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Abstract

Biochemical reaction networks are subjected to large fluctuations attributable to small molecule numbers,

yet underlie reliable biological functions. Thus, it is important to understand how regularity can emerge

from noise. Here, we study the stochastic dynamics of a self-repressing gene with arbitrarily long or short

response time. We find that when the mRNA and protein half-lives are approximately equal to the gene

response time, fluctuations can induce relative regular oscillations in the protein concentration. To gain

insight into this phenomenon at the crossroads of determinism and stochasticity, we use an intermediate

theoretical approach, based on a moment-closure approximation of the master equation, which allows us

to take into account the binary character of gene activity. We thereby obtain differential equations that

describe how nonlinearity can feed back fluctuations into the mean-field equations to trigger oscillations.

Finally, our results suggest that the self-repressing Hes1 gene circuit exploits this phenomenon to generate

robust oscillations, as its time constants satisfy precisely the conditions we have identified.

Key words: Stochastic gene expression; Self-repressing gene; Genetic oscillations; Master equation; Mo-

ment closure; Hes1
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Introduction

Most cellular functions are controlled by molecular networks involving genes and proteins which regulate

each other so as to generate the adequate dynamical behavior. A major goal of systems biology is to

understand how sophisticated functional modules emerge from the combination of elementary processes

such as transcriptional regulation, complex degradation, active transport,... and how each of these processes

influences the collective dynamics (1).

A specificity of regulatory networks viewed as dynamical systems is that they are both strongly nonlinear

and inherently stochastic, which considerably complicates the mathematical analysis. In a cell, protein and

mRNA molecules are often found in low abundance so that variations of their copy numbers by one unit

represent significant fluctuations. Furthermore, there are generally very few copies of a gene-carrying DNA

fragment, with only a few possible configurations depending on promoter occupancy. When its transcription

is regulated by a single protein, a gene can essentially be in two states: free, or bound to its transcription

factor. Gene activity is then described mathematically by a binary variable, which more generally can also

account for the transcriptional pulsing that has been observed both in prokaryotes (2) and eukaryotes (3–6).

The stochastic dynamics of the gene randomly flipping between the bound and free states with probabilities

depending on transcription factor abundance is a major source of intrinsic fluctuations, all the more at it was

shown that this flipping can occur at time scales which are comparable to other biochemical processes (2).

While stochasticity in gene networks has been often viewed as an undesirable perturbation blurring deter-

ministic behavior, it is increasingly recognized that noise can in fact be harnessed to become a functional

component of a regulatory network and make its dynamics richer (7–11). It is thus important to understand

how the deterministic and stochastic aspects of cellular processes interact and contribute to the same global

dynamics, all the more as they are intimately coupled in nonlinear systems.

However, even moderately complex regulatory networks resist mathematical analysis and require formidable

computational resources. A natural strategy to study such general questions as the interplay of dynamics

and noise is to focus on small genetic networks comprising only a few elementary components, whose analysis

can identify the key mechanisms and parameters and cast light on the dynamics of more complex networks.

This approach is all the more valuable as the recent developments of synthetic biology allow experimental

tests of the theoretical analyses (12).

Here, we study how stochastic fluctuations in gene activity feed back into the deterministic dynamics

of the smallest genetic network, which consists of a single gene repressed by its own protein product. This

system is an ideal workbench to investigate how the dynamics of the network emerges from the properties

of its elementary components. In fact, this motif is very common in transcriptional networks and is thus

biologically relevant (around 40% of Escherichia coli transcription factors are self-repressing (13–15)). Self-

repression is known to be an important ingredient for generating oscillatory behavior (16). For instance,

Hirata et al proposed that the somite clock network is governed by the self-repressing gene Hes1 (17).
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Accordingly, the dynamics of the self-repressing gene has been actively investigated throughout mathematical

biology (18–26).

Most theoretical analyses of the self-repressing gene based on a deterministic description assume that

gene state flipping occurs on much faster time scales than other processes such as transcription, translation,

and degradation. The flipping dynamics can then be taken into account through an average activity,

which adapts to protein concentration either instantaneously or after a time delay. If intrinsic fluctuations

are neglected, the analysis of the rate equations reveals that oscillatory behavior can only be found by

either (1) introducing an explicit time delay in the equations (e.g., to take into account the transcriptional

dynamics (16, 23–25, 27, 28)); (2) inducing an implicit time delay via a reactional step, which can be

intrinsic (20) or describe transport between two compartments (22); (3) incorporating complex degradation

mechanisms (16, 26, 28, 29). However, recent experiments have shown that gene activity may display an

intrinsic dynamics on time scales comparable to that of other cellular processes (2, 4–6). This may be

taken into account in a deterministic model by introducing an average gene activity variable, which reacts

gradually to protein concentration (30). In particular, how such a transcriptional delay and a nonlinear

degradation mechanism conspire to generate oscillations has been studied in detail by Morant et al. (26),

who obtained analytical expressions for the instability thresholds.

To take into account the binary nature of gene state and its stochasticity, the most general approach

to study the dynamics of the self-repressing gene is to use the chemical master equation (CME) (31).

The steady-state solution of the CME provides the probability distribution of molecular copy numbers,

characterizing both the averages and the fluctuations around them. An analytical solution of the CME

for the self-repressing gene can be obtained when the mRNA variable is considered to be fast and can be

eliminated adiabatically (32, 33), but this assumption is unrealistic for the Hes1 feedback network, where

mRNA and protein have similar lifetimes (17). A classical strategy for approximating the CME is the

system-size expansion also known as Van Kampen’s Ω-expansion (31). Assuming that the system size is

large but not infinite, the solution is expanded in powers of the inverse system size. The deterministic

mean-field equations are obtained at lowest order while next-to-leading order corrections determine finite-

size fluctuations in the so-called linear noise approximation (LNA). This approach can be used to estimate

the amplitude of fluctuations (34) but also to determine their spectrum. In particular, the LNA has been

useful to characterize the appearance of stochastic oscillations in parameter regions where the mean-field

equations predict stable steady behavior (35, 36) or to verify that oscillations predicted by a deterministic

modeling persist in presence of fluctuations (37), two problems which have been actively studied (38–41). To

overcome the fact that LNA does not allow one to determine precisely when the steady state loses stability,

Scott, Ingalls and Hwa proposed an extension of this method which takes into account how fluctuations

modify the linearized dynamics around steady state and allows one to study how bifurcation diagrams are

modified by noise (42). However, all these methods based on system size expansion assume that fluctuations

vanish in the infinite size limit, without affecting the average values. This assumption clearly does not hold
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when the gene state is a binary variable which fluctuates between two discrete values, regardless of system

size. A different approach must then be taken.

In this paper, we propose a strategy to describe the stochastic dynamics of a basic self-repressing gene

circuit, with no cooperativity in the transcriptional regulation and a linear degradation mechanism (Fig. 1A).

The gene switches stochastically between the active and inactive state, so that this circuit can be viewed as

a random telegraph signal generator, whose output is sent through a low-pass filter before being fed back to

itself (Fig. 1B). It is well known that a mean-field model of this system is unconditionally stable (see, e.g.,

(26)). Our main result is that a low-dimensional model taking fluctuations into account predicts oscillatory

behavior in a region of parameter space where we observe relatively regular spiking in protein concentration.
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Figure 1: Schematic view of the self-repressing gene network. (A) Biochemical reactions composing
the network. P , M , G, and G : P denote protein, mRNA, free gene and bound gene chemical species,
respectively. The kinetic constants of the reactions are indicated, with Ω denoting cell volume. In the
limit where Ω is large, the mRNA and protein copy numbers become macroscopic variables, with decreasing
fluctuations, while the gene state remains microscopic and displays full-scale variations. (B) Block diagram
representation of the network, consisting of a random telegraph signal generator representing the gene state-
flip dynamics, and of a low-pass filter of cut-off frequency ωc representing proteins and mRNA dynamics.
The telegraph signal regulates its frequency and duty cycle through feedback from the low pass filter.

To derive this model, we use a moment-closure approximation of the master equation (33, 43–45), and

derive a set of ordinary differential equations which generalize the usual mean-field description while taking

into account the binary nature of the gene state variable. These equations describe the combined time

evolution of average quantities and of fluctuations around them. They reproduce accurately the stationary

state values of the dynamical variables and predict the appearance of oscillations, without any assumption
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on the gene switch time scale nor on the statistical distribution of random variables. We then explain the

appearance of stochastic oscillations by a resonance effect between the characteristic times scales of the

stochastic network and derive an analytical criterion for their appearance. Finally, the parameter values

relevant for the Hes1 network suggests that the mechanism we describe may be exploited to generate robust

oscillations in Hes1 expression. Our findings highlight the functional role of intrinsic fluctuations arising

from the gene state-flip dynamics as an important ingredient for shaping the dynamics of genetic networks.

Methods

To assess the validity of moment-closure approximations of the chemical master equations, we performed

numerical stochastic simulations of the chemical network of Fig. 1-A for various values of the reduced

parameters ρ, Λ, and δ (see Results). The stochastic simulations were performed using an implementation of

the next reaction method (Gibson-Bruck algorithm (46)). The integration time used for numerical estimation

of moments was chosen to ensure a relative error of the average gene activity estimator smaller than 10−4,

by monitoring the convergence of the estimator and its fluctuations. To estimate the Fano factor quantifying

the regularity of protein spikes, we recorded 4000 interspike intervals, following a transient whose duration

was chosen by monitoring the convergence of the estimator for the gene average activity.

