β2(xi) will denote ((xi)β1)β2.
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This representation was independently considered in [25].
Remark that the groupWBn can be considered as a quotient of ψ(V Bn): in fact a straight-

forward verification shows that:

Proposition 3. Let qn : V Bn → WBn be the projection defined by qn(σi) = σi and qn(ρi) =
αi for i = 1, . . . , n. Let Fn+1 = 〈x1, x2, . . . , xn, y〉 and Fn = 〈x1, x2, . . . , xn〉. The projection
pn : Fn+1 → Fn+1/〈〈y〉〉 ' Fn induces a map p#n : ψ(V Bn)→ WBn such that p#n ◦ ψ = qn.

The faithfulness of the representation given in Theorem 2 is evident for n = 2 since in
this case V B2 ' C2 ' Z ∗ Z2. In fact, from the defining relations it follows that V B2 ' C2

and if we consider composition of ψ with p2 : F3 = 〈x1, x2, y〉 → F2 = 〈x1, x2〉 we get the
representation of C2 by automorphisms of F2.

For n > 2 we do not know if above representation is faithful: since ψ(V Bn) ⊆ WBn+1

the faithfulness of ψ for any n would imply that virtual braid groups can be considered as
subgroup of welded groups, whose structure and applications in finite type invariants theory
is much more advanced (see for instance [6, 8]).

We remark also that a quite tedious computation shows that image by ψ of the Kishino
braid : Kb = σ2σ1ρ2σ

−1
1 σ−12 ρ1σ

−1
2 σ−11 ρ2σ1σ2σ2σ1ρ2σ

−1
1 σ−12 ρ1σ

−1
2 σ−11 ρ2σ1σ2 is non trivial while

its Alexander invariant is trivial [7].
Notice that Kb = σ−12 b21σ2 where b1 = σ2

2σ1ρ2σ
−1
1 σ−12 ρ1σ

−1
2 σ−11 ρ2σ1.

4. Groups of virtual links

In the classical case the group of a link L is defined as the fundamental group π1(S3\N(L))
where N(L) is a tubular neighborhood of the link in S3. To find a group presentation of this
group we can use Wirtinger method as follows.

One can consider the oriented diagram of the link as the union of oriented arcs in the
plane. Define a base point for π1(S3 \ N(L)) and associate to any arc a loop starting from
the base point, which goes straight to the chosen arc, encircles it with linking number +1
and returns straight to the base point. Let us consider the loops ai, aj, ak around three arcs
in a crossing of the diagram as in Figure 5:

Figure 5. Arcs around two types of crossings

One can easily verify that in the first case the loop aj is homotopic to akaia−1k and in the
second case the loop aj is homotopic to a−1k aiak.

The group π1(S3\N(L)) admits the following presentation: Let D be an oriented diagram
of a a link L and A1, . . . , An be the arcs determined by D. The group π1(S3 \N(L)), admits
the following group presentation:
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Generators: {a1, . . . an}, where aj is the loop associated to the arc Aj.
Relations: To each crossing corresponds a relation as follows

ajak = akai if ai, aj, akmeet in a crossing like in case a) of figure 5;
akaj = aiak if ai, aj, akmeet in a crossing like in case b) of figure 5.

We recall that this presentation is usually called upper Wirtinger presentation while the
lower Wirtinger presentation is obtained applying Wirtinger method to the diagram where
all crossings are reversed; these presentations are generally different but the corresponding
groups are evidently isomorphic because of their geometrical meaning.

Another way to obtain a group presentation for π1(S3\N(L)) is to consider a braid β ∈ Bn

such that its Alexander closure is isotopic to L; therefore the group π1(S3 \ N(L)) admits
the presentation:

π1(S
3 \N(L)) = 〈x1, x2, . . . , xn || xi = β(xi), i = 1, . . . , n〉 ,

where we consider β as an automorphism of Fn (this a consequence of van Kampen’s Theo-
rem, see for instance [31]).