To obtain a one-to-one correspondence between the original parameter space {kon, koff , β, α, δm, δp} and

the reduced parameter space {ρ,Λ, η}, three constraints are required. Thus, we fixed (1) the ratio β/δp = 10

to enforce a protein to mRNA concentration ratio of 10, which is a realistic assumption for a biological

network, (2) the gene repression threshold Ω koff/kon = 100 to keep computation time within reasonable

limits while being consistent with the assumption of infinite cell volume, and (3) δm = 1 to set the time

scale to the mRNA half-life. Since stochastic simulations deal with copy numbers instead of concentration,

the cell volume has no influence and we fixed Ω = 1. The validity of the truncation schemes investigated

can then be assessed by comparing the values of the averages in the stochastic simulation with the fixed

point values of the ODE models obtained by truncating the moment expansion.

Results

Corrections to the rate equation

Three stochastic variables characterize the network dynamical state: the gene state g, the mRNA copy

number m and the protein copy number p. The time evolution of the probabilities Pg,m,p of being in a state
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with given values of g, m and p is given by the following chemical master equation:

d

dt
Pg,m,p = (−1)g

[

kon
Ω

(p+ 1− g) P1,m,p+1−g − koffP0,m,p−g

]

(1a)

+δg,1αΩ [Pg,m−1,p − Pg,m,p] + βm [Pg,m,p−1 − Pg,m,p] (1b)

+δm [(m+ 1)Pg,m+1,p −mPg,m,p] + δp [(p+ 1) Pg,m,p+1 − p Pg,m,p] (1c)

which can be read from Fig. 1A and provides the most general description of the dynamics. The parameters

kon and koff characterize the kinetics of protein-DNA binding and unbinding, respectively. The transcription

rate and translation rate are α/Ω and β, where Ω represents the cell volume, and δm and δp are the mRNA

and protein degradation rates. The equations are normalized so that in the large volume limit, the average

gene activity 〈g〉 and average concentrations 〈m〉/Ω and 〈p〉/Ω become independent of Ω.

Unfortunately, the master equation has generally no analytical solution. Contrary to the mRNA and

protein copy numbers, which become much larger than one in the large volume limit and have then negligible

fluctuations when a single molecule is created or destroyed, the gene state is a binary variable and its relative

jump size does not decrease. Therefore, the standard approximation method based on the large-volume

expansion of the master equation with the van Kampen ansatz fails (31). Alternatively, the chemical master

equation can be reformulated as an infinite hierarchy of coupled differential equations whose variables are

the moments of the random variables g, m, and p (31). This strategy leads to deterministic differential

equations taking the fluctuations into account and having the mean-field rate equations as a limiting case.

To be specific, let us consider the equations describing the time evolution of the averages of gene activity

and mRNA and protein concentrations in the infinite volume limit:

d

dt
〈P〉 = β 〈M〉 − δp 〈P〉; (2a)

d

dt
〈M〉 = α 〈g〉 − δm 〈M〉; (2b)

d

dt
〈g〉 = koff [1− 〈g〉] − kon [〈gP〉] ,

= koff [1− 〈g〉] − kon [〈g〉〈P〉 + cov (g,P)] , (2c)

whereM (resp., P) denotes the mRNA (resp., protein) concentration m/Ω (resp. p/Ω), 〈x〉 = ∑

g,m,p xPg,m,p

is the average of the stochastic variable x and cov (x, y) = 〈xy〉 − 〈x〉〈y〉 is the covariance of x and y. These

equations are derived following the approach described in the Supporting Material. Because of the nonlinear

term associated with DNA-protein binding in Eq. (2c), this equation can only be reformulated in terms of

the average values 〈x〉 by introducing the covariance term cov (g, P ). This term does not appear in the usual

rate equations describing the kinetics of the self-repressing gene. It describes the feedback from stochastic

fluctuations into the dynamics of the average values and plays therefore a key role to model the influence

of the gene state-flip dynamics. Eqs. (2) also indicate that the dynamics of mRNA and proteins behaves as
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a low-pass filter whose input is the mean gene state 〈g〉 and output is the mean protein concentration 〈P 〉.
The cut-off frequency of this low-pass filter depends only on mRNA and protein degradation rates and is

well approximated by ωc =
δmδp
δm+δp

(see Supporting Material)

Eqs. (2) are only the first of an infinite hierarchy of equations where time derivatives of the first raw

moments (the averages) are expressed in terms of the first and second raw moments, the time derivatives of

second raw moments are expressed in terms of second and third raw moments, and so on (see Supporting

Material). In order to truncate this infinite hierarchy to a finite set of equations, a closure approximation

must be used. For instance, the usual rate equations are obtained when infinite cell volume and vanishing

covariances are assumed (i.e., the cov (g, P ) term in Eqs. (2) is set to 0). The approximation neglects all

fluctuations and assumes that all variables have precise values, which conflicts with the binary nature of the

gene state.

Here, we derive and analyze a higher-order model, by using a closure approximation of the moment

expansion hierarchy in the limit of an infinite cell volume. In this limit, protein and mRNA copy numbers

are also infinite and thus their variation by one unit is negligible, whereas the gene state is a binary variable,

whose time evolution is similar to a random telegraph signal. Then the only remaining fluctuations in the

models are those induced by the gene flipping dynamics.

The moment expansion equations up to order 2 are most conveniently expressed in terms of g, p and of

a new variable u = (β m+ δm p)/(δp + δm), after suitable rescaling (see Supporting Material for a detailed

derivation). More precisely, the equations read

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (3a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (3b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (3c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [〈GUP 〉 + 〈GU〉 − 〈U〉] ; (3d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉] − ρ

[

〈GP 2〉+ 〈GP 〉 − 〈P 〉
]

; (3e)

d

dT
〈U2〉 = 2 [Λ〈GU〉 − 〈PU〉] ; (3f)

d

dT
〈P 2〉 = 2η

[

〈PU〉 − 〈P 2〉
]

; (3g)

d

dT
〈UP 〉 = Λ〈GP 〉 − 〈P 2〉+ η

[

〈U2〉 − 〈PU〉
]

. (3h)

where P , U , G are rescaled concentration of the random variables p, u and g, and T is a rescaled time. The

three control parameters η, Λ and ρ are defined below. The key point is that Eqs. 3 are not closed, because

Eqs. (3d) and (3e) depend on third-order moments 〈GUP 〉 and 〈GP 2〉, respectively, whose time evolution

is unknown.
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The dynamics is controlled by three key parameters

The biochemical reaction network of the self-repressing gene (Fig. 1-A) has six independent kinetic parame-

ters. Three parameter combinations represent scales and thus can be taken out of the equations by rescaling

time as well as mRNA and protein concentrations. These are :
koff
kon

, which is the protein concentration

at which gene is half repressed;
δpkoff
βkon

which is the mRNA concentration corresponding to half-repression

in steady state; and
δm+δp
δmδp

, which is the response time of the low-pass filter. There remain three reduced

parameters, denoted below by ρ,Λ, η, which control the dynamics and are discussed below.

The first reduced parameter Λ = αβkon
δmδpkoff

corresponds to the maximum possible protein concentration

relative to the half-repression protein concentration threshold
koff
kon

. Dynamically, Λ characterizes the am-

plification of the gene telegraph signal sent to the low pass-filter. A low value of Λ (Λ ≪ 1) indicates that

the gene remains unbound most of the time; the average period of one gene on/off cycle is essentially the

“on” state duration ton. On the contrary, a high value of Λ (Λ ≫ 1) indicates that the gene is repressed

most of the time; the period of the gene on/off cycle is essentially the “off” state duration toff , governed by

koff . Thus, Λ can also be viewed as characterizing the strength of the feedback from the gene to itself via

its protein product.

The second parameter ρ = koff
(δm+δp)
δpδm

measures the gene unbinding rate relative to the cut-off frequency

of the low-pass filter. A low value of ρ indicates that the low-pass filter transmits all the fluctuations of

the gene state : the protein concentration time profile displays square waveforms enslaved to the gene flip.

By contrast, a high value of ρ corresponds to the case where the low-pass filter averages out the gene flip

dynamics : protein concentration evolves with small amplitude fluctuations around its mean value.

The third parameter η =
(δm+δp)

2

δpδm
characterizes whether the protein and mRNA degradation rates are

balanced or not. This indicator reaches a minimum value of 4 for equal degradation rates (δm = δp) and

increases to infinity as one of the degradation rates becomes negligible compared to the other. It is worth

noting that the expressions of all key parameters ρ, Λ, and η are symmetric with respect to exchange of δm

and δp. As a consequence, the dynamical properties are unchanged if the mRNA and protein degradation

rates are swapped, a fact which was already noted in (26). To distinguish the two regimes which have

identical ρ, Λ and η parameter values but different values of δm and δp, we will later consider the ratio

of protein and mRNA degradation rates δ = δp/δm, with η = (1 + δ)2 /δ. Obviously, the value of η is

unchanged under the transformation δ ↔ 1/δ.