Given a virtual link vL, according to [21] the group of the virtual knot vL, denoted
with GK,v(vL), is the group obtained extending the Wirtinger method to virtual diagrams,
forgetting all virtual crossings. This notion of group of a virtual knot (or link) does not seem
satisfactory: for instance if vT is the virtual trefoil knot with two classical crossings and
one virtual crossing and U is unknot then GK,v(vT ) ' GK,v(U) ' Z, although that vT is
not equivalent to U . In addition, as noted Goussarov-Polyak-Viro [15], the upper Wirtinger
group of a virtual knot is not necessary isomorphic to the corresponding lower Wirtinger
group.

We introduce another notion of group Gv(vL) of a virtual link vL. Let vL = β̂v be a
closed virtual braid, where βv ∈ V Bn

2. Define

Gv(vL) = 〈x1, x2, . . . , xn, y || xi = ψ(βv)(xi), i = 1, . . . , n〉.
We will consider the action from left to right and for simplicity of notation we will write
xiβv instead of ψ(βv)(xi).

Notation. In the following we use the notations [a, b] = a−1b−1ab and ab = b−1ab.
The following Theorem was announced in [2].

Theorem 4. The group Gv(vL) is an invariant of the virtual link vL.

Proof. According to [19] two virtual braids have equivalent closures as virtual links if and
only if they are related by a finite sequence of the following moves:

1) a braid move (which is a move corresponding to a defining relation of the virtual braid
group),

2) a conjugation in the virtual braid group,

2The indices v and w are given to precise when we are considering virtual or welded braids
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3) a right stabilization of positive, negative or virtual type, and its inverse operation,
4) a right/left virtual exchange move.
Here a right stabilization of positive, negative or virtual type is a replacement of b ∈ V Bn

by bσn, bσ−1n or bρn ∈ V Bn+1, respectively, a right virtual exchange move is a replacement

b1σ
−1
n b2σn ←→ b1ρnb2ρn ∈ V Bn+1

and a left virtual exchange move is a replacement

s(b1)σ
−1
1 s(b2)σ1 ←→ s(b1)ρ1s(b2)ρ1 ∈ V Bn+1,

where b1, b2 ∈ V Bn and s : V Bn −→ V Bn+1 is the shift map i.e. s(σi) = σi+1.
We have to check that under all moves 1) - 4), the group Gv(vL) does not change. Let

vL = β̂v where βv ∈ V Bn.
1) If β′v ∈ V Bn is another braid such that βv = β′v in V Bn, then ψ(βv) = ψ(β′v) since ψ

is a homomorphism. Hence G(β̂v) = G(β̂′v) and the first move does not change the group of
virtual link.

2) Evidently it is enough to consider only conjugations by the generators of V Bn. Let

G1 = G(β̂v) = 〈x1, x2, . . . , xn, y || xi = xiβv, i = 1, 2, . . . , n〉
and

G2 = G( ̂σkβvσ−1k ) = 〈x1, x2, . . . , xn, y || xi = xi(σkβvσ
−1
k ), i = 1, 2, . . . , n〉,

where k ∈ {1, 2, . . . , n − 1}. To prove that G2 ' G1 we rewrite the defining relations of G2

in the form
xiσk = xi(σkβv), i = 1, 2, . . . , n.

If i 6= k, k − 1 then this relation is equivalent to

xi = xiβv

since xiσk = xi. But it is a relation in G1. Hence, we have to consider only two relations:

xkσk = xk(σkβv), xk+1σk = xk+1(σkβv).

By the definition of ψ these relations are equivalent to

xkxk+1x
−1
k = (xkxk+1x

−1
k )βv, xk = xkβv.

The second relation is a relation from G1. Rewrite the first relation:

xkxk+1x
−1
k = (xkβv)(xk+1βv)(x

−1
k βv)

and using the second relation we get

xk+1 = xk+1βv,

which is a relation from G1. Hence we proved that any relation from G1 is true in G2 and
analogously one can prove that any relation from G2 is true in G1.

Consider the conjugation by element ρk. In this case we have

G2 = G(ρ̂kβvρk) = 〈x1, x2, . . . , xn, y || xi = xi(ρkβvρk), i = 1, 2, . . . , n〉.
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Rewrite the relations of G2 in the form

xiρk = xi(ρkβv), i = 1, 2, . . . , n.

If i 6= k, k − 1 then we have
xi = xiβv,

since xiρk = xi But it is a relation in G1. Hence, we have to consider only two relations:

xkρk = xk(ρkβv), xk+1ρk = xk+1(ρkβv).