In the fast and slow gene limits, asympotic expressions of the averages are obtained from the fixed point

of Eqs. (3), regardless of how they are closed. In particular 〈U〉 = 〈P 〉 = Λ〈G〉 in all cases. The value of 〈G〉
depends on the gene response time scale. In the fast gene regime (ρ → ∞), it is determined by equating

expression (3c) to zero, whose solution satisfies 〈G〉 ∼ 1/
√
Λ in the limit of strong feedback (large Λ). In the

slow gene limit (ρ → 0), one has 〈GP 〉 = 〈P 〉 (expressing the fact that protein concentration quickly relaxes

to 0 when gene is off), so that equating expression (3c) to zero now leads to 〈G〉 ∼ 1/Λ for strong feedback.
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The dramatic decrease in gene average activity is related to the longer memory of the gene, which remains

off for longer times after the repressor has disappeared.

Simple considerations also allow us to obtain the asymptotic behavior of the two third-order moments

appearing in Eqs. (3). In the fast gene limit, the protein and mRNA can be considered as constant so that

〈GUP 〉 = 〈G〉〈U〉〈P 〉 ∼
√
Λ ∼ 1/〈G〉. In the slow gene limit, 〈U〉 and 〈P 〉 quickly relax to their equilibrium

value Λ when gene switches on, so that 〈GUP 〉 = 〈UP 〉G=1 ∼ Λ2〈G〉 ∼ Λ and thus that 〈GUP 〉 ∼ 1/〈G〉
again. Similarly, one finds that 〈GP 2〉 ∼ 1/〈G〉 in both limits.

Truncation of the moment equations

A natural closure approximation, which is described in detail in the Supporting Material, would to as-

sume vanishing third-order central moments 〈(G− 〈G〉) (U − 〈U〉) (P − 〈P 〉)〉 and 〈(G− 〈G〉) (P − 〈P 〉)2〉.
The resulting model is eight-dimensional, incorporating three averages and five covariances as dynamical

variables. Note that since not all third-order central moments are constrained to zero, this is a weaker

requirement than assuming that variables are Gaussian-distributed. The predictions of this model are exact

when the gene is either infinitely fast or slow.

Here, we focus on another closure approximation, which leads to a simpler yet accurate model. It assumes

that the two unknown third-order moments are slaved to the gene state according to:

〈GUP 〉 = 〈GP 2〉 = (1− 〈G〉)2
〈G〉 . (4)

This relation is obtained by requiring that, in the limit of strong feedback (large Λ), (i) it matches the slow-

gene and fast-gene asymptotic behaviors of the two moments, as obtained in previous section; (ii) the fixed

point of the resulting equations agrees with that of the rate equations in the fast gene limit (see Supporting

Material). Using stochastic numerical simulations, we also checked that it is relatively well satisfied for all

intermediate gene response time scales, as will be shown in next section.

When rewritten using relation (4), Eqs. (3a-e) decouple from the others and form a closed system of only

five differential equations, named thereafter the Truncated Moment Expansion (TME) model, which read:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (5a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (5b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (5c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ

[

(1− 〈G〉)2
〈G〉 + 〈GU〉 − 〈U〉

]

; (5d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉]− ρ

[

(1− 〈G〉)2
〈G〉 + 〈GP 〉 − 〈P 〉

]

; (5e)
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This model predicts the time evolution of the three averages and of the two moments involving the gene

state (〈GU〉 and 〈GP 〉). This is consistent with that the fact that only the gene state fluctuations survive in

the infinite volume limit. The TME model thus provides a minimal extension of the rate equations, allowing

us to describe the stochastic dynamics of the network, including the stationary state average values, and

thus to study the impact of the gene state fluctuations.

The truncated moment expansion reproduces well the time averages of the stochastic

dynamics

To assess the influence of stochastic fluctuations of gene state on the dynamics of the self-repressing gene, we

first performed stochastic numerical simulations to determine the values of the time averages and covariances

of the rescaled random variables G, M , and P (see Methods) as a function of the control parameters. These

time averages were then compared to the fixed point values of two truncations of the moment equation

hierarchy: the rate equation model, defined by Eqs. (2), with the covariance term set to zero, and the TME

model defined by Eqs. (5). These models are defined by sets of ordinary differential equations, whose fixed

points are specified by the values of the variables such that all time derivatives are zero. These fixed points

are usually stable and thus reflect the stationary regime, however we shall see later that they may become

unstable in some conditions, indicating the appearance of spontaneous oscillations.

Let us first examine how the average gene activity depends on ρ, which characterizes the gene response

time scale, and Λ, which characterize feedback strength, when protein and mRNA lifetimes are identical

(δ = 1). Gene average activity as determined by stochastic simulations is shown in Fig. 2-A. The rate

equation model correctly predicts the output of stochastic simulations only when gene dynamics is fast

(ρ → ∞) or when gene repression is small (Λ ≪ 1) (Fig. 2-B). In contrast to this, the TME model predicts

quantitatively gene average activity in the entire (ρ,Λ) plane (Fig. 2-C), in particular in regions where the

rate equation approximation fails.

A more detailed assessment of the TME model accuracy is provided in Fig. 3, which shows how the time

averages ofG, U , P , and of their products evolve with ρ and δ, depending on whether they are computed from

stochastic simulations (Fig. 3, left column) or from the fixed point values of the TME model (Fig. 3, right

column). The computations are carried out in the strong feedback (i.e., high repression) limit (Λ = 100).

Note that in the rate equation approximation, all averages would be constant and the covariances would

vanish. Fig. 3 displays only a subset of components of the TME model fixed point, from which the other

can be obtained using the relations 〈M〉∗ = 〈P 〉∗ = Λ〈G〉∗, 〈GP 〉∗ = 1 − 〈G〉∗, 〈P 2〉∗ = 〈PU〉∗ = Λ〈GU〉∗.
An important finding is that ρ is the main parameter controlling the averages of the stochastic variables

G, U , and P , as the curves obtained for various values of δ superimpose remarkably well (Fig. 3-A, left

column). As expected, using the variable U leads to numerical results which are symmetrical with respect

to the δ ↔ 1/δ inversion.

Fig. 3 shows that the fixed point values of the TME model are in very good quantitative agreement with
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Figure 2: Average gene activities as a function of the Λ and ρ parameter (A) Numerical estimation
of 〈g〉 using stochastic simulations with parameter values koff/kon = 100, δ = 1, β/δp = 10. (B) Average
gene activity predicted by rate equation (C) Fixed point value of gene activity in the TME model.
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Figure 3: Comparison of raw moments obtained from stochastic simulations (left column) and
from the TME model (right column) as functions of parameter ρ, and for various values of δ.
(A) Average gene activity 〈G〉; (B), (C) second raw moments 〈GM〉 and 〈P 2〉; (D), (E) third raw moments
〈GUP 〉 and 〈GP 2〉. Curves for different values of δ are color-coded according to legend box. The value
of Λ = 100 used in the simulations corresponds to strong feedback (strong gene repression). Stochastic
simulations are performed while constraining koff/kon = 100 and β/δp = 10 (see Methods for details).
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the numerical estimators. However, the stochastic estimators of the averages display an overshoot around

ρ = 1 which is emphasized when η is small (Fig. 3-A). This behavior is not recovered by the TME model

which predicts that averages increase monotonously with ρ. More precisely, the averages in the TME model

are specified by

〈G〉∗ = 2κ− 1 +
√

1 + 4Λ (1− κ)

2 (Λ + κ)
, (6)

where κ = η
ρ(η+ρ)+η ∈ [0, 1]. Presumably, this discrepancy could be resolved with a better closure approx-

imation. The global evolution of the second raw moments is also well reproduced, even though the TME

model overestimates the moments 〈GM〉∗ and 〈P 2〉∗ (Fig. 3-B,C) for high values of ρ. The left column

of Figs. 3-D,E display how 〈GUP 〉∗ and 〈GP 2〉∗ vary with ρ and δ, in good agreement with the closure

assumption (4) (Fig. 3-D, right column). Although discrepancies are slightly more pronounced for 〈GUP 〉∗,
Figs. 3-D,E support the assumption that the two third-order raw moments have equal values. In comparison,

the model obtained by assuming vanishing third-order central moments also predicts correctly stationnary

values, captures more precisely the overshoot of the average near ρ = 1, but displays to a stiffer transition

for the averages around ρ = 1 (see Supporting Material).

Dynamical considerations can explain the variation of averages with ρ observed. If ρ ≫ 1, the gene flip

dynamics is averaged by the low pass filter, and the stationary regime is correctly predicted by the fixed

point values of the rate equations. In this limit, the gene remains bound or unbound for very short amounts

of time, during which mRNA and proteins copy numbers can be considered as constant. RNA and protein

levels keep a memory of many previous state switching cycles, and reach a stationary state with a probability

distribution which is expected to be Gaussian. The coefficient of variation CV =

√
〈P 2〉−〈P 〉2

〈P 〉 tends to zero as

ρ increases, indicating that fluctuations in protein concentration become negligible compared to the average

concentration in the limit of fast gene dynamics (ρ → ∞).

Conversely, if ρ ≪ 1, the gene reacts infinitely slowly. The dynamics is then driven by the gene jumping

between two states according to a Poisson process. During the time where the gene is active (resp. inactive),

protein and mRNA levels quickly converge to their maximum value Λ (resp. to zero); at the end of an gene

switching state cycle, variables are always in the same state with no memory of previous cycles. Protein

concentration temporal profiles feature a sequence of squared shape spikes, distributed in time according

to a Poisson process, and characterized by a coefficient of variation CV ≈
√
Λ increasing with the overall

production rate Λ. Thus, fluctuations are enhanced by a slow gene and a high repression.

Then, a natural question is whether there exists between these two limit cases a dynamical regime

which both behaves deterministically, as in the fast-gene limit, and displays strong variations of the protein

concentration, as in the slow-gene limit. Such dynamical behavior would feature a sequence of protein

concentration spikes, but with a time interval distribution more regular than a Poisson process. This

intuition is based on the fact that when the gene flip frequency and the cut-off frequency of the low-pass

filter are resonant (ρ ≈ 1), the random fluctuations of gene flips generated by the Poisson process should
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be partially buffered by the low-pass filter. This mechanism should prevent spike bunching, generating a

more regular dynamical behavior that is the stochastic analogue of an oscillatory behavior (that we term

thereafter stochastic oscillations). To assess the veracity of this idea, we developed a criterion to quantify

the regularity of stochastic oscillations, described in next section.

Negative feedback induces protein spike antibunching

The regularity of a stochastic oscillatory behavior is often quantified using a temporal autocorrelation

function (8, 37, 47). This measure is sensitive to reproducibility both in time and in amplitude. However,

temporal regularity is certainly more relevant than amplitude regularity for biological protein signals. The

highly nonlinear response of many signaling cascades can protect them against fluctuations in amplitude,

for example by saturating output above an input threshold. A standard technique for assessing temporal

regularity is to divide the state space into two regions I and II and to study the distribution of the times

where the system leaves I to enter II. It is often useful to require a minimal excursion in region II to avoid

spurious transitions induced by noise. Here, we detect events where the protein level crosses successively

the mean protein level 〈P 〉∗ and the P
′∗ = 〈P 〉∗ + 0.25 stdev (P ) level before falling back below the mean

protein level, where stdev(P ) denotes the standard deviation of P .

Given the list of times where the system transits from low to high protein levels, we compute the

probability of detecting n transitions within a time interval of fixed duration. To be specific, we select

a time interval equal to ten times the average time between two events, and characterize the probability

distribution of the number of events by the variance to mean ratio, also known as the Fano factor (48). This

method is inspired by how the temporal distribution of photons from a light source is generally characterized,

with the event of interest being a photon detection. A Fano factor close to unity is obtained when time

intervals between events follow a Poisson distribution. A Fano factor greater (less) than unity indicates

super-Poissonian (resp., sub-Poissonian) behavior corresponding to a bunching (resp., anti-bunching) of

protein spikes. Spike anti-bunching can be viewed as a stochastic counterpart of deterministic oscillations.

While using the coefficient of variation of the interspike interval would give similar results, the method

described above has the advantage to take into account correlations between the successive transitions.

Figure 4 displays stochastic simulations of the chemical reaction network of Fig. 1 for a slow, an in-

termediate and a fast gene, as well as the probability distribution of the number n of transitions within a

given time window. As expected, protein spikes in the slow gene case (Fig. 4-A) are slaved to the switching

process, leading to a Poisson probability distribution for n (Fig. 4-D) and accordingly a unit Fano factor.

In the intermediate gene response time case (Fig. 4-B), protein spikes are mostly antibunched (see black

circles). The probability distribution of spike number is Gaussian-like (Fig. 4-E), the Fano factor being

around 0.25. This anti-bunching degrades in the case of a fast gene (Fig. 4-C) with the Fano factor rising

to 0.9. Thus, we observe a resonance effect which results from the coincidence of the characteristic time of

the gene response to protein variations with the time during which gene state history is remembered, which
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is controlled by the protein and mRNA decay rates.

Figure 4: Protein spike antibunching. (A,B,C). Time evolution of protein copy number for Λ = 100,
δ = 1 and ρ = 10−3, 1, 103, respectively. Dashed lines indicate mean protein level and mean protein level
plus standard deviation. Black lines correspond to the high trigger level and spiking events are indicated by
black circles. (D, E, F) Probabilities of observing n spikes during a time window of 10 average transition
times ρ = 10−3, 1, 103, respectively.

We studied systematically how the Fano Factor depends on the gene resonance parameter ρ and the

relative protein decay rate δ in stochastic simulations (Fig. 5). We found that the regularity of protein

spikes is reinforced by (1) similar mRNA and protein decay rates (δ ≈ 1), (2) a resonance parameter close

to unity (ρ ≈ 1), and (3) a sufficiently strong feedback (Λ ≫ 1), as shown in Fig. 5-A,B. Thus, the most

regular oscillations are observed when the gene cycling period resonates with the average mRNA/protein

lifetime.

The lack of symmetry with respect to the transformation δ ↔ 1/δ for low values of Λ (Fig. 5-B) results

from numerical difficulties to reach the infinite cell volume limit for small δp (δ ≪ 1). As a control, we

checked that the Fano Factor is almost independent of the ratio β/δp (see Fig. 5-C ), which determines the

protein to mRNA ratio.

In the large Λ limit, it is expected that the gene spends most of the time in the “off” state so that the
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A

C

B

D

Figure 5: Regularity of stochastic oscillations In (A), (B), and (C), the value of the Fano factor F ,
which quantifies spiking regularity, is shown as a function of two parameters using a gray-scale color code
with level lines displayed in red. The yellow (color online) lines in (A) and (B) enclose the region where
the TME model predicts oscillations based on numerical analysis (thick lines) or analytical criterion Eq. (7)
(thin lines). The regularity of stochastic oscillations is favored by balanced protein and mRNA degradation
rates (corresponding to δ ≃ 1) as well as (A) a resonance parameter ρ close to 1, (B) a high value of
the overall production rate Λ. (C) The ratio β/δ controlling the relative mRNA to protein concentration
has no effect on spike regularity. (D) The oscillation period (or protein average interspike time interval)
is controlled by the resonance parameter ρ. The variation of χ, the average number of “on”/ “off” cycles
in an interspike interval, is displayed using a gray color code as a function of the lifetime ratio δ and of
the resonance parameter ρ. Level lines are displayed in red (color online). Stochastic simulations of the
biochemical network have been carried out with koff/kon = 100 ; β = 10δ (A, B, and D); ρ = 1 (B and C);
Λ = 100 (A, B, and C ).
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average duration of one “on”/“off” cycle is approximately given by τoff = 1/koff in original time units. To

study the interplay between the gene state dynamics and the protein spike dynamics, a useful indicator is

χ = koff 〈Ts〉 where Ts is the average time interval between two spikes. In the slow gene limit (ρ → 0),

χ tends to 1, indicating that protein and mRNA are slaved to the gene dynamics in a “fire and degrade”

mode. Conversely, the high value of χ in the fast gene limit indicates that the gene dynamics is too fast

to be relevant and justifies an adiabatic elimination of the gene state variable. In the parameter region

where spikes are more regular, the intermediate values taken by χ (between 1 and 10) reveal that the

gene dynamics and the mRNA/protein dynamics influence each other and generate together the stochastic

oscillations observed.

The truncated moment expansion predicts the appearance of stochastic oscillations

If a moment-closure model such as the TME model (Eqs. (5)) is relevant to the dynamics of the self-repressing

gene, it should be able to predict the stochastic oscillations evidenced in the previous section. While such

models take fluctuations into account, they are deterministic ODE models, where the natural counterpart of

the regular spiking observed in stochastic simulations would be the occurrence of self-sustained oscillations.

A linear stability analysis of the TME model should then provide analytical insight into the key parameters

controlling the stochastic oscillations.

Indeed, the TME model exhibits oscillatory behavior and the region in the parameter space where

oscillation occurs (identified by numerical stability analysis) is consistent with the region of parameter space

where regular stochastic oscillations are observed (Fig. 5-A,B), at least for small ρ (slow gene) or ρ ≈ 1.

In particular, the TME oscillation region contains the point (ρ = 1, δ = 1) which is the organizing center

of the stochastic oscillation region in parameter space. However, the TME model does not capture well

the occurrence of regular stochastic oscillations when ρ > 1 (Fig. 5-A). The influence of feedback strength

Λ on the appearance of oscillations depending on degradation rate balance is correctly captured (Fig. 5-

B), although the TME model overestimates the value of Λ at which regular oscillations are first observed

(Fig. 5-B).

It is interesting to note that while the mean-field model of the self-repressing gene is unconditionally

stable, the simplest model incorporating the feedback from fluctuations, namely the TME model, predicts

oscillations in good agreement with the observed regular stochastic oscillations. This strongly supports the

idea that fluctuations play a functional role to promote oscillations. Thus, it is interesting to check whether

an analytical criterion for the appearance of oscillations can be derived, so as to identify the role of each

parameter in this dynamical behavior. In generally, oscillation criteria for systems with 4 or more variables

are difficult to obtain. In the present case, however, a approximation in the stability analysis (see Supporting

Material) leads to a relatively compact Routh–Hurwitz oscillation criterion (49), indicating the parameter

space region in which oscillations originating from a Hopf bifurcation occur. In our case, the criterion states
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that oscillations occurs in the TME model when the inequality

H(ρ, η,Λ) = ρ3
(

6 +
2

〈G〉∗2
)

+ 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0. (7)

is satisfied, the average gene activity 〈G〉∗ being defined by Eq. (6). As Fig. 5-A,B show, the criterion (7)

delimitates very accurately the parameter space regions where oscillatory behavior is observed in the TME

model, as indicated by a numerical stability analysis. Therefore, it is tempting to use it to discuss the

influence of the different parameters on the appearance of regular stochastic oscillations, at least for ρ ≤ 1

where the TME model reflects the existence of these stochastic oscillations with oscillating averages and

moments.