By the definition of ψ these relations are equivalent to

yxk+1y
−1 = (yxk+1y

−1)βv, y
−1xky = (y−1xky)βv

or
yxk+1y

−1 = y(xk+1βv)y
−1, y−1xky = y−1(xkβv)y.

These relations are equivalent to

xk+1 = xk+1βv, xk = xkβv

which are relations from G1. Hence we proved that the set of relations from G2 is equivalent
to the set of relations from G1.

3) Consider the move from a braid βv = βv(σ1, σ2, . . . , σn−1, ρ1, ρ2, . . . , ρn−1) ∈ V Bn to the
braid βvσ−1n ∈ V Bn+1. We have two groups:

G1 = G(β̂v) = 〈x1, x2, . . . , xn, y || xi = xiβv, i = 1, 2, . . . , n〉
and

G2 = G(β̂vσ−1n ) = 〈x1, x2, . . . , xn, xn+1, y || xi = xi(βvσ
−1
n ), i = 1, 2, . . . , n+ 1〉

and we need to prove that they are isomorphic.
Rewrite the relations of G2 in the form

xiσn = xiβv, i = 1, 2, . . . , n+ 1.

If i = 1, 2, . . . , n− 1 then we have
xi = xiβv,

which is a relation in G1. Hence, we have to consider only two relations:

xnσn = xnβv, xn+1σn = xn+1βv,

these relations are equivalent to

xnxn+1x
−1
n = xnβv, xn = xn+1.

Using the second relation rewrite the first in the form

xn = xnβv,

which is a relation from G1. Also we can remove xn+1 from the set of generators of G2. Hence
we proved that the set of relations from G2 is equivalent to the set of relations from G1.

The move from a braid βv ∈ V Bn to the braid βvσn is similar.
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Consider the move from a braid βv ∈ V Bn to the braid βvρn ∈ V Bn+1. We have two
groups:

G1 = G(β̂v) = 〈x1, x2, . . . , xn, y || xi = xiβv, i = 1, 2, . . . , n〉

and

G2 = G(β̂vρn) = 〈x1, x2, . . . , xn, xn+1, y || xi = xi(βvρn), i = 1, 2, . . . , n+ 1〉.

For i = n and i = n+ 1 we have the following relations in G2:

xnρn = xnβv, xn+1ρn = xn+1βv,

which are equivalent to

yxn+1y
−1 = xnβv, y

−1xny = xn+1.

Rewrite the second relation in the form xn = yxn+1y
−1 and substituting in the first relation

we have

xn = xnβv,

which is a relation from G1. Also we can remove xn+1 from the set of generators of G2. Hence
we proved that the set of relations from G2 is equivalent to the set of relations from G1.

4) Finally, consider the exchange move 3

b1σ
−1
n b−12 σn ←→ b1ρnb

−1
2 ρn, b1, b2 ∈ V Bn.

We have two groups:

G1 = G( ̂b1σ−1n b−12 σn) = 〈x1, x2, . . . , xn+1, y || xi = xi(b1σ
−1
n b−12 σn), i = 1, 2, . . . , n+ 1〉

and

G2 = G( ̂b1ρnb−12 ρn) = 〈x1, x2, . . . , xn+1, y || xi = xi(b1ρnb
−1
2 ρn), i = 1, 2, . . . , n+ 1〉

and we need to prove that they are isomorphic.
Rewrite the defining relations from G1 in the form

xi(σ
−1
n b2) = xi(b1σ

−1
n ), i = 1, 2, . . . , n+ 1,

and defining relations from G2 in the form

xi(ρnb2) = xi(b1ρn), i = 1, 2, . . . , n+ 1.