In particular, it can be seen that the only negative term in (7) is −ρηΛ and thus that a sufficiently large

value of Λ is required for oscillations. On the other hand, η should not be too large, otherwise the η2 term of

expression (7) is dominant. Given that η = (1 + δ)2/δ, the lowest possible value for η is 4, which is reached

when δ = 1. This implies that the mRNA and protein degradation rates should not be too different, as is

observed in the stochastic simulations. More precisely, a necessary condition for the occurrence of oscillatory

behavior at ρ = 1 is Λ ≥ 3η+ (13η +6)/(η − 1), which shows that larger values of η require larger values of

Λ (i.e., stronger feedback), as indicated by Fig. 5B.

Let us now consider how the value of ρ influences oscillatory behavior. When ρ → 0 (i.e., the gene

cycling period is much longer than average protein/mRNA lifetimes), the criterion is never satisfied because

H = η2 > 0, and no oscillations occur. When ρ → ∞, the dominant term is obviously positive, and no

oscillations occur either. For intermediate values of ρ, the quantity H can become negative when Λ is

sufficiently large and η is sufficiently close to its minimum value of 4, as discussed above.

The discussion is easier in the limit of large Λ, where the oscillation criterion simplifies considerably (see

Sec. S.H in the Supporting Material). Two cases must be considered according to whether ρ is small or

close to 1, because the gene average activity scales differently with Λ in these two cases. For ρ = O(1), we

find that the leading term of the exact Routh–Hurwitz criterion is

H ≈ −ρ
(

−2 η ρ2 − 2 ρ3 + η2 − ρ η
)

(η + ρ)
Λ (8)

so that oscillations occur when

2 ρ2η + 2 ρ3 − η2 + ρ η < 0, (9)

which describes well the rightmost boundary of the oscillation region in Fig. 5-A (see Fig. S3). The simplicity

of the criterion allows us to discuss the relative influences of gene response time (characterized by ρ) and

degradation rate balance (characterized by η) on the appearance of oscillations. We see that H changes
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abruptly from large negative to large positive values at

η = ηc = (ρ+ 1/2 + 1/2
√

4 ρ2 + 12 ρ + 1)ρ. (10)

so that oscillations are lost for higher values of η. When ρ is small (ρ = O(1/Λ)), then the oscillation

criterion simplifies to

ρ > η/Λ, (11)

corresponding to the leftmost boundary of the oscillation region in Fig. 5-A (see Fig. S3).

Thus, oscillations are systematically found for ρ ∈ [η/Λ, ρc], where ρc is the value of ρ statisfying (10) for

a given value of η, with ρc ≈ 1.07 for δ = 1 (η = 4), and where H switches from negative infinity to positive

infinity. This confirms unambigously the existence of a wide region of oscillation in parameter space. The

singular behavior observed at ρc is presumably an artifact of the truncation scheme used, and is related to

the fact that the choice of the moment-closure function affects the highest-order term in ρ in the criterion (7)

(see Section S.H in Supplementary Information). It is plausible that the singularity would disappear at a

higher truncation order, and that in this case, the oscillation region would extend further towards larger

values of ρ, improving the agreement with stochastic simulations. However, the system would then perhaps

be too complicated to obtain an analytical oscillation criterion.

Globally, the TME model captures well how the mean-field variables and fluctuations interact through

nonlinearities to generate relatively regular stochastic oscillations, at least when the gene response time is

not too small (i.e., when ρ ≤ 1). The fact that an analytical criterion for its oscillation threshold, which

becomes very simple in the limit of large Λ, can be obtained allows one to understand the role of the different

parameters. In particular, it confirms that oscillations are favored when mRNA and protein degradation

rates are close to each other (i.e., δ = 1 and η = 4). It is also consistent with the fact that oscillations

always occur in the neighborhood of ρ = 1.

Oscillations in Hes1 expression match the criterion for fluctuation-induced oscillations

The main result of this work is that stochastic fluctuations in a self-repressing gene can play a functional

role in promoting the appearance of relatively regular oscillations in specific regions of the parameter space.

It is then natural to ask whether oscillating self-repressing gene circuits found in biological systems operate

in the parameter region we have identified. One such circuit that has been intensively studied is the Hes1

gene, which is believed to be at the core of the somite clock (17). It is well known that a crucial ingredient

of oscillations in Hes1 expression is the presence of a time delay, associated to transcription, translation or

transport. This time delay is often modeled as an explicit time delay (23–25, 40), however it can also result

from a slow reactional step (21, 22, 26).

In our system, the time delay is due to the finite gene response time related to the binding/unbinding

dynamics. This finite gene response time can also be viewed as taking into account phenomenologically other
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sources of delay, if they arise from reactional steps and thus are exponentially distributed. More precisely,

the gene can persist in the “off” state for some time after protein level goes down because of the characteristic

time τg = k−1
off (in original time units) needed to switch from the “off” to the “on” state. Therefore, this

characteristic time can be viewed as the delay inducing oscillations, and large-scale variations of protein

concentration will typically appear when it is not too small compared to protein half-life. We found that

these variations are more regular when these two time scales are equal. Of course, the oscillations in our

model remain less regular than those observed in Hes1 because (1) the delay is exponentially distributed

rather than constant and (2) there is no cooperativity. Yet, the models are sufficiently similar that if there is

a parameter region where fluctuations promote oscillations in our stochastic self-repressing gene model, this

should remain true for the Hes1 circuit since oscillations would then be more robust to random variations of

the delay. Such random variations could be due for instance to the presence of reactional steps. We should

then expect this specific parameter region to be selected by evolution.

A first interesting observation is that in the Hes1 oscillator, the protein and mRNA half-lives are ap-

proximately equal, with reported values of 22 and 24 minutes, respectively (17). This is fully consistent with

both our observation that regular oscillations occur preferably for δ = 1 (Fig. 5). Note that this contrasts

with what is known for the mean-field model, where making degradation rates unbalanced while keeping

their sum constant favors oscillations (26).

A crucial parameter for the regularity of the stochastic oscillations is the resonance parameter ρ, which

depends on the time delay and on the mRNA and protein half-lives. However, the time delay in the Hes1

circuit is not known experimentally. In theoretical investigations (see, e.g., (40, 50)), it is generally assumed

that the time delay ranges from 10 to 40 minutes. We assume here a value of 30 minutes, which is consistent

with the fact that for large half-lives, the oscillation period of 120 minutes is approximately equal to four

times the delay (23). With the known values for the mRNA and protein half-lives (which translate to

δp ∼ δm ∼ 0.03min−1), this yields ρ ∼ 2. Together with δ = 1, this value corresponds precisely to the region

of regular oscillations in Fig. 5A. Furthermore, note that Fig. 5D indicates that for ρ = 2, the ratio of the

oscillation period to the delay 1/koff is indeed close to 4.

Finally, other theoretical investigations (see, e.g., (40, 50)) assume that Λ ≫ 1. This in fact a natural

condition, which requires that the maximum protein level reached when the gene is fully active must be

much larger than the half-repression threshold. This ensures that the protein level can go below and above

this threshold in the course of oscillations, and that the gene is strongly repressed when protein level is high.

Taken together, these facts strongly suggest that the Hes1 mRNA and protein half-lives have been tuned

to be both close to the time delay in order to make oscillations in Hes1 expression robust against stochastic

fluctuations in delay.
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Discussion and conclusion

In this paper, we have studied the stochastic dynamics of a self-repressing gene model, in which the gene

switches randomly between the active and inactive state with a characteristic time which can be arbitrarily

small or large compared to mRNA and protein lifetimes. The regularity of the protein spikes generated

by the dynamics was characterized using a Fano-like indicator. This allowed us to evidence a dynamical

resonance phenomenon, namely that a more regular time evolution of protein concentration is observed

when the protein and mRNA degradation rates and the gene response time are nearly equal. It should be

stressed that fluctuations are here the only factor triggering oscillations, since our model does not incoporate

cooperativity nor nonlinear degradation. The regularity of the oscillations displayed in Fig. 4B would be

significantly improved by using these two ingredients, as is done in most theoretical investigations, or by

considering a fixed time delay in addition to the exponentially-distributed gene response time.

To understand the resonance phenomenon, we developed a deterministic ODE model using a moment-

closure approximation of the master equation. The TME model describes the combined time evolution of the

average gene activity, protein and mRNA concentrations and of the two raw moments linking gene activity

with protein and mRNA concentrations, in accordance with the fact that the gene state remains a binary

variable in the infinite volume limit and thus is the most stochastic variable. Such a model naturally describes

how nonlinearity injects fluctuations into the average dynamics, which can be substantially modified. The

steady state of the TME model predicts well how averages and covariances vary with the gene response time

and the ratio of mRNA and protein degradation rates. In particular, it reproduces the fact that the average

gene activity is significantly reduced in the slow gene limit. Unlike rate equations, which are unconditionally

stable, the TME model displays a Hopf bifurcation and predicts oscillations in a parameter region where

numerical simulations indicate that the protein spikes are indeed more regularly spaced. It remains that the

agreement is less good when ρ > 1, presumably because the moment closure approximation affects the ρ3

term in the oscillation criterion, making it sensitive to tiny variations. A direction for future research will

thus be to better understand this effect and to derive a more comprehensive description of the self-repressing

gene.

Globally, we believe that our results support the idea that deriving deterministic equations through a

moment-closure approximation of the master equation is an interesting approach to describe the bifurcation

diagram of stochastic dynamical systems, which is generally a difficult problem (see, e.g., (51, 52)). This

approach is all the more interesting as computer software is available to derive the hierarchy of equations

for the moments or cumulants of increasing order (43, 53). The approach describe here is also well fitted to

problems where one variable remains microscopic, such as gene state, and where fluctuations dramatically

affect the average values. It thus brings a distinctive advantage compared to other methods based on the

linear noise approximation (42).

To check whether the resonance effect discussed here is relevant in real genetic oscillators, we examined
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the time scales reported for the Hes1 self-repressing gene (17, 23, 24). In this circuit, the mRNA and protein

lifetimes are approximately equal to the time delay. We found that this situation is characterized by the

reduced parameters ρ = 2, δ = 1, which are located near the center of the parameter region where regular

protein spiking is observed. This strongly suggests that the phenomenon of stochastic resonance we have

unveiled plays an important role for generating robust genetic oscillations, independently of other oscillation-

enhancing effects such as cooperativity in the transcriptional regulation (54) or nonlinear degradation (26,

29), which can be simultaneously harnessed. A possibly related observation by Murugan and Kreiman is that

protein response times fluctuate less when mRNA and protein lifetimes are closer (55). Another interesting

fact is that when the sum of half-lives is kept constant, balanced degradation leads to a longer delay in the

feedback loop (see Section S.G. in Supporting Information). From a mathematical point of view, the fact

that several important time scales coincide may favor the appearance of complex conjugate eigenvalues in

the Jacobian matrix, a prerequisite for oscillations.

More generally, we believe that our findings provide a remarkable example of how stochastic fluctuations,

which are unavoidable in genetic networks, may play a functional role to shape their dynamics (7).
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S.A Master equation

The self-repressing gene reaction network involves four chemical species: the unbound gene G, mRNA M ,

protein P and the DNA-protein complex GP . These molecular actors interact via the following biochemical

reactions:

G + P
kon/Ω−−−−⇀↽−−−−
koff

GP (S1a)

G
αΩ−−→ G+M (S1b)

M
β−−→ M+P (S1c)

M
δM−−→ ∅ (S1d)

P
δP−−→ ∅ (S1e)

The cell volume parameter Ω allows us to consider the limit where the protein and mRNA copy numbers

are macroscopic variables and are not affected by a one-copy variation. Defining the DNA-protein binding

rate as kon/Ω and the transcription rate of the free gene as αΩ ensures that in the infinite volume limit,

the average amount of time spent by the gene in the active state as well as the mRNA and protein average

concentrations m/Ω and p/Ω remain bounded. The unbinding rate is koff . The parameter δm (resp., δp) is

the linear mRNA (resp., protein) degradation rate and β is the translation rate.

If Pg,m,p(t) denotes the probability to find the gene in stage g (where g = 0 represents the bound gene

and g = 1 the unbound state), together with m mRNA and p protein copies at time t, its time evolution is

governed by the following master equation :

d

dt
Pg,m,p = (−1)g

[

kon
Ω

(p+ 1− g) P1,m,p+1−g − koffP0,m,p−g

]

(S2)

+δg,1αΩ
[

E
−
m − 1

]

Pg,m,p + βm
[

E
−
p − 1

]

Pg,m,p

+δm
[

E
+
m − 1

]

m Pg,m,p + δp
[

E
+
p − 1

]

p Pg,m,p.

where E
±
x is the usual step operator (1) defined by E

±
x f (x, y) = f (x± 1, y).
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S.B Moment expansion

The moments of the probability distribution Pg,m,p are defined by:

Mn1,n2,n3
= 〈gn1mn2pn3〉 =

∑

g,m,p

gn1mn2pn3Pg,m,p. (S3)

The idea of a moment expansion is to use the chemical master equation to derive equations describing

the time evolution of these statistical quantities, taking into account that the Pg,m,p generally evolves with

time (1). More precisely, the time derivative of the moments defined by (S3) involves time derivatives

of the Pg,m,p probabilities, which may be expressed in terms of the Pg,m,p themselves using the master

equation (S2). The resulting expression can be rewritten in terms of moments (2).

It is well known that closed equations can only be obtained when the underlying dynamics is linear.

When it is nonlinear, as is the case here, the time derivative of a cumulant of given order depends on higher-

order cumulants, so that there is essentially an infinite number of equations to be considered. A common

strategy to obtain a finite-dimensional set of equations approximating the chemical master equations is to

truncate this infinite hierarchy in some way. In the present case, we will only consider the infinite cell volume

limit, so that the variations of protein and mRNA copy numbers by one unit is negligible. The remaining

fluctuations in the mRNA and protein concentrations are then only due to gene fluctuations.

The moment expansion that we derive below takes a simpler form if we replace the mRNA copy number

by the weighted average

u =
β m+ δm p

δp + δm
, (S4)

and by using the following rescaled variables

rt =
δm+δp
δpδm

; rg = 1; ru = rp =
kon

koffΩ
; rm = βkon

δpkoffΩ
; (S5a)

T = rt t; G = rg g; U = ru u; P = rp p. (S5b)

Note that since g is a binary variable, 〈gn〉 = 〈g〉, which simplifies the cumulant expansion.

Introducing the following rescaled parameters

ρ =
koff (δm + δp)

δpδm
; Λ =

αβkon
δmδpkoff

; η =
(δm + δp)

2

δmδp
, (S6)
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the normalized time evolution equations for the averages in the infinite cell volume limit read:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S7a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S7b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S7c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [〈GUP 〉 + 〈GU〉 − 〈U〉] ; (S7d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉] − ρ

[

〈GP 2〉+ 〈GP 〉 − 〈P 〉
]

; (S7e)

d

dT
〈U2〉 = 2 [Λ〈GU〉 − 〈PU〉] ; (S7f)

d

dT
〈P 2〉 = 2η

[

〈PU〉 − 〈P 2〉
]

; (S7g)

d

dT
〈UP 〉 = Λ〈GP 〉 − 〈P 2〉+ η

[

〈U2〉 − 〈PU〉
]

. (S7h)

Because of the binary gene binding reaction (S1a), the time derivatives of the second order moments 〈GU〉
and 〈GP 〉 depend on the third-order moments 〈GUP 〉 and 〈GP 2〉 which are unspecified at this stage. Thus

Eqs. (S7) do not form a closed system of equations.

The moments involving the natural variables G, M , and P can be recovered by the relations

〈M〉 =
(1 + δ) 〈U〉 − 〈P 〉

δ
, (S8a)

〈GM〉 =
(1 + δ) 〈GU〉 − 〈GP 〉

δ
, (S8b)

〈MP 〉 =
(1 + δ) 〈PU〉 − 〈P 2〉

δ
, (S8c)

〈M2〉 =
(1 + δ)2 〈U2〉 − 2 (1 + δ) 〈PU〉+ 〈P 2〉

δ2
. (S8d)

S.C First order truncation of the moment expansion

A first strategy to truncate the hierarchy of moment equations is to set all covariances (the second order

centered moments) to zero (1)

〈(X − 〈X〉) (Y − 〈Y 〉)〉 = 0,
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which enslaves the covariances to the means 〈XY 〉 = 〈X〉〈Y 〉. Under this approximation, all fluctuations

are neglected and the following deterministic rate equations for the averages are obtained:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S9a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S9b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈G〉〈P 〉) . (S9c)

The steady state solution of (S9) is given by

Λ〈G〉∗ = 〈U〉∗ = 〈P 〉∗ = 1

2

(√
1 + 4Λ− 1

)

, (S10)

which does not depend on ρ, and is stable in the entire parameter space. Indeed, it was noted by Morant

et al. (3) that besides the finite gene response time, a nonlinear degradation mechanism is needed to induce

oscillations in this system.

Incorporating fluctuations in the dynamics of the average quantities requires truncating the hierarchy

at a higher order. We discuss two different strategies in the following sections.

S.D Second order truncation, the TOT model

S.D.1 Derivation of the model

A natural extension of the previous developed truncation is to keep the second order moments and enslave

the third order moments to the means and covariances by assuming vanishing third order centered moments.

So assuming that

KGUP = 〈(G− 〈G〉) (U − 〈U〉) (P − 〈P 〉)〉 = 0, and KGPP = 〈(G− 〈G〉) (P − 〈P 〉)2〉 = 0,

fixes the two following dependencies

〈GUP 〉 = G〈UP 〉+ U〈GP 〉 + P 〈GU〉 − 2〈G〉〈U〉〈P 〉, (S11)

〈GP 2〉 = G〈P 2〉+ 2P 〈GP 〉 − 2〈G〉〈P 〉2. (S12)
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Figure S6: Comparison of averages and covariances obtained from stochastic simulations and
from the fixed points of ODE models derived using the TOT and TME truncation schemes.
(A) Average gene activity G; (B), (C), (D) covariances ∆GP , ∆GM and ∆PP ; (E), (F) third-order cumulants
computed from numerical simulations. Curves for different values of δ are color-coded according to legend
box. In each panel, thick lines (resp., thin) lines indicate positive (resp., negative) values.
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Under this hypothesis, the time evolution of averages and covariances is described by the closed differential

system :

d

dT
P = η (U − P ) ; (S13a)

d

dT
U = ΛG− P ; (S13b)

d

dT
G = ρ (1−G−GP −∆G,P ) ; (S13c)

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [G∆P,U + (P + 1)∆G,U ] ; (S13d)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [G∆P,P + (P + 1)∆G,P ] (S13e)

d

dT
∆U,U = 2 [Λ∆G,U −∆P,U ] ; (S13f)

d

dT
∆P,P = 2η (∆P,U −∆P,P ) ; (S13g)

d

dT
∆P,U = Λ∆G,P −∆P,P + η [∆U,U −∆P,U ] , (S13h)

where ∆X,Y stand for the covariance of random variables X and Y : ∆X,Y = 〈XY 〉 − 〈X〉〈Y 〉. We refer to

model (S13) as the Third-Order Truncation (TOT) model.