3In this formula we take b−1
2 instead b2 for convenience.
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Let b1 and b2 are the following automorphisms

b1 :



x1 7−→ xa1π(1),

x2 7−→ xa2π(2),

...................

xn 7−→ xanπ(n),

xn+1 7−→ xn+1,

y 7−→ y,

b2 :



x1 7−→ xc1τ(1),

x2 7−→ xc2τ(2),

...................

xn 7−→ xcnτ(n),

xn+1 7−→ xn+1,

y 7−→ y,

,

where π, τ ∈ Sn and ai, ci ∈ 〈x1, x2, . . . , xn, y〉. Then the automorphism σ−1n b2 has the form

σ−1n b2 :



x1 7−→ xc1τ(1),

x2 7−→ xc2τ(2),

...................

xn−1 7−→ x
cn−1

τ(n−1),

xn 7−→ xn+1,

xn+1 7−→ x−1n+1x
cn
τ(n)xn+1,

y 7−→ y,
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and the automorphism b1σ
−1
n has the form

b1σ
−1
n :



x1 7−→ (xπ(1)σ
−1
n )a1σ

−1
n ,

x2 7−→ (xπ(2)σ
−1
n )a2σ

−1
n ,

................................

xn−1 7−→ (xπ(n−1)σ
−1
n )an−1σ

−1
n ,

xn 7−→ (xπ(n)σ
−1
n )anσ

−1
n ,

xn+1 7−→ x−1n+1xnxn+1,

y 7−→ y.

Hence the first group has the following presentation

G1 = 〈x1, x2, . . . , xn+1, y || xc1τ(1) = (xπ(1)σ
−1
n )a1σ

−1
n , xc2τ(2) = (xπ(2)σ

−1
n )a2σ

−1
n , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1)σ
−1
n )an−1σ

−1
n , xn+1 = (xπ(n)σ

−1
n )anσ

−1
n , xcnτ(n) = xn〉.

Analogously, construct the presentation for G2. Calculate the automorphism

ρnb2 :



x1 7−→ xc1τ(1),

x2 7−→ xc2τ(2),

....................

xn−1 7−→ x
cn−1

τ(n−1),

xn 7−→ yxn+1y
−1,

xn+1 7−→ y−1xcnτ(n)y,

y 7−→ y,
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and the automorphism b1ρn has the form

b1ρn :



x1 7−→ (xπ(1)ρn)
a1ρn ,

x2 7−→ (xπ(2)ρn)
a2ρn ,

................................

xn−1 7−→ (xπ(n−1)ρn)
an−1ρn ,

xn 7−→ (xπ(n)ρn)
anρn ,

xn+1 7−→ y−1xny,

y 7−→ y.

Hence the second group has the following presentation

G2 = 〈x1, x2, . . . , xn+1, y || xc1τ(1) = (xπ(1)ρn)
a1ρn , xc2τ(2) = (xπ(2)ρn)

a2ρn , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1)ρn)
an−1ρn , yxn+1y

−1 = (xπ(n)ρn)
anρn , xcnτ(n) = xn〉.

Compare G1 and G2: since ai = ai(x1, x2, . . . , xn, y), let us denote

a′i = aiσ
−1
n = ai(x1, x2, . . . , xn−1, xn+1, y)

and
a′′i = aiρn = ai(x1, x2, . . . , xn−1, yxn+1y

−1, y).

Then
G1 = 〈x1, x2, . . . , xn+1, y || xc1τ(1) = (xπ(1)σ

−1
n )a

′
1 , xc2τ(2) = (xπ(2)σ

−1
n )a

′
2 , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1)σ
−1
n )a

′
n−1 , xn+1 = (xπ(n)σ

−1
n )a

′
n , xcnτ(n) = xn〉.

and
G2 = 〈x1, x2, . . . , xn+1, y || xc1τ(1) = (xπ(1)ρn)

a′′1 , xc2τ(2) = (xπ(2)ρn)
a′′2 , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1)ρn)
a′′n−1 , yxn+1y

−1 = (xπ(n)ρn)
a′′n , xcnτ(n) = xn〉.

Denote by zn+1 = yxn+1y
−1; the group G2 has therefore the following presentation

G2 = 〈x1, x2, . . . , xn, zn+1, y || xc1τ(1) = (xπ(1)ρn)
a′1 , xc2τ(2) = (xπ(2)ρn)

a′2 , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1)ρn)
a′n−1 , zn+1 = (xπ(n)ρn)

a′n , xcnτ(n) = xn〉,
where a′i = aiσ

−1
n = ai(x1, x2, . . . , xn−1, zn+1, y). We will assume that n = π(1) (other cases

consider analogously). Then our groups have presentations:

G1 = 〈x1, x2, . . . , xn+1, y || xc1τ(1) = x
a′1
n+1, x

c2
τ(2) = (xπ(2))

a′2 , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1))
a′n−1 , xn+1 = (xπ(n))

a′n , xcnτ(n) = xn〉,
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G2 = 〈x1, x2, . . . , xn, zn+1, y || xc1τ(1) = (zn+1)
a′1 , xc2τ(2) = (xπ(2))

a′2 , . . . ,

x
cn−1

τ(n−1) = (xπ(n−1))
a′n−1 , zn+1 = (xπ(n))

a′n , xcnτ(n) = xn〉.
and therefore they are isomorphic. �

Example 0. For the unknot U we have
Gv(U) = 〈x, y〉 ' F2.

Example 1. For the virtual trefoil vT we have that vT = σ̂2
1ρ1 and then

Gv(vT ) = 〈x, y || x (y x y−2 x y) = (y x y−2 x y)x〉 6' F2.

Hence, we obtain a new proof of the fact that vT a non-trivial virtual knot.
Example 2. The group Gv(K) is not a complete invariant for virtual knots. Let c =

ρ1σ1σ2σ1ρ1σ
−1
1 σ−12 σ−11 ∈ V B3; the closure ĉ is equivalent to the Kishino knot (see Figure 6).

The Kishino knot is a non trivial virtual knot [10] with trivial Jones polynomial and trivial
fundamental group (GK,v(ĉ) = Z). For this knot we have that Gv(ĉ) = F2.

Figure 6. The Kishino knot: usual diagram and as the closure of a virtual braid.

In fact, it is not difficult to prove that c defines the following automorphism of F4

ψ(c) :



x1 7−→ y2x−13 x2x3y
−2x3y

2x−13 x−12 x3y
−2,

x2 7−→ x−13 x2x3y
−2x3yx

−1
3 x−12 x1x2x3y

−1x−13 y2x−13 x−12 x3,

x3 7−→ yx−13 x2x3y
−1,

y 7−→ y,

and therefore the image of c as automorphism of F4 is non trivial: nevertheless we have that
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Gv(ĉ) = 〈x1, x2, x3, y || x1 = y2x−13 x2x3y
−2x3y

2x−13 x−12 x3y
−2,

x2 = x−13 x2x3y
−2x3yx

−1
3 x−12 x1x2x3y

−1x−13 y2x−13 x−12 x3, x3 = yx−13 x2x3y
−1〉.

Using the first relation we can remove x1 and using the third relation we can remove x2. We
get

Gv(ĉ) = 〈x, y || xy−1xyx−1 = xy−1xyx−1〉 ' F2,

where x = x3

Example 3. Let b1 = b−12 = σ1ρ1σ1 and b = b1ρ2b2ρ2. It is easy to check that for this
virtual braid its group

Gv (̂b) = 〈x1, x2, y || yx1y−1 = x2〉
is an HNN-extension of the free group 〈x1, x2〉 with cyclic associated subgroups. Therefore
the closure of b is a non trivial virtual link.

The following Propositions establish the relations between the different notions of groups
of (virtual) knots.

Proposition 5. Let K be a classical knot then

Gv(K) = Z ∗ π1(S3 \N(K)), Z = 〈y〉.

Proof. As previously recalled, if β ∈ Bn is a braid such that its Alexander closure is isotopic
to K, the group π1(S

3 \ N(K)) admits the presentation 〈x1, x2, . . . , xn || xi = β(xi), i =
1, . . . , n〉.

The claim follows therefore from the remark that the representation ψ of V Bn in Aut(Fn+1)
restraint to Bn coincides with the usual Artin representation composed with the natural
inclusion ι : Aut(Fn)→ Aut(Fn+1). �

The Proposition below will be proved at the end of Section 5.

Proposition 6. Let vK be a virtual knot.
(1) The group Gv(vK)/〈〈y〉〉 is isomorphic to GK,v(vK);
(2) The abelianization of Gv(vK) is isomorphic to Z2.

We recall that a group G is residually finite if for any nontrivial element g ∈ G there exists
a finite-index subgroup of G which does not contain g.