The steady state of model (S13) is obtained by solving the following equations:

U = P = ΛG; ∆P,P = ∆M,P = ∆U,P = Λ∆G,U ; (S14a)

η∆U,U = (1 + η) Λ∆G,U − Λ∆G,P ; (S14b)

∆G,P = 1−G− ΛG2; (S14c)

(ρ+ ρΛG+ η)∆G,P = [η − ρΛG] ∆G,U ; (S14d)

∆G,P + ρ (1 + 2ΛG) ∆G,U = ΛG (1−G) ; (S14e)

∆M,M = Λ ∆G,M = Λ
(1 + δ)∆G,U −∆G,P

δ
. (S14f)

The steady state value of ∆GP , which is the joint correlation between the gene state and the protein copy

number, vanishes when ρΛG = η. The steady state values of averages in the model (S13) then coincide with

those derived from the rate equations (S9), given by (S10). Except in this particular case, equations (S14)

do not admit analytical solutions. However, asymptotic expressions for the steady state values of averages

and covariances can be obtained by a perturbative expansion when the resonance parameter ρ and feedback

strength Λ are either very large or very small, as is summarized in Table S1. In this computation, the

ratio δ is assumed to be neither very large nor very small. The expressions given in Table S1 allow us to

characterize the effect of fluctuations in the different limiting cases considered.

The second column of Fig. (S1) shows that the fixed point values of the TOT model are in good

quantitative agreement with the numerical estimators (first column of Fig. (S1)). Regarding the averages,
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ρ → 0 ρ → ∞ ρ → 0 ρ → ∞
Λ ≪ 1 Λ ≪ 1 Λ ≫ 1 Λ ≫ 1

ΛG∗ = U∗ = P ∗ ≃ Λ+ ρΛ Λ+ Λ4

ρ 1 + 3ρ
√
Λ
(

1 + 1
4ρ

)

∆∗
GP ≃ Λ2 − ρ −Λ3

ρ 1− 9ρ
Λ − 1

2ρ

∆∗
M,P = ∆∗

P,P = ∆∗
U,P = Λ∆∗

G,U ≃ Λ3 − 3ρΛ2 Λ3

ρ Λ+ 3ρΛ−3η
η

√
Λ

2ρ

∆∗
U,U ≃ Λ3 − ρΛ Λ3

ρ
η+2Λ

η Λ+ 3ρΛ1+η
η2

√
Λ

2ρ
2+η
η

∆∗
M,M = Λ∆∗

G,M ≃ Λ3 − ρΛ Λ3

ρ
δ+2Λ

δ Λ+ 3ρΛ1+δ
δη

√
Λ

2ρ
2+δ
δ

Table S1: Asymptotic expressions of the steady state values of averages and covariances for Eqs. (S13).

the overall shapes of the curves, with a maximum around ρ = 1, are very similar and the evolution of this

maximum with δ is reproduced (Fig. S1-A). The main discrepancy is that the transition from the fast to

the slow gene regime is more abrupt in the TOT model than in stochastic simulations, presumably because

higher-order contributions to the averages are neglected. The global evolution of the covariances is also well

reproduced, and the values of ρ where ∆GP becomes zero are also well predicted for the different values of δ

(Fig. S1B). Similarly, the variation of ∆GM with δ is captured. (Fig. S1-C). However, the TOT model fixed

point values overestimate the covariances ∆GM and ∆PP (Fig. S1-C,D) in the fast gene limit. Still, the

asymptotic values of the TOT model steady states (summarized in Table S1 in the Supporting Material)

are correctly reproduced.

A key assumption of the TOT model is that the third centered moments KG,U,P and KG,P,P vanish,

which is correct in the fast gene limit. However, Figs. S1-E,F show that they take rather large values in the

stochastic simulations, of the order of Λ, in the slow gene limit. One may thus wonder why the TOT model

is effective in this regime. Examining the structure of the equations solves this paradox.

Consider the dynamical equations for the covariance ∆GP and ∆GU :

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [KG,U,P +G∆P,U + (P + 1)∆G,U ] ; (S15a)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [KG,P,P +G∆P,P + (P + 1)∆G,P ] . (S15b)

The key point is that KGUP and KGPP are both weighted by ρ, so their dynamical influence vanishes in the

slow-gene limit even thought their are non zero.

Figure (S7) displays the values of all terms in Eqs. (S15) for various ρ. In the slow gene regime, (ρ → 0)

the first two terms of each equation dominate (i.e., ΛG (1−G) and ∆GP for Eq. (S15a); η∆GU and η∆GP

For eq. (S15b)) whereas in the fast gene limits, the last two terms dominate (ρ∆PU and ρ (P + 1)∆GU

for eq. (S15a)); ρ∆PP and ρ (P + 1)∆GP for eq. (S15b)). The fact that third-order central moments do

not converge to zero in numerical simulations when ρ → ∞ is due to numerical cancellation errors in their

computation, because two nearly equal numbers are being substracted, and should not be taken into account.

In both regimes, the influence of the third order cumulants vanish. It turns out that terms involving
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third-order cumulants play a more important role in the intermediate regime where they are the dominant

negative terms in the expression of the time derivative of ∆GU for ρ ≃ 0.1. Therefore, the TOT model

provides an excellent approximation for both fast and slow gene dynamics, and provides only a reasonable

description of the dynamics in the intermediate regime.

Figure S7: Dynamical influence of the third order cumulants The magnitudes of the different terms
appearing in Eqs. (S15) are numerically computed using stochastic simulations for Λ = 100, δ = 1 (equal
degradation rates), and various ρ. The differential equation at the top of each panel indicates the color
code. In each panel, thick lines (resp., thin) lines indicate positive (resp., negative) values.
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S.E Alternative truncation, the TME model

In the moment expansion (S7), Eqs. (S7d-e) describing the time evolution of 〈GP 〉 and 〈GU〉 are independent
of 〈U2〉, 〈P 2〉, and 〈UP 〉. However, Eqs. (S7a-e) do not form a closed system due to the presence of the

〈GUP 〉 and 〈GP 2〉 terms. Here, we use an another closure approximation by enslaving the third moment

〈GUP 〉 and 〈GP 2〉 to the average gene activity 〈G〉 via a phenomenological function.

In the case of a strong repression (i.e., Λ ≫ 1), the moments 〈GUP 〉 and 〈GP 2〉 can be derived from

considerations both in the slow and the fast gene limits. In the fast gene limit, the proteins and mRNA

number of copies are almost constant over a gene switch and correspond to their stationary value G ≃
U ≃

√
Λ so 〈GUP 〉ρ→∞ = 〈GP 2〉ρ→∞ = Λ〈G〉∗ =

√
Λ, as 〈G〉∗ ≃ 1/

√
Λ. In the slow gene limit (ρ ≪ 1)

the averages, covariances and third-order joint cumulants can be computed because all variables are slaved

to the gene state variable. In particular, the values of P and U alternate between 0 when the gene is off

and Λ when the gene is on. In normalized time units, the gene is active during a time tON = 1/Λ and

inactive during a time tOFF = 1 so that its average activity is G∗ = tON/(tON + tOFF ) = 1/(1 + Λ)

and P ∗ = U∗ = ΛG∗ = Λ/(1 + Λ) ≈ 1. Because P and U can be assumed to have a constant value of

Λ during the phase where G = 1, it follows that 〈GUP 〉ρ→0 = 〈GP 2〉ρ→0 = Λ〈G〉∗ = 1
Λ . Finally, we get

〈GUP 〉 = 〈GP 2〉 = 1
〈G〉 in the two limits. We then seek to express 〈GUP 〉 and 〈GP 2〉 in terms of the same

function depending on 〈G〉 only :

〈GUP 〉 = 〈GP 2〉 = F (〈G〉) .

The moment expansion (S7) then reduces to a five dimensional ODE system:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S16a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S16b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S16c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [F (〈G〉) + 〈GU〉 − 〈U〉] ; (S16d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉] − ρ [F (〈G〉) + 〈GP 〉 − 〈P 〉] . (S16e)

The fixed point of Eqs. (S16) is obtained by solving

− (Λ + 1) 〈G〉∗ + 1 +
ρ (η + ρ)

ρ (η + ρ) + η
F (〈G〉∗) = 0. (S17)

Requesting that the solution of Eq. (S17) in the limit of fast gene (ρ ≫ 1) coincides with the stationary

state of the rate equation (S9) allows one to obtain the asymptotic form of the unknown function F :

lim
ρ→∞

F (〈G〉) = F∞ (〈G〉) = (1− 〈G〉)2
〈G〉 .
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By extending this asymptotic form to the whole ρ axis and fixing

F (〈G〉) = (1− 〈G〉)2
〈G〉 ,

an alternate moment-closure model is obtained, which we term the Truncated Moment Expansion (TME)

model. Its fixed point describe well the stationary values of the averages (see main text).