According to [17] every knot group of a classical knot is residually finite, while the virtual
knot groups defined by Kauffman does not need to have this property (see [29]).

Proposition 7. Let K be a classical knot then Gv(K) is residually finite.

Proof. The free product of two residually finite groups is residually finite [16]. �

We do not know whether Gv(vK) is residually finite for any virtual knot vK.
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Remark 8. We can modify Wirtinger method to virtual links using previous representation
of V Bn. Let us now consider each virtual crossing as the common endpoint of four different
arcs and mark the obtained arcs with labels x1, . . . , xm and add an element y of this set. Now
consider the group Gy(vK) generated by elements x1, . . . , xm, y under the usual Wirtinger
relations for classical crossings plus the following relations for virtual crossing: the labeling of
arcs xk, xl, xi, xj meeting in a virtual crossing as in Figure 7 respect the relations xi = y−1xly
and xj = yxky

−1. One can easily check that Gy(vK) is actually invariant under virtual
and mixed Reidemeister moves and hence is an invariant for virtual knots. Arguments in
Proposition 11 can be therefore easily adapted to this case to prove that Gy(vK) is isomorphic
Gv(vK).

Remark 9. Using the "Wirtinger like" labeling proposed in previous Remark it is also pos-
sible to extend the notion of group system to Gv(vK). We recall that the group system of a
classical knot K is given by the knot group, a meridian and its corresponding longitude: in
the case of Gv(vK) we can call meridian the generator corresponding to any arc. The longi-
tude corresponding to this meridian is defined as follows: we go along the diagram starting
from this arc (say ai) and we write a−1k when passing under ak as in Figure 5 a) and ak when
passing under ak as in Figure 5 b). On the other hand if we encounter a virtual crossing
according Figure 7 we write y when we pass from xl to xi and we write y−1 when we pass
from xk to xj. Finally we write a−mi where m is the length (the sum of exponents) of the
word that we wrote following the diagram. It is easy to verify that such an element belongs to
the commutator subgroup of Gv(vK) and that meridian and longitude are well defined under
generalized Reidemeister moves.

5. Groups of welded links

As in the case of virtual links, Wirtinger method can be naturally adapted also to welded
links: it suffices to check that also the forbidden relation F1 is preserved by Wirtinger
labeling. Given a welded link wL we can therefore define the group of the welded link
wL, GK,w(wL), as the group obtained extending the Wirtinger method to welded diagrams,
forgetting all welded crossings. This fact has been already remarked: see for instance [32],
where the notion of group system is extended to welded knot diagrams.

Notice that the forbidden move F2 is not preserved by above method and then that the
lower Wirtinger presentation does not extend to welded link diagrams.

On the other hand, considering welded links as closure of welded braids we can deduce as
in the virtual case another possible definition of group of a welded link. Let wL = β̂w be the
closure of the welded braid βw ∈ WBn. Define

Gw(wL) = 〈x1, x2, . . . , xn || xi = βw(xi), i = 1, . . . , n〉.

Theorem 10. The group Gw(wL) is an invariant of the virtual link wL.

Proof. We recall that two welded braids have equivalent closures as welded links if and only
if they are related by a finite sequence of the following moves [19]:
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1) a braid move (which is a move corresponding to a defining relation of the welded braid
group),

2) a conjugation in the welded braid group,
3) a right stabilization of positive, negative or welded type, and its inverse operation,
We have to check that under all moves 1) - 3), the group Gw(wL) does not change:

the move 1) is evident and for the moves 2) and 3) we can repeat verbatim the proof of
Theorem 4. �

Proposition 11. Let wK be a welded knot. The groups Gw(wK) and GK,w(wK) are iso-
morphic.

Proof. Any generator of WBn acts trivially on generators of Fn except a pair of generators:
more precisely we have respectively that

xi · σi = xixi+1x
−1
i := u+(xi, xi+1) ,

xi+1 · σi = xi := v+(xi, xi+1) ,

xj · σi = xj j 6= i, i+ 1 ,

xi · σ−1i = xi+1 := u−(xi, xi+1) ,

xi+1 · σ−1i = x−1i+1xixi+1 := v−(xi, xi+1) ,

xj · σ−1i = xj j 6= i, i+ 1 ,

xi · αi = xi+1 := u◦(xi, xi+1) ,

xi+1 · αi = xi := v◦(xi, xi+1) ,

xj · αi = xj j 6= i, i+ 1 .