The third column of Fig S1 displays the fixed points of the TME model recast in terms of averages and

covariances of the natural rescaled variables G, M , and P , so as to allow comparison with the fixed points

of the TOT model and provide information which is complementary to that of Fig 3. The absence of an

overshoot in the averages near ρ = 1 is correlated with the fact that ∆GP does not change its sign as rho

increases.

S.F Stability analysis

Figure (S8) compares the parameter space regions where TOT and TME models oscillate, as indicated by

a numerical stability analysis. In the slow gene regime (ρ → 0), the two models display similar behavior, as

could be expected from the fact that the closure approximations are consistent in this case. Similarly, none

of the two models displays oscillations in the large ρ limit.

However, the oscillation region of the TOT model is much narrower and moreover, is clearly disconnected

from the (ρ = 1, δ = 1) central point where the regular stochastic oscillations are preferentially observed.

This suggests that the third-order cumulants play an important role in the dynamics, in accordance with

their importance in the equations describing the time evolution of covariances involving the gene state

(Fig. (S7)).

S.G Analysis of the low-pass filter : Cut-off frequency and Feedback

delay

In the infinite volume limit, Eqs. (2a-b) describing the time evolution of the averages of mRNA and protein

concentrations are linear and do not depend on higher-order moments. Assume that mRNA and protein

concentrations respond to gene activity considered as an external signal. The two equations

d

dt
〈P〉(t) = β 〈M〉(t) − δp 〈P〉(t); (S18a)

d

dt
〈M〉(t) = α 〈g〉(t) − δm 〈M〉(t). (S18b)

can be viewed as describing a low-pass filter, whose dynamics is easily characterized. If we denote by 〈g〉(ω)
and 〈P〉(ω) the Fourier transforms of the input 〈g〉(t) and output 〈P〉(t) of the low-pass filter, then the
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Figure S8: Comparison between TOT and TME models oscillatory domain. The lines enclose
the region where the TOT model (thin lines) and the TME model (thick lines) oscillate for various Λ (see
legend box for color code).. The analytical expression of the two boundaries derived for Λ ≫ 1 are ρ = η/Λ

(dashed lines) and η2 − 2ρ3 − 2ηρ2 − ηρ = 0 (black line), with η = (1+δ)2

δ (see Sec. S.H).
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transfer function is given by

F (ω) =
〈P〉(ω)
〈g〉(ω) =

αβ

δpδm − ω2 + iω (δp + δm)
. (S19)

The cut-off frequency Ωc, defined by |F (ω = Ωc)|2 = 1
2 |F (ω = 0)|2, characterizes the spectral interval in

the input which is transmitted to output. More precisely, a sinusoidal input of frequency Ωc and amplitude

A induces a sinusoidal output of amplitude A/
√
2. The expression of the cut-off frequency Ωc is

Ωc = ωc

√

η2 − 2η

2

√

√

√

√

√

1 +
4

(η − 2)2
− 1, (S20)

where ωc =
δpδm
δp+δm

and η =
(δp+δm)2

δpδm
. Ωc/ωc varies between 2

√√
2− 1 ≈ 1.29 when η = 4 and 1 when η is

large. Thus ωc provides a good approximation of Ωc (whose definition involves itself an arbitrary choice)

and characterizes the relevant time scale.

If we rescale frequency with respect to ωc by defining ω = ω′ωc, the transfer function reads

F
(

ω′) =
K

η − ω′2 + iω′η
, (S21)

where K is a constant. This corresponds to the time rescaling that we use in model derivation and which

are defined Eqs. (S5).

The low-pass filter, as any linear system, is fully characterized by its impulse response, computed as the

inverse Fourier transform of the transfer function Eq. (S21). The impulse response represents the protein

time profile created by an infinitely short pulse of gene activity at time 0 :

PIR(T ) ∝
2η

√

η2 − 4η
sinh

(

1

2

√

η2 − 4η T

)

e−
1

2
ηT T ≥ 0. (S22)

The impulse response displays a maximum at T = Tm, where Tm depends on η only:

Tm =
log

(

√

η2 − 4η + η
)

− log
(

−
√

η2 − 4η + η
)

√

η2 − 4η
. (S23)

The value of Tm, which corresponds to the delay between gene activity pulse and maximum protein concen-

tration, decreases monotonously from its maximum value of 0.5 for η = 4 to 0 for large η (Fig. S9).

Assuming that the sum of mRNA and protein half-lives is fixed, the case of balanced half-lives (η = 4,

δ = 1) implies then a longer delay in the negative feedback loop.
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Figure S9: Impulse response of the low pass filter. The protein concentration time profile in response
to an impulse gene signal displays a maximum around a time Tm, whose dependence on η is shown in the
insert.

S.H Linear stability analysis of the TME model

The linear stability analysis characterizes the qualitative behavior of the trajectories of a dynamical system

near a fixed point by examining the eigenvalues of the Jacobian matrix evaluated at the fixed point. If all

eigenvalues have negative real parts, the fixed point is stable.

When the real part of a pair of complex conjugate eigenvalues crosses zero from negative to positive,

the fixed point becomes unstable and generically gives birth to a limit cycle, associated with appearance of

spontaneous oscillations (Hopf bifurcation) (4). The occurrence of such a bifurcation can be investigated

using the Routh-Hurwitz criterion (5, 6) without having to compute the actual eigenvalues. The Routh-

Hurwitz criterion provides one with a set of functions of the coefficients of the characteristic polynomial,

which are all negative when the fixed point is stable. One of these functions go through zero at a Hopf

bifurcation, and thus can be used as a criterion for the appearance of oscillations.

The dynamical properties of the TME model is governed by Eqs. (5a-e) of the main text. The Jacobian

matrix evaluated at the fixed point reads

J =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 ρ Λ− ρD −ρ −1

ρ 0 −ρD η −η − ρ





















, (S24)

where D = D(〈G〉∗) = D(ρ, η,Λ) = dF (X)/dX|X=〈G〉∗ is the derivative of the function F used in the closure
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approximation 〈GUP 〉 = 〈GP 2〉 = F (〈G〉).
The analysis of the Routh Table computed using the characteristic polynomial of the Jacobian (S24) leads

to an oscillation criterion H′(ρ, η,Λ) with a complicated expression, however the analysis of its structure

reveals that

H(ρ, η,Λ) = ρ3 (8− 2D(ρ, η,Λ)) + 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0 (S25)

is a sufficient condition for the occurrence of spontaneous oscillations. Indeed, the Routh-Hurwitz criterion

can be decomposed as H′ = A×H−B < 0 where A and B are two strictly positive functions of ρ, η, and Λ,

and thus cannot become positive if H is not positive. In practice, numerical simulations show that H = 0

delimitates very accurately the oscillation region in parameter space (see Fig. 5 in main Text).

Interestingly, H < 0 corresponds to the stability criterion of the approximated Jacobian

J ′ =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 0 Λ− ρD −ρ −1

0 0 −ρD η −η − ρ





















. (S26)

where the leftmost entries on fourth and fifth row have been set to zero.

With the closure F (X) = (1−X)2

X used in the main Text, we have D(X) = 1 − 1
X2 and the oscillation

criterion reads

H(ρ, η,Λ) = ρ3
(

6 +
2

〈G〉∗2
)

+ 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0. (S27)

where 〈G〉∗ = 〈G〉∗(ρ, η,Λ) is given by expression (6) in the main Text.

Because the derivative of the closure function appears in the coefficient of ρ3, the location of the oscillation

region will typically be very sensitive to the choice of the closure function, especially in the region around

ρ = 1, where the more regular stochastic oscillations are observed, and even more for larger values of ρ.

This probably explains why the agreement between the instability region of the TME model and the region

where regular stochastic oscillations are observed is not very good for ρ > 1.

A even simpler oscillation criterion can be obtained in the limit of strong feedback, when Λ → ∞,

without having to approximate the Routh-Hurwitz criterion. In this limit, we have to consider two cases

depending on the value of ρ.

If ρ is O(1), then the fixed point of the TME model is determined to leading order in 1/Λ by

< G >∗=

√

ρ (η + ρ)

ρ (η + ρ) + η

√

1

Λ
(S28)

If, however, ρ is sufficiently small that it can be written ρ = K
Λ with K = O(1), then the leading order
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solution of the TME fixed point equations is

< G >∗=
1 +

√
1 + 4K

2

1

Λ
(S29)

Note that the average gene activity scales differently with Λ in Eqs. (S28) and (S29).

To obtain the oscillation criterion in the limit of large Λ, we substitute expressions (S28) and (S29) in

the Jacobian (S24) and compute the Hopf Routh-Hurwitz criterion to leading order in Λ, which considerably

simplifies the expression.

We thus find that oscillations occur whenever

−2 ρ2η − 2 ρ3 + η2 − ρ η > 0, [ρ = O(1)] (S30)

if the gene response time is similar to degradation rates, or when

ρ >
η

Λ
[ρ = O(1/Λ)]. (S31)

when the gene response time is large. Note that Eq. (S31) confirms that oscillations appear for very small

ρ in the limit of large Λ, and also that it is consistent with the assumed scaling.

In spite of their simplicity, the two expressions provide excellent approximations of the two boundaries

of the instability region when Λ is large, as can be seen in Fig. S8. This allows one to discuss the relative

influences of gene response time (described by ρ) and degradation rate balance (described by η) on the

appearance of oscillations.

Interestingly, the conditions (S31) and (S30) can also be recovered by injecting expressions (S28) and

(S29) in the approximate criterion (S27), showing that the latter is all the more accurate as Λ is large.
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