Let βw a welded braid with closure equivalent to wK. Let us regard to the diagram
representing the closure of βw, β̂w, as a directed graph and denote the edges of β̂w, the
generators of GK,w(wK) by labels x1, . . . , xm: according to Wirtinger method recalled in
Section 4, for each crossing of β̂w (see Figure 7) we have the following relations:

(1) If the crossing is positive xi = xl and xj = x−1l xkxl;
(2) If the crossing is negative xi = xkxlx

−1
k and xj = xk where the word u+(xk, xl) and

v+(xk, xl) are the words defined above;
(3) If the crossing is welded xi = xl and xj = xk are the words defined above.
Now let us remark that we have that xl = u−(xk, xl) , x−1l xkxl = v−(xk, xl), xkxlx−1k =

u+(xk, xl), xk = v+(xk, xl), xl = u◦(xk, xl) and xk = v◦(xk, xl) and let us recall that the
action of welded braids is from left to right (β1β2(xi) denotes ((xi)β1)β2). Therefore if we
label xi (for i = 1, . . . , n) the arcs on the top of the braid βw, the arcs on the bottom will be
labelled by β−1w (xi) (for i = 1, . . . , n). Since we are considering the closure of βw, we identify
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labels on the bottom with corresponding labels on the top and we deduce that a possible
presentation of GK,w(wK) is :

GK,w(wK) = 〈x1, x2, . . . , xn || xi = β−1w (xi), i = 1, . . . , n〉.

and therefore GK,w(wK) is clearly isomorphic to Gw(wK). �

Figure 7. Wirtinger-like labelling

Let D be a diagram representing the immersion of a circle in the plane, where double
points can be presented with two different labelings:

• with the usual overpasses/underpasses information;
• as "singular" points.

Clearly D will represent a virtual knot diagram if we allow virtual local moves or respectively
a welded knot diagram if we allow welded local moves.

In the following we will write Gv(D) and GK,v(D) when we consider D as a virtual knot
diagram, while we will set Gw(D) and GK,w(D) when we see D as a welded knot diagram.
The following Proposition is a consequence of the fact that Wirtinger labeling is preserved
by F1 moves.

Proposition 12. Let D be a diagram as above. Then GK,v(D) = GK,w(D).

Remark also that if D1 and D2 are equivalent as welded diagrams then GK,v(D1) =
GK,v(D2) even if D1 and D2 are not equivalent as virtual diagrams.

Proof of Proposition 6. Let βv be a virtual braid with closure equivalent to vK. Let Fn+1 =
〈x1, x2, . . . , xn, y〉 and Fn = 〈x1, x2, . . . , xn〉. As in recalled in Proposition 3, the projection
pn : Fn+1 → Fn+1/〈〈y〉〉 ' Fn induces a surjective map p#n : ψ(V Bn) → WBn and therefore
that Gv(vK)/〈〈y〉〉 is isomorphic to Gw(wK) = 〈x1, x2, . . . , xn || xi = βw(xi), i = 1, . . . , n〉,
where βw = p#(ψ(βv)).

The first claim is therefore a straightforward consequence of Proposition 12.
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The second claim of the Proposition follows easily from the fact that any generator of type
xi is a conjugated of xπ(i) where π ∈ Sn is of order n. Therefore in the abelianization all
generators of type xi have the same image. �

From Propositions 6 and 11 therefore it follows that:

Proposition 13. Let D be a diagram as above. Then Gv(D)/〈〈y〉〉 = Gw(D).

6. Wada groups for virtual and welded links

In [31] Wada found several representations of Bn in Aut(Fn) which, by the usual braid
closure, provide group invariants of links. These representation are of the following special
form: any generator (and therefore its inverse) of Bn acts trivially on generators of Fn except
a pair of generators:

xi · σi = u+(xi, xi+1) ,

xi+1 · σi = v+(xi, xi+1) ,

xj · σi = xj j 6= i, i+ 1 .

xi · σ−1i = u−(xi, xi+1) ,

xi+1 · σ−1i = v−(xi, xi+1) ,

xj · σ−1i = xj j 6= i, i+ 1 .

where u and v are now words in the generators a, b, with 〈a, b〉 ' F2. In [31] Wada found
four families of representations providing group invariants of links (they are types 4 − 7 in
Wada’s paper):

• Type 1: u+(xi, xi+1) = xhi xi+1x
−h
i and v+(xi, xi+1) = xi;

• Type 2: u+(xi, xi+1) = xix
−1
i+1xi and v+(xi, xi+1) = xi;

• Type 3: u+(xi, xi+1) = xixi+1xi and v+(xi, xi+1) = x−1i ;
• Type 4: u+(xi, xi+1) = x2ixi+1 and v+(xi, xi+1) = x−1i+1x

−1
i xi+1.

As in the case of Artin representation we can ask if these representations extend to welded
braids providing group invariants for welded links. More precisely, let χk : GWBn → Aut(Fn)
(for k = 1, . . . , 4) be the set map from the set of generatorsGWBn := {σ1, . . . , σn−1, α1, . . . , αn−1}
of WBn to Aut(Fn) which associates to any generators σi the Wada representation of type
k and to any generators αi the usual automorphism

xi · αi = xi+1 := u◦(xi, xi+1)

xi+1 · αi = xi := v◦(xi, xi+1)

xj · αi = xj j 6= i, i+ 1 .

Proposition 14. The set map χk : GWBn → Aut(Fn) (for k = 1, . . . , 4) induces a homo-
morphism χk : WBn → Aut(Fn) if and only if k = 1, 2.
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Proof. For k = 1, 2 the proof is a straightforward verification that relations of WBn hold in
Aut(Fn): for k = 3, 4 it suffices to remark that relation of type αiσi+1σi = σi+1σiαi+1 is not
preserved. �

When k = 1, 2 we can therefore define for any βw ∈ WBn the group

Wk(βw) = 〈x1, x2, . . . , xn || xi = (χk(βw))(xi), i = 1, . . . , n〉
that we will call Wada group of type k for βw ∈ WBn.

Theorem 15. The Wada group Wk is a link invariant for k = 1, 2.

Proof. One can repeat almost verbatim the arguments from [31] for classical braids. Notice
that Wk(βw) is the group of co-invariants of βw, i.e. the maximal quotient of Fn on which
χk(βw) acts trivially. Since the group of co-invariants is invariant up to conjugation by an
automorphism, we deduce that conjugated welded braids have isomorphic Wada groups. To
prove the statement it is therefore sufficient to verify that Wk(βw) = 〈x1, x2, . . . , xn || xi =
(χk(βw))(xi), i = 1, . . . , n〉 and Wstab

k (βw) = 〈x1, x2, . . . , xnxn+1 || xi = (χk(βwσn))(xi), i =
1, . . . , n + 1〉 are isomorphic: this a straightforward computation similar to the case 3) in
Theorem 4, the key point being that (χk(βwσn))(xn+1) = xn for k = 1, 2 (see also Section 2
of [31]). �

In [10] Wada representations of type 2, 3, 4 have been extended to group invariants for
virtual links using a Wirtinger like presentation of virtual link diagrams: contrarily to the
classical case these groups are not necessarily isomorphic.

Analogously it would be interesting to understand the geometrical meaning of Wada groups
of welded links. In this perspective, Proposition 16 shows that Wada representations of type
1 and 2 are not equivalent.

We will say that two representations ω1 : WBn → Aut(Fn) and ω2 : WBn → Aut(Fn) are
equivalent, if there exist automorphisms φ ∈ Aut(Fn) and µ : WBn → WBn such that

φ−1 ω1(βw)φ = ω2(µ(βw)),

for any βw ∈ GWBn .

Proposition 16. Wada representations of type 1 and 2 are not equivalent.

Proof. The proof is the same as in Proposition A.1 of [12]: the claim follows from considering
the induced action on H1(Fn). Under Wada representations of type 1 a welded braid has
evidently finite order as automorphism of H1(Fn) while we have that χ2(σ

t
i)[xi] = (t+1)[xi]−

t[x2] for all t ∈ N, where [u] denote the equivalence class in H1(Fn) of an element u ∈ Fn. �
